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Abstract
Direct laser acceleration of electrons during a high-energy, picosecond laser interaction with an
underdense plasma has been demonstrated to be substantially enhanced by controlling the laser
focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to
maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing,
pulse energy, and plasma density conditions. Two-dimensional particle-in-cell simulations show
that the laser focusing conditions alter the laser field evolution, channel fields generation, and
electron oscillation, all of which contribute to the final electron energies. The optimal laser
focusing condition occurs when the transverse oscillation amplitude of the accelerated electron in
the channel fields matches the laser beam width, resulting in efficient energy gain. Through this
observation, a simple model was developed to calculate the optimal laser focal spot size in more
general conditions and is validated by experimental data.

1. Introduction

The rapid advancement of ultra-high power laser facilities is enabling the realization of high energy density
physics experiments and exploration of next-generation plasma-based accelerators [1, 2]. Direct laser
acceleration (DLA) is one of the mechanisms for producing high-flux high-energy electrons [3–5]. DLA has
many potential applications in accelerating secondary ions/neutrons/positrons [6–9], providing bright
directional x-rays [10], material detection [11] and radiotherapy treatment [12]. For example, ion
acceleration can be enhanced when superponderomotive DLA electrons are generated in a laser interaction
with a double-layer target [13]. Understanding the energy transfer mechanism from the driving laser pulse to
the plasma electrons is essential for these secondary processes.

In DLA process, the accelerated electrons gain energy directly from the laser. Consider a laser pulse with a
peak normalized field strength a0 = eE0/(mecω0)> 1, where E0 is the peak laser electric field amplitude, ω0

is the laser frequency, c is the speed of light, and e andme are the electron charge and mass respectively. The
electric field of the laser oscillates the electron in the transverse direction and the (v×B) force converts
transverse momentum to longitudinal momentum. Previous studies depicted this process in a preformed
channel [14]. The channel fields dramatically increase electron energy gain by reducing the negative role of
dephasing to keep electrons in phase with laser wave over an extended distance. Previous work has shown
that the azimuthal channel magnetic field can confine the electron transverse excursion [15]. Also, in the
near critical density regime, the azimuthal channel magnetic field assists electron heating by deflecting
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electrons forward, whereas the longitudinal channel electric field directly accelerates the electrons in the
forward direction [16]. Simulations performed by Tangtartharakul et al show that increasing the focal spot
size and matched channel width can further enhance energy coupling efficiency because the negative work
done by the longitudinal laser field component is reduced [17]. Counter-intuitively, raising the laser peak
intensity by focusing the beam to a smaller spot does not lead to higher electron energy. Babjak et al found an
analytical prediction for the optimal focal spot, which approximately matches the electron transverse
resonant amplitude, for highly relativistic intensity laser pulses over a range of plasma densities [18]. Laser
wakefield acceleration is another regime where focusing geometry has been considered an important
parameter. A laser with a spot size larger than the plasma wavelength can maintain high intensity and be
self-guided in plasma, allowing the acceleration of monoenergetic electron bunches [19]. However, we
currently lack direct experimental evidence showing the effect of laser focusing geometries on DLA.

In this paper, the DLA electron energy dependency on laser focusing geometry is investigated using
experiments and numerical modeling. The experiments were performed on the OMEGA EP laser facility and
demonstrated that the electron energy can be notably changed by varying the laser focal spot size. This
observation is strongly supported by complementary 2D particle-in-cell (PIC) OSIRIS simulations [20, 21],
which reveal how the evolution of the laser field and the generation of localized fields in plasma affect the
accelerated electron motion inside the laser channel. Particle tracking is performed to study the electron
trajectories. The relative energy contributions from the laser transverse and longitudinal fields are
distinguished, as well as the detrimental effect of the sheath field formed at the rear of the target. The sheath
field strength increases with laser beam size, making its effect particularly notable for electrons accelerated by
large beams. We find the optimal focusing geometry can be analytically predicted by equating the electron
transverse displacement and laser beam width. This method is shown to fit the experimental results over a
variety of plasma densities and laser parameters.

2. Experimental setup

The experiment was performed at the University of Rochester Laboratory for Laser Energetics using the
OMEGA EP laser facility. Figure 1(a) shows the schematic of the setup. A laser pulse with a central
wavelength of 1.053µm, duration of (700± 200) fs was focused by an f/2 equivalent off-axis parabolic
mirror to the edge of a Mach 2 – 2mm diameter supersonic helium gas jet target. A wide range of peak
plasma densities (ne) from 0.008 nc to 0.06 nc, where nc is the critical density, were examined and controlled
by adjusting the backing pressure of the He gas. The default near-field beam profile is square. To change the
effective f -number of the beam, circular apodizers with different diameters were used so that the full-width
at half-maximum (FWHM) focal spot size in vacuum varied from (4.6± 0.5)µm to (12.2± 0.2)µm. The
on-shot wavefront was measured and the vacuum focal plane was reconstructed. However, the increase of the
beam size led to a reduction of the maximum possible on-target energy, hence limiting the obtainable a0 for
large focal spots. The range of peak vacuum intensities was (0.15—9.0)× 1020Wcm−2, corresponding to an
a0 range of 3.4–27. The electron energy distributions were measured along the laser axis using a magnetic
electron–positron-proton particle spectrometer (EPPS) [22] with an energy coverage from 1–150MeV and
the energy uncertainty range from 2% at low energy end to up to 30% at the high energy end [23].

3. PICmodeling

To model the interaction, 2D PIC simulations were performed using the OSIRIS 4.0 code. A [750µm×
200µm]moving window with a resolution of 50 cells per λ in longitudinal (x) direction and 35 cells per λ in
transverse (y) direction moving in the speed of light was utilized. Each cell has 4 macroparticle electrons and
4 macroparticles representing fully ionized mobile helium ions. An open boundary condition was applied to
both dimensions. To approximate the density distribution of a gas jet nozzle, the initial plasma density has a
super-Gaussian profile in the x-direction, with a 450 µm flat top area and two 150 µm ramping zones
connecting to the vacuum as shown in figure 1(b), and a uniform distribution in the y-direction. The
maximum plasma density n0 along the laser propagation axis was 0.01 nc, where nc =meϵ0ω

2
0/e

2 is the
critical plasma density and ω0 is the laser frequency. The laser pulse was linearly polarized in y-direction with
a0 = 3.5, a wavelength of 1.053 nm and a pulse duration of τ = 700 fs. It was launched from the vacuum
region and focused at ne = 0.95n0. The initial laser electric field has a Gaussian spatial profile and a temporal
form of E= E0 sin(π t/τ), where τ is the pulse duration. Three different focal spot sizes with
FWHM= 5µm, 8µm, and 16µm were examined. And since the energy is changing for different focusing
conditions, another set of simulations using a constant laser energy of 8.3 J, which is set based on the energy
of the 8µm beam (a0 = 3.5), were also performed.
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Figure 1. (a) Experimental setup. The table on the right shows f -number for four different apodizers and the corresponding
in-vacuum laser FWHM. (b) The longitudinal density profile in simulations. n0 is the peak plasma density, which is 0.02 nc.

Figure 2. Experimental electron spectra for different laser focal spot sizes with similar peak plasma density of (0.016± 0.004) nc.
The light blue curve, labeled as 4.7µm (2), is a repeat shot of the dark blue shot. The light purple curve, labeled as 8.4µm (2), is a
repeat shot of the dark purple shot. The laser in-vacuum focal spot size, f-number of the apodizer, and the laser power are shown
in the legend. The laser a0 varies for different laser focusing conditions. From small beam size to large beam size, the laser a0 = 26
(FWHM= 4.7µm), 7.8 (FWHM= 6.7µm), 9 (FWHM= 8.3µm), 10.3 (FWHM= 8.4µm) and 5.7 (FWHM= 10µm).

4. Results

The highest electron energy and highest mean energy under the experimental conditions were achieved using
a beam with moderate focal spot size. Figure 2 shows seven example experimental electron energy spectra
from different laser focal spot sizes at a plasma density of (0.016± 0.004) nc. The apodization of the
beam to create the different focal spot sizes means the pulse energy was restricted for the large focal
spot sizes, resulting in a wide range of a0 = 5.7–26 for data shown in figure 2. For a laser focal spot of
FWHM= 8.3µm, a bi-Maxwellian-like electron energy distribution extending to∼400MeV was observed,
which exceeds 120 times the ponderomotive energy Up =mec2(γ− 1), where γ =

√
1+ a20/2. Spectra with

high energy tails exceeding 50MeV are obtained for laser focal spot size within the range of 6.7µm–10µm.
The significant energy increase upon using a moderate-sized beam suggests there is an optimal laser focusing
condition. Due to constraints in experimental time, only two shots—one with a laser beam size of 4.7µm
(dark blue curve in figure 2) and another with 8.4µm (bright red curve in figure 2)—were repeated to check
the reproducibility. Both repeated shots show relatively small shot-to-shot variations, particularly for the
majority of the electrons below 100MeV. The 4.7µm shot and its repeat shot almost overlap, with mean
electron energies of 16.6MeV and 16.8MeV, respectively. The repeat of the 8.4µm shot (dashed line) shows a
slightly larger gap and has a lower maximum detected energy. The mean energies for the 8.4µm shot and its
repeat shot are 28MeV and 23MeV respectively.
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Figure 3. The scattered markers show the experimental data in the [laser FWHM—plasma density] domain. Green plus markers
are obtained using laser power of (30± 1)TW, blue triangles are obtained using laser power of (50± 5)TW and red dots are
obtained using laser power of (160± 2)TW. The color darkness indicates the electron mean energy, with darker color
representing higher energy. The dashed curves show the theoretical prediction of the optimal conditions for electron acceleration,
which is calculated based on the assumption of electron transverse displacement matching with laser beam size. The green, blue
and red color correspond to laser power of 30TW, 50TW, and 160TW respectively.

A wider range of parameter space—density, focal spot size, laser power—was examined in experiments
and more data were collected to better extract the energy variation trends. A summary of the results is shown
using scattered markers in figure 3. The data is divided into similar laser power, illustrated by the different
colors—(30± 1) TW (green), (50± 5) TW (blue) and (160± 2) TW (red)—and the darkness of the color
indicates the mean electron energy. The mean electron energy was calculated for electrons above 10MeV.
However, due to the fact that changing the laser focal spot will inevitably change other parameters, such as
laser intensity for a fixed laser energy or power, it is difficult to directly separate the individual effects of the
laser focusing geometry. Therefore, to understand the complex relationship between the laser focusing
geometry and the electron acceleration, we perform two sets of 2D PIC simulations: one with constant
laser power and another with constant peak intensity. This allows us to explicitly analyze the electron
collective behavior and single particle dynamics. In simulations, the final spectra of escaping electrons are
diagnosed outside of the plasma, as the laser entirely leaves plasma at t= 3.8 ps. The results of
simulations using a constant a0 = 3.5 (corresponding to power of 5 TW, 12 TW, 47 TW for laser
FWHM= 5µm, 8µm, and 16µm) or constant laser power of 12 TW (corresponding to a0 of 5.6, 3.5, 2 for
laser FWHM= 5 µm, 8 µm, and 16 µm) are shown in figures 4(a) and (b) respectively. Enhanced
acceleration is obtained using an 8µm beam in both cases and the improvement of electron number is more
dramatic in figure 4(b). In addition, due to a low peak laser intensity, the mean electron energy of a 16µm
beam is lower than that of a 5µm beam in the constant power simulation. However, due to the simulation
having a reduced plasma length scale and less optimal acceleration conditions compared to the best shot in
the experiment, the simulated spectra show lower maximum electron energy compared to experimental data.

The 2D simulations provide insight into the influence of laser focusing on the laser field evolution, which
is directly related to the channel formation and electron energy gain threshold. Figure 4(c) shows the
temporal evolution of the laser a0 (dashed lines) and the corresponding electron mean energy (solid lines)
for three focusing geometries. The center of the laser pulse arrives at the initialized vacuum focal plane of
x= 800µm at t= 1.1 ps. Then it propagates in the peak density region until t= 3 ps, and finally the entire
laser leaves the plasma at t= 3.8 ps. In the density up-ramp region, a beam initially with the smallest spot size
reaches peak intensity faster than a large beam. As shown in figure 4(c), the peak a0 for a 5µm beam appears
around 1.1 ps, corresponding to 10µm before the vacuum focus position in the spatial domain, while a
16µm beam reaches its peak intensity at t= 1.5 ps, which is roughly 100 µm after the vacuum focus point.
The 5µm beam reaches its maximum a0 prior to the vacuum focal plane and the small focal spot has a high
transverse ponderomotive force resulting in a narrow, highly cavitated channel. Hence fewer electrons are
available within the channel to be accelerated, leading to weaker currents and consequently weak
self-generated magnetic fields, as shown in figure 5(a).

After passing the focal plane, a small beam also rapidly defocuses and the a0 is relatively low for the
remaining interaction period. The low laser intensity limits the maximum energy that electrons could gain.
In contrast to the tight focusing geometry, we see a more stable a0 for an 8µm beam. After passing the
vacuum focal plane, the laser defocuses to a0 = 3 at t= 1.6 ps, then self-focuses to a0 = 3.5 at t= 1.8 ps. The
a0 is sustained until it moves to the density down-ramp area. This allows the electron mean energy to
increase with a relatively constant slope.
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Figure 4. Simulated electron energy spectra for different initial focal spot sizes shown at t= 3.8 ps using (a) constant laser a0 and
(b) constant laser power. (c) Temporal variation of laser a0 (dashed lines) and the corresponding mean energy of electrons above
cutoff energy of 10MeV (solid lines) from the same simulation sets of the panel (a). (d) Comparison of temporal variation of
accelerated electron number for 8µm and 16µm beams from constant laser a0 simulations. The solid lines represent electrons in
the energy range of 10–50MeV and the dashed lines represent high-energy electrons>50MeV.

As the beam diameter increased to 16µm (corresponding to a higher power), the pulse focuses to highest
a0 = 6 at t= 1.5 ps. The laser intensity is better sustained along the entire interaction length compared to the
smaller beams, with relatively large intensity fluctuations (yellow dotted curve in figure 4(c)). However, as
shown in figure 4(c), the mean electron energy curve generated by the 16µm beam (yellow solid curve) does
not surpass that of the 8µm beam (red solid curve), indicating that the enhanced laser intensity does not
improve the mean electron energy. The temporal variation of the accelerated electron number is shown in
figure 4(d), for both electrons in the 10–50MeV and>50MeV ranges. Before the laser reaches the density
down-ramp region (at t= 3 ps), the 16µm beam drives almost twice the number of low-energy (10–50MeV)
electrons compared to the 8µm beam. However, fewer electrons are able to gain energy above 50MeV for the
16µm beam. From 3 ps to 3.5 ps, a large number of electrons lose energy and gradually trail behind the laser.
A sheath field is formed at the density down-ramp and channel exit due to the charge separation as the
electron beam moves out from plasma to vacuum. This causes the reduction in electron number, particularly
for the lower energy electrons which could lose all the energy before exiting the sheath field, leading to a
lower final mean electron energy.

The focusing geometry also implies laser longitudinal fields. Previous research has demonstrated that the
transverse Ey field does positive work for DLA electrons, whereas the longitudinal Ex laser field tends to
decelerate electrons [14]. The ratio of laser transverse and longitudinal electric field is observed to be higher
for the larger focal spots (|Ey|/|Ex|5µm : |Ey|/|Ex|8µm = 19:26 at 2.2 ps). Therefore, compared to the smallest
focal spot, the longitudinal electric field of larger focal spots is expected to do relatively less negative work.

To investigate the effect of the longitudinal laser field and sheath field for each case, the energy
contributions from different field components are calculated by performing particle tracking. Seven hundred
macro particles were randomly selected from electrons that move along with the laser and eventually out of
the plasma. They were tracked from the start of the simulations to the time when the laser completely exits
the plasma. The positions, momentum, and the exerted electric fields of the tagged electrons were diagnosed
at every time interval of 25 fs. The work done by longitudinal electric field Ex and transverse electric field Ey

5
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Figure 5. Electron trajectories overlapping on the channel Bz fields at t= 2.86ps for laser beam size of (a) 5µm, (b) 8µm and (d)
16µm. The color of the electron trajectories represents electron energy. The black contours show the laser normalized field
strength a value. (d) shows the laser beam diameter, the electron maximum transverse distribution range 2ymax, and the
amplitude of channel Bz fields at the position of x= 1225µm. Typical examples of different electric field components of an 8µm
beam simulation at t= 2.86ps are shown in (e)–(h). (e) and (f) are total fields (laser field+ channel field)—total Ex field on the
left and total Ey field on the right. (g) and (h) are spatial frequency filtered to remove the laser frequency and reveal the lower
strength channel Ex and Ey fields respectively.

are calculated by time integrals ofWEx =−
´ t
0 |e|Ex · vx dt

′ andWEy =−
´ t
0 |e|Ey · vy dt

′, where vx and vy are
electron longitudinal and transverse velocities respectively [4].

Figure 6 shows the distribution of the tracked electrons in the [WEx ,WEy ] energy space before (t= 3.3 ps,
orange markers) and after (t= 4 ps, blue markers) the sheath field region for the three focusing geometries.
The vast majority of the electrons are located in the quadrant ofWEy > 0 andWEx < 0, where electrons gain
energy from the transverse laser electric fields and lose energy due to longitudinal electric fields, providing
explicit evidence of DLA mechanism [4]. The electrons generated by a 5µm focal spot are more tilted
towardsWEx axis in figure 6(a), indicating a greater proportion of negative work was done by the
longitudinal laser electric field. Also, the blue markers almost overlap with the orange ones, implying that the
electron distribution is minimally affected by the sheath field. For the moderate and large beams, the
majority of pre-sheath field (orange) electrons are scattered around a direction ofWEy/WEx ∼ 3/1 at
t= 3.3 ps, corresponding to the time of the high-energy electron number reaches peaks in figure 4(d).
However, the difference is that fewer orange electrons exceed 50MeV for a 16µm beam as shown in
figure 6(c), as previously discussed. Secondly, a larger number of electrons are driven out of plasma by a large
focal spot (higher power pulse), hence a stronger sheath field grows in the down-ramp of the plasma,
resulting in a greater impact on electron distribution. The blue markers shift leftward along the negativeWEx

direction and there is a wider gap between orange and blue electrons for the largest focal spot, suggesting
more energy loss in the sheath field and a lower final energy compared to the mid-sized beam.

The particle tracking also reveals more details of the individual electron temporal and spatial dynamics.
Figure 5 depicts the trajectories of eight typical energetic electrons overlaid on the instantaneous channel
azimuthal magnetic fields Bz (figures 5(a)–(c)) at the time of electrons arriving at x= 1222µm for different
laser focusing conditions. And the black contours outline the laser normalized field strength a. Figure 5(b)

6
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Figure 6. Electron distribution in the [WEx ,WEy ] energy space before (orange markers) and after (blue markers) the sheath field
near down ramp region for laser focal spot size of 5µm (a), 8µm (b) and 16µm (c). The number of electrons is in the logarithm
scale. The diagonal dotted lines are electrons with constant total energies (WEx +WEy ), which are equal to the y-intercept.

clearly shows that electrons gain much higher energy with a moderate-sized driving pulse. To better illustrate
the relative scale of electron oscillation to the area that the laser field extends transversely, the maximum
electron transverse position (2ymax) and laser beam diameter (2r) at x= 1222µm are presented using gray
and red histograms in figure 5(d). The peak channel Bz field amplitude is also plotted in figure 5(d). As the
channel expands with increased laser focal spot size, more electrons may be accommodated within the laser
field and accelerated. As a consequence, stronger currents flow in the channel, forming a stronger Bz field.
This self-generated quasi-static magnetic field assists the acceleration process by confining the electron radial
excursion and deflecting the electrons in the forward direction [24]. Therefore, electrons are confined more
tightly within the wider channel because of the stronger magnetic field, as shown by the gray histogram
gradually becoming shorter than the red in figure 5(d). The ratio r/ ymax is 0.6, 1.1, and 1.4 for laser focal
FWHM of 5µm, 8µm and 16µm respectively. Therefore, for a 5µm beam, the magnetic field is too weak to
confine the electron in a way to efficiently allow DLA at ymax; for an 8µm beam, the electron transverse
displacement is well-matched to the laser beam width; while for a 16µm beam, electrons are over-confined
to a column narrower than the laser size.

Additionally, the longitudinal and transverse components of electric fields of an 8µm beam are shown in
figures 5(e)–(h), with (e) and (f) showing the total fields that are dominated by the laser fields. Spatially
filtering out the laser frequency reveals the lower strength channel fields in figures 5(g) and (h). The channel
Ey field (figure 5(h)) is undergoing a field reversal at this time due to the motion of the ions [25]. Therefore,
the azimuthal magnetic field is dominant in confining the electron beam within the channel.

Given that the maximum electron oscillation matches the laser beam size in the optimal scenario, a
theoretical model can be developed to predict the optimal focusing geometry to a broader range of
laboratory conditions. In the laser channel, quasi-static electric and magnetic fields are generated and the
laser beam size is approximately equal to the channel width. Assuming that the ponderomotive force is
balanced by the force of the charge separation in a stable ion channel, the channel width (w) can be estimated
as approximately twice the laser spot radius (r) [26, 27], so that w≈ 2r= 2 · 2

√
a ′
0 · c/ωp, where a ′

0 is the
normalized laser field strength when the laser is in the channel and ωp is the plasma frequency. Since the laser
power PL ∝ a ′

02r
2 ∼ a20r

2
0, the laser spot size can be rewritten as

r= w/2=
[(
2c/ωp

)2 · a0r0]1/3 , (1)

where r0 is the laser spot radius at the focal plane. In [18, 28], the maximum resonant electron transverse
excursion from the channel axis is calculated using

ymax =
(
2c/ωp

)√(
a0
ϵ
·
ωp

ω0

)2/3

− 1, (2)

where ϵ is a parameter depending on the initial conditions. Here we take ϵ= 0.2 for an ideal acceleration
condition [18]. Equating equations (1) and (2),

(a0r0)
1/3

=
(
2c/ωp

)1/3√(
a0
ϵ
·
ωp

ω0

)2/3

− 1

gives a condition where the electron transverse oscillation amplitude matches the laser spot size.
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The results are plotted in figure 3 using dashed curves with green, blue, and red color showing laser
power of 30TW,50TW and 160TW respectively. For each certain curve, the laser power is constant. Each
position on this curve gives the optimal laser focusing FWHM for different plasma densities to reach
maximum electron energy according to the simple model. Take the red curve for example, it has a fixed laser
power of 160 TW, and the optimal laser FWHM for a plasma density of ne = 0.02 nc is 8.2µm. For each laser
power, the optimal laser focal spot size increases with the plasma density.

To examine the validity of the simple theoretic model, the experimental data are plotted using scattered
markers in the [ Laser FWHM—ne ] space in figure 3. The darkest red and blue markers, representing the
highest mean energies measured, are located quite close to the red and blue dashed curves respectively. This
indicates that the optimized experimental parameter sets (laser power, laser focusing, and plasma density),
which produced the electron beam with maximum mean energy, agree with the theoretical prediction of the
ideal acceleration conditions. For the low laser power of 30 TW, there is not enough experimental data
showing a clear energy variation trend. Therefore, at least for laser power above 30 TW, the theoretical
calculation based on the assumption of electron oscillation matching with the laser beam size provides a
good prediction of the optimal combination of laser and plasma parameters.

5. Summary

In conclusion, this work has experimentally demonstrated that optimizing the laser focusing geometry
significantly enhances electron energy gain via DLA, and a maximum energy of∼400MeV was observed
using a hundred TW laser in experiments. To focus the laser energy on the smallest possible focal spot to
achieve the highest intensity is not always advantageous for DLA. The optimal focusing geometry is achieved
when the electron transverse oscillation amplitude matches the laser spot size in plasma, which is roughly the
channel width. And based on the matching condition, a model is developed to find the optimal combination
of laser power, focusing condition and plasma density in experiments. Electrons from an optimal focal spot
gain more energy than a tightly focused beam in bulk plasma and lose less energy than a very large beam in
rarefied plasma and sheath field. This demonstration and optimization of high-energy electron beams paves
the way towards high-fluence x-ray beams delivered on a picosecond time scale [29], which promise to
enhance the radiographic capabilities of moderate relativistic intensity laser systems operating in
high-energy-density research. For example, the picosecond duration of the x-ray beam generated by DLA
electrons are particularly suitable for radiography applications on longer timescales. Phenomena that evolve
on nanosecond timescales like shock waves propagating through dense plasma require high photon flux to
freeze the dynamics in a single shot [29, 30]. Furthermore, an x-ray beam with high energy and brightness is
ideal for imaging high density objects [31]. Simulations performed by Rosmej et al have demonstrated the
feasibility of performing x-ray phase contrast imaging of a sphere using DLA x-ray which has a photon
number of 7× 1011 in the 1–30 keV range, brilliance of⩾6× 1019 photons s−1mm−2mrad−2 (0.1%BW)−1

at a critical energy of 5 keV [29]. Moreover, investigations into channel formation and field evolution are
relevant to the hole boring scheme for fast ignition inertial confinement fusion [32]. In this scheme, a high
energy laser pulse needs to propagate through a millimeter-scale underdense plasma before reaching
overdense plasma and the dense fuel. One of the key concerns is the energy transport from the laser into the
fast electrons—in fact here a high conversion efficiency into the∼1MeV electrons is the goal—and the
formation of channel fields could play an important role in guiding laser pulse and collimating ignition
electrons [33–36].
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