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Abstract.  Hydrogen gas is a promising renewable energy storage medium when produced via water 

electrolysis, but this process is limited by the sluggish kinetics of the anodic oxygen evolution reaction 

(OER). Herein, we used a microkinetic model to investigate promoting the OER using programmable oxide 

catalysts (i.e., forced catalyst dynamics). We found that programmable catalysts could increase current 

density at a fixed overpotential (100× to 600× over static rates) or reduce the overpotential required to reach 

a fixed current density of 10 mA cm-2 (45% to 140% reduction vs. static). In our kinetic parameterization, 

the key parameters controlling the quality of the catalytic ratchet were the O*-to-OOH* and O*-to-OH* 

activation barriers. Our findings indicate that programmable catalysts may be a viable strategy for 

accelerating the OER or enabling lower-overpotential operation, but a more accurate kinetic 

parameterization is required for precise predictions of performance, ratchet quality, and resulting energy 

efficiency. 
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Development of carbon-neutral energy sources and energy storage mechanisms is the major challenge 

of the 21st century required to address climate change. Hydrogen gas is a promising energy storage medium 

when produced via water electrolysis to store renewable energy in the form of stable chemical bonds.1,2 

However, water electrolysis is not yet cost-competitive with fossil-derived H2.
3,4 One of the major 

contributors to the high cost of green H2 is the slow kinetics of the anodic oxygen evolution reaction (OER), 

which transforms water into O2(g) via a four electron transfer.1,2 Slow kinetics require large overpotentials 

to achieve industrially relevant current densities (η > 0.5 V at 0.3 – 10 A cm-2),1 and state of the art catalysts 

are comprised of rare and expensive precious metal oxides such as IrO2.
4,5 

Despite intensive research efforts over the past two decades, the intrinsic activity of OER catalysts has 

only modestly improved.2,6 Activities are limited by linear free energy relationships (LFERs) that couple 

the binding energies of OER intermediates (i.e., O*, OH*, and OOH*) on metals and oxides.7–13 Reported 

for the OER by Nørskov9,10 and Koper14 via density functional theory (DFT) calculations, LFERs constrain 

catalyst design such that each reaction intermediate cannot be independently stabilized, preventing the 

design of a catalyst with thermodynamically ideal reaction energies of 1.23 eV/step.  

We propose using programmable catalysts (i.e., forced dynamics) as a strategy to accelerate the OER. 

Programmable catalysts bypass the limitations conventionally imposed by LFERs by varying the properties 

of a catalyst during reaction with application of an oscillating stimulus (e.g., light,15 voltage,16–23 

ferroelectric polarization,24 etc.) on the time scale of a catalytic turnover.25 Microkinetic models of 

programmable catalysts applied to both model reactions26–29 and ammonia synthesis30 have predicted that 

reaction rates can be increased by one or more orders of magnitude over a range of applied frequencies. 

Regarding the OER specifically, switchable ferroelectric polarization has been proposed as a programmable 

catalyst,31,32 but no studies have analyzed the kinetics of promoting the OER via programmable catalysis. 

In this work, programmable oxide catalysts were evaluated using a mean-field microkinetic model to 

assess the viability for accelerating the OER. The model is schematically represented in Figure 1a, and the 

model equations and computational methods are described in Section S1 of the Supporting Information 

(see Tables S1 & S2 for nomenclature and model parameters). The elementary steps were written based on 
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the acidic Eley-Rideal type adsorbate evolving mechanism (AEM, Equations S1-S4), which features four 

proton-coupled electron transfer (PCET) steps.1,9,10 This mechanism has been used in numerous OER 

modeling studies,8,33–36 and there exists supporting experimental evidence.37,38 Additionally, recent 

experiments excluded the meaningful participation of lattice oxygen on IrO2
39 and RuO2,

39,40 providing 

evidence against alternate mechanisms such as the lattice evolving mechanism (LOM) on those materials. 

However, we acknowledge that the precise mechanistic details of the OER remain debated.37,38,41–44  

For this kinetic study, a continuum descriptor space was needed to model and optimize a generic (i.e., 

unspecified external stimulus) programmable OER catalyst. However, parameters for both thermodynamic 

and kinetic scaling relations are currently unknown for this system. Periodic trends of monometallic oxides9 

were thus used as a first approximation of the thermodynamic scaling behavior of programmable OER 

catalysts. Following convention, the reaction free energy of step 2 at zero applied potential (Δ𝐺2
0𝑉) was 

used as the catalyst descriptor.2,45 We acknowledge that it is likely that programmable catalysts will feature 

scaling parameters distinct from those of periodic trends, because methods of implementing programmable 

catalysts change a property of the catalyst rather than the material itself. For example, programmable 

catalysts based on semiconductor devices tune the electron density, not nuclear composition, of metal,16–18 

oxide,19–21 and transition metal dichalcogenide22,46 catalysts. However, the results presented herein provide 

insights into the design of programmable OER catalysts and motivation for future analyses that will further 

refine their precise behaviors.  

To parameterize the activation barriers of the OER elementary steps, we adopted the strategy used by 

Nørskov47 and Mavrikakis48 in which all PCET reactions were assumed to have the same reversible 

activation barrier (𝐸𝑎
𝑒𝑞

, see Figure 1b), independent of catalyst material; the catalyst identity was 

incorporated into the reaction kinetics through the elementary reversible potential. This strategy was 

utilized because there is no widely-accepted method for calculating electrochemical activation barriers;49,50 

kinetic information also cannot be simply extracted from Tafel slopes for the OER.5,51–53 This leads to large 

variation in reported activation barriers (Figures S1 – S3) and scant Brønsted-Evans-Polanyi relations for 
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the OER (Table S3).54,55 Therefore, 𝐸𝑎
𝑒𝑞

 was treated as an adjustable model parameter and varied between 

0.16 and 0.66 eV; these bounds were approximated from a literature review of calculated kinetic barriers 

for the OER on oxide catalysts (details, SI Section S2 discussion and Tables S4 & S5).34,36,54,56–67 The 

kinetics of the OER were then evaluated using the Butler-Volmer framework with symmetry coefficient β 

of 0.5 (Figure 1a),68,69 and the microkinetic model was solved at differential conversion conditions at pH 

= 0 in Julia.70,71 Mass transport effects were not considered. 

To assess the values of the reversible activation barrier (𝐸𝑎
𝑒𝑞

) used in the model, simulations were 

conducted at static (i.e., non-oscillating) conditions to determine the minimum overpotential (𝜂𝑖=10) 

required to reach a current density of 10 mA cm-2, a common benchmark value.72 Figure 1c depicts these 

simulated overpotential volcanoes (see Figures S4 & S5 for reaction coordinates, coverages). Markers 

overlaid on the volcano plot compare both theoretical (black)9 and experimental (pink)73–77 overpotentials 

for various oxide catalysts (see Figure S6 for a magnified view near the volcano peak). Models with 𝐸𝑎
𝑒𝑞

 

between 0.26 and 0.46 eV returned peak overpotentials (𝜂𝑖=10
𝑝𝑒𝑎𝑘

) of 229 – 451 mV (Table S6), which is in 

the range of experimentally-measured overpotentials of highly active OER catalysts in highly acidic 

electrolyte at this current density (e.g., 220 – 260 mV for RuOx,
73,74 373 – 458 mV for IrOx,

73–75 and 468 

mV for CoOx;
76 see Table S7). These 𝐸𝑎

𝑒𝑞
 values are also within the range of DFT calculations for AEM 

steps 3 and 4 on IrO2 (0.36 – 0.54 eV and ~0.4 – 0.5 eV, respectively),58,60,63 but lower than reported for 

step 3 on RuO2
 (~0.6 eV).57 In our model, 𝐸𝑎

𝑒𝑞
 of 0.56 – 0.66 eV returned peaks between 645 and 845 mV, 

far larger than experimental values; at 𝐸𝑎
𝑒𝑞

 of 0.16 eV, the model underpredicted both theoretical and 

experimental overpotentials. 

During reaction, a programmable catalyst will be held at a constant working electrode potential (i.e., 

constant overpotential); the application of an additional stimulus oscillates the properties of the catalyst 

and thus surface energetics. This additional stimulus can be a voltage applied to a catalytic condenser16–19 

or transistor,20–22,46 strain,30 ferroelectric polarization,24,31,32 etc.; this mechanism is not specified in our 

model. To generate a performance baseline, we simulated OER current density volcanoes at a constant 
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overpotential for an intermediate 𝐸𝑎
𝑒𝑞

 value of 0.46 eV, which featured close agreement between model and 

experimental 𝜂𝑖=10
𝑝𝑒𝑎𝑘

; the results are shown in Figure 2. Each current density volcano has several distinct 

regions (Figure 2a): to the left of the peak, step 3 (OOH* formation) was the potential determining step 

(PDS) for all simulated overpotentials (see e.g., Figure 2f) and the surface is covered by O* (Figure 2d). 

To the right of the peak, the PDS was step 2 (O* formation) (see e.g., Figure 2g) and the dominant coverage 

transitioned from O* to OH* to empty sites as Δ𝐺2
0𝑉 increased (Figures 2c & 2b). Step 4 (O2(g) formation) 

was essentially barrierless at 𝜂 > 0 V across most of the descriptor space, so there was never any 

appreciable coverage of OOH* (Figure 2e). A degree of rate control analysis (Figure S7) revealed that the 

rate-determining step (RDS) at the high-Δ𝐺2
0𝑉side of the volcano was step 2; to the immediate left of the 

peak, the RDS switched to step 3. While only steps 2 and 3 are considered relevant from a purely 

thermodynamic viewpoint,9 recent studies considering kinetic barriers have proposed that O2 formation can 

be rate limiting on IrO2
41,42,78 and RuO2.

79,80 Our model predicted 𝑋𝑅𝐶,4~1 at Δ𝐺2
0𝑉 ≲ 1 eV, which is lower 

than the DFT-calculated9 Δ𝐺2
0𝑉 of IrO2 (1.3 – 1.5 eV) and RuO2 (1.47 – 1.49 eV). Similar trends were 

observed for constant-potential simulations at other 𝐸𝑎
𝑒𝑞

 values (Figures S8 – S12). 

Programmable catalysts were simulated by defining two states between which the catalyst oscillated 

according to a square waveform with tunable frequency (𝑓), amplitude (ΔΔ𝐺2), center point (Δ𝐺2
𝑐𝑡𝑟), and 

duty cycle (𝜙, fractional time at state 1). All waveform parameters were defined with respect to the zero 

applied potential reaction coordinate. One set of rate constants was calculated for each catalyst state, and 

the programmable catalyst was modeled by switching the rate constants at the specified time points 

(determined by the waveform frequency and duty cycle) during ODE integration using callbacks in Julia 

(details, SI Section S1).70,71 After the model reached a dynamic steady state (i.e., limit cycle), the time-

averaged OER current density was calculated by averaging over five oscillations. 

We note that oscillation of a working electrode potential has been experimentally demonstrated to 

accelerate formic acid electro-oxidation rates 20–30×,81,82 improve the Faradaic efficiency of CO2 

electrolysis,83,84 and even increase the rate of ethylene hydrogenation (which is not promoted by static 
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potentials) by ~550%.85 However, it should be emphasized that oscillating the electrode potential is 

conceptually distinct from the type of programmable catalyst modeled in this study.29 When a potential is 

oscillated to a higher value, all (electrochemical) steps proceed with larger thermodynamic driving force 

and lower activation energies (see e.g., the purple → blue reaction coordinates in Figure 2f). The low-

overpotential state is slower for all steps and, as shown by Holewinski & co-workers, oscillation to this 

state does not provide any net benefit for Faradaic series reactions.29 Conversely, application of an 

oscillating stimulus to a programmable catalyst (represented in our model as oscillating the catalyst 

descriptor) modifies adsorbate energetics non-uniformly. Some steps become more energetically favorable, 

and others less so (compare e.g., reaction coordinates in Figures 2f & 2g at 𝑈 = 0 V: the PDS switches 

from step 3 to step 2, respectively). This biases the reaction coordinate from one state to another, creating 

a series of local minima and maxima that directionally drive (‘ratchet’) molecules from reactant to product. 

Figure 3 depicts three examples of programmable catalyst simulations for an intermediate reversible 

activation barrier (𝐸𝑎
𝑒𝑞

) of 0.46 eV, with fixed waveform parameters (center point Δ𝐺2
𝑐𝑡𝑟 = 1.5 eV, 

amplitude ΔΔ𝐺2 = 1 eV, frequency 𝑓 = 1 kHz, and duty cycle 𝜙 = 50%). Figures 3a-3e show the results 

of a simulation at 𝜂 = 650 mV, which yields an effective state 2 forward ratchet for O* (i.e., O* prefers to 

react forwards to OOH* rather than backwards to OH*). The dominant reaction pathway of surface 

molecules is shown in Figure 3a as the catalyst oscillated between the two states. In state 1 (navy), water 

dissociates to form OH* and then O*, which covers the surface (Figure 3c) because it cannot react further 

due to the large barrier of step 3. Upon switching the catalyst to state 2 (grey), the majority of surface O* 

followed the more kinetically facile pathway to produce O2(g);  this created open sites on the catalyst surface, 

which were slowly populated with OH* (Figure 3c). Upon switching back to state 1, the OH* and any 

remaining empty sites were rapidly converted to O*, completing the catalytic cycle. The relative rates of 

surface coverage changes were determined by the forward activation barriers (Figure 3a): formation of O* 

is barrierless in catalyst state 1, while formation of both OH* and OOH* in state 2 have small barriers (0.34 

and 0.16 eV, respectively). Rapid change in surface coverages was also apparent in the magnitude of the 
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current density spikes that occurred when switching catalyst states (Figure 3d), with the switch from state 

2 to state 1 (barrierless O* formation) featuring the larger spike due to the faster catalytic rate. Figures S13 

& S14 depict similar time-on-stream results obtained at different waveform frequencies and duty cycles. 

The example of Figures 3a-3e is characterized as an ‘effective’ forward ratchet due to small forward 

activation barriers and simultaneously large backward activation barriers. For every catalyst cycle between 

states (1 → 2 → 1), each site predominately yields one turnover to form O2(g). This is apparent in the 

frequency response plot of Figure 3e, which shows the time-averaged catalytic rates (s-1) relative to applied 

waveform frequency (Hz [=] s-1) at oscillation amplitudes (ΔΔ𝐺2) between 0.4 and 1.0 eV. At ΔΔ𝐺2 > 0.4 

eV, each trace overlaps with the parity line (y = x), indicating an efficient dynamic catalyst of one catalytic 

turnover per oscillation. 

Figures 3f-3i depict an intermediate quality catalytic ratchet in state 2 (grey), which results from a 

simulation at 𝜂 = 451 mV (𝜂𝑖=10
𝑝𝑒𝑎𝑘

 for 𝐸𝑎
𝑒𝑞

 of 0.46 eV). As shown in Figure 3f, the forward barrier for O*-

to-OOH* formation in state 2 (grey) is only slightly smaller than the reverse barrier of O*-to-OH* formation 

(0.26 vs. 0.3 eV, respectively). Thus, as the catalyst switches from state 1 to state 2, a small fraction of the 

O* reacts backwards to form OH* instead of following the forward pathway to produce O2(g) (Figure 3g & 

3h; see also Figures S15 & S16 for varied 𝑓 and 𝜙). However, the majority of molecules still proceed 

forward such that frequency response traces (Figure 3i) are comparable to the parity line, indicating that 

one catalyst oscillation (1 → 2 → 1) still yields about one catalytic turnover. 

The third example in Figures 3j-3m depicts a reverse O* ratchet in state 2 for a simulation conducted 

at 𝜂 = 250 mV. Consistent with the prior two examples, the catalyst surface is covered in O* in state 1 

(Figure 3k). However, as depicted in Figure 3j, the kinetically favorable reaction pathway for O* in  state 

2 is the reverse reaction pathway from O* to OH* (0.2 eV barrier vs. 0.36 eV for O* to OOH*). When the 

catalyst switches from state 1 to state 2, the surface coverage of OH* immediately increases to ~1 (Figure 

3k); after forming OH*, the molecules continue along the reverse reaction pathway to produce empty sites. 

Because most molecules are following the reverse reaction pathway, the current density is negative in state 
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2 (Figure 3l). For this programmable catalyst, only a small fraction of O* molecules react to OOH* and 

follow the forward pathway to O2(g). However, because state 1 exhibits strong forward bias (promotes H2O 

→ OH* → O*),  the programmable catalyst increased rates ~1,200× above the corresponding static volcano 

peak when oscillated at sufficiently high frequencies (albeit inefficiently, as apparent in Figure 3m). 

Similar behaviors are observed for programmable catalysts operating at lower amplitudes (Figure S17). 

Programmable catalysts were then simulated with different waveform parameters to maximize OER 

activity. Simulations were conducted at both 𝜂𝑖=10
𝑝𝑒𝑎𝑘

, corresponding to an intermediate quality ratchet (e.g., 

Figures 3f-3i), and at the minimum overpotential (𝜂𝑖=10) required to reach 10 mA cm-2, which typically 

corresponded to a ‘reverse O*’ ratchet (e.g., Figures 3j-3m). The key results from these simulations at an 

intermediate reversible activation barrier (𝐸𝑎
𝑒𝑞

) of 0.46 eV are shown in Figures 4a-4c. Figure 4a compares 

static (dashed lines) and programmable (markers) catalyst performance at overpotentials (𝜂) of 250 mV and 

451 mV (𝜂𝑖=10
𝑝𝑒𝑎𝑘

) for a 50% duty cycle waveform with amplitude ΔΔ𝐺2 = 0.5 eV and frequency 𝑓 = 10 

kHz. At both 𝜂 values, the programmable catalyst achieved ~60× higher current densities than the 

respective static volcano maximum. The heatmap of Figure 4b shows the results of simulations at the larger 

overpotential (451 mV, 𝜂𝑖=10
𝑝𝑒𝑎𝑘

) where the amplitude (ΔΔ𝐺2) was varied between 0.1 and 1.0 eV; static 

results are depicted at ΔΔ𝐺2 = 0 eV. As ΔΔ𝐺2 increased, the current density also increased, as expected. 

The maximum current density achieved by this programmable catalyst was ~5,300 mA cm-2 at ΔΔ𝐺2 = 1.0 

eV, corresponding to a ~520× increase over the static volcano peak. 

Next, the ability of programmable catalysts to decrease overpotential was assessed by setting a target 

current density of 10 mA cm-2 and simulating the minimum overpotential (𝜂𝑖=10) required to reach this 

target in 50 mV increments. The heatmap of Figure 4c shows the results at a reversible activation barrier 

(𝐸𝑎
𝑒𝑞

) of 0.46 eV as a function of waveform center point (Δ𝐺2
𝑐𝑡𝑟) and amplitude (ΔΔ𝐺2) for a 50% duty 

cycle waveform oscillating at 10 kHz frequency; static results are again shown at ΔΔ𝐺2 = 0 eV. A 

minimum ΔΔ𝐺2 of 0.3 eV was necessary to outperform the static volcano peak (𝜂𝑖=10
𝑝𝑒𝑎𝑘

= 451 mV). 

Increasing ΔΔ𝐺2 to 0.4 eV further decreased 𝜂𝑖=10 to 350 mV, and at ΔΔ𝐺2 of 0.9 eV or higher, a minimum 
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𝜂𝑖=10 of 250 mV was achieved, corresponding to a 45% decrease from the static 𝜂𝑖=10
𝑝𝑒𝑎𝑘

. Tuning the 

waveform duty cycle (𝜙) allowed a larger range of Δ𝐺2
𝑐𝑡𝑟 to reach the target current density at the minimum 

𝜂𝑖=10 of 250 mV (details, SI Section S4.2 discussion and Figures S18-S20). 

Figures 4d-4e show how the reversible activation barrier (𝐸𝑎
𝑒𝑞

) value impacts the simulated performance 

of programmable catalysts. Figure 4d compares the maximum current densities achieved by optimized 

programmable catalysts within the bounds of sampled parameters (waveform parameters, Table S8) 

operating at the respective static volcano peak overpotentials (𝜂𝑖=10
𝑝𝑒𝑎𝑘

, Table S6). For 𝐸𝑎
𝑒𝑞

 of 0.16 – 0.26 eV, 

~300× enhancement was achieved, correspond to current densities ~3,200 mA cm-2. 𝐸𝑎
𝑒𝑞

 of 0.36 eV returned 

the lowest performance at only 110× enhancement (1,100 mA cm-2), and 𝐸𝑎
𝑒𝑞

 of 0.56 – 0.66 eV both 

achieved 620× enhancement (~6,400 mA cm-2). For 𝐸𝑎
𝑒𝑞

≤ 0.26 eV, ratchets are of ‘intermediate’ quality 

(Figure S21d & S22d). However, barriers are almost nonexistent, resulting in resonance frequencies far 

above 10 kHz (Figures S21b & S22b). For 𝐸𝑎
𝑒𝑞

 of 0.36 eV, which returned the lowest rate enhancement, 

the ratchet is a mild ‘reverse’ ratchet (Figure S23d) and resonance frequencies are above 10 kHz (Figure 

S23b); this combination hinders rate enhancement. Finally, for 𝐸𝑎
𝑒𝑞

 of 0.46 eV and larger, 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 results in 

‘effective’ forward ratchets with relevant forward barriers of ~0.2 eV (Figures 3f, S24d, S25d). This leads 

to these systems experiencing close to maximal performance at the maximum oscillation frequency sampled 

(i.e., resonance frequencies on the order of 10 kHz, Figures 3i, S24b, S25b).  

Figure 4e compares overpotential-optimized programmable catalysts (waveform parameters, Table S9) 

with the highest-performing static catalysts. For the most physically-representative reversible activation 

barrier values sampled in this model (𝐸𝑎
𝑒𝑞

 of 0.26 – 0.46 eV), 𝜂𝑖=10 of programmable catalysts was 30 – 

250 mV (compare to 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 of 229 – 451 mV). At the larger end of 𝐸𝑎
𝑒𝑞

 values simulated, reductions of 

~50% were achieved, corresponding to 𝜂𝑖=10 values of 300 and 410 mV for 𝐸𝑎
𝑒𝑞

 of 0.56 eV and 0.66 eV, 

respectively. For 𝐸𝑎
𝑒𝑞

 of 0.16 eV, the optimized programmable catalyst resulted in 𝜂𝑖=10 of -70 mV. While 

this may seem like an error in our model, the overall reaction free energy change does not necessarily dictate 
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the net reaction direction if the reaction coordinate changes with time.86 In fact, artificial molecular ratchets 

have been designed to drive endergonic reactions by coupling to an orthogonal energy source (one which 

does not impact the reaction coordinate of interest, but instead provides energy to drive the uphill reaction 

by e.g., switching between potential energy surfaces with different local minima and maxima to 

directionally ratchet molecules).87–89 Programmable catalysts are an ‘energy ratchet’88 where the work from 

an external oscillating stimulus enables chemical transformations not possible by conventional methods, 

such as supra-equilibrium conversion27,28 and imparting significant net turnover into a closed catalytic 

loop.90 

Kinetic models of prototype chemistries have predicted that optimized programmable catalysts can 

increase rates by several orders of magnitude,26–29 while more complex models of ammonia synthesis30 and 

steam methane reforming23 predicted modest rate increases of 10× (f = 2 kHz) and 15% (f ≥ 10 MHz), 

respectively, for the initial catalyst perturbations modeled. In comparison, our model of the OER predicts 

approximately 100 to 600× rate enhancement at oscillation amplitudes comparable to prototype chemistry 

models (1 eV), which decreases to ≤65× (Figure S26; waveform parameters, Tables S10 & S11) at a lower 

amplitude of 0.5 eV (f = 10 kHz). The kinetics in our model are more approximate than those of refs. 23,30 

as we are not modeling a specific stimulus, but our results nonetheless indicate that programmable catalysts 

may be a viable strategy for accelerating the OER beyond the Sabatier volcano peak. 

In this work, microkinetic simulations of programmable OER catalysts were conducted using a simple 

kinetic parameterization in which all proton-coupled electron transfer (PCET) reaction steps featured the 

same reversible activation barrier (𝐸𝑎
𝑒𝑞

), which was varied between 0.16 – 0.66 eV. We found that volcano 

peak overpotentials (𝜂𝑖=10) predicted by our model at intermediate values of 𝐸𝑎
𝑒𝑞

 (0.26 – 0.46 eV) featured 

closest agreement with literature. For this range of 𝐸𝑎
𝑒𝑞

 values, programmable catalyst simulations 

conducted at the volcano peak overpotential(s) achieved current densities ~100 – 500× higher than static, 

while programmable catalysts simulated at a benchmark current density of 10 mA cm-2 were able to operate 

at 45 – 90% lower overpotentials than static. Additionally, we found that this kinetic parameterization led 
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to ‘effective’ forward ratchets at high overpotentials, while the ratchets became less effective (even 

promoting backwards reaction) at low overpotentials. The key parameters controlling ratchet quality were 

the O*-to-OOH* and O*-to-OH* formation barriers at the high Δ𝐺2
0𝑉 catalyst state. 

This simple kinetic model demonstrated that programmable catalysts are a potentially viable strategy to 

accelerate the OER and/or reduce the overpotential required to reach a specific current density. By 

accelerating the OER, programmable catalysts may enable the use of cheaper, more abundant catalyst 

materials. Alternately, programmable thin film IrO2-based catalysts may enable commercial PEM 

electrolysers to operate at lower catalyst loadings, reducing cost and consumption of this rare precious 

metal. However, future work improving the parameterization of OER kinetics by replacing the assumed 

LFERs and single-valued reversible activation barrier is required to enable more accurate predictions of 

rate enhancement and ratchet quality for the programmable OER. This is requisite for determining the 

energy efficiency of programmable OER catalysts. 
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Figures. 
 

 

 

Figure 1.  Microkinetic model description.   (a) Schematic representation of our microkinetic model of the OER 

(nomenclature, Table S1). Parameters in purple text are controlled by the catalyst stimulus. Inset (b) illustrates the 

definition of 𝐸𝑎
𝑒𝑞

.   (c) OER overpotential volcano at a current density of 𝑖𝑂𝐸𝑅 = 10 mA cm-2. Solid lines show 

microkinetic model results as a function of the reversible activation barrier (𝐸𝑎
𝑒𝑞

∈ [0.16, 0.66] eV); black ☆9 are 

theoretical overpotentials predicted via DFT; pink markers73–77 are experimentally measured overpotentials in acidic 

electrolyte (details, Table S7).  
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Figure 2.  Static OER simulation results.  (a) OER current density volcano and (b-e) surface coverages for 𝐸𝑎
𝑒𝑞

=
0.46 eV at overpotentials 𝜂 ∈ [100, 500] mV.  (f-g) Reaction coordinates at 𝐸𝑎

𝑒𝑞
= 0.46 eV as a function of the 

electrochemical potential at Δ𝐺2
0𝑉= 1 eV and 2 eV, respectively. The black line shows the reaction coordinate at zero 

applied potential; purple → blue lines correspond to the constant-potential simulation results (panels a-e); and pink to 

the overpotential volcano (Figure 1c), depicting the reaction coordinate at the minimum overpotential (𝜂𝑖=10) required 

to reach 𝑖𝑂𝐸𝑅 = 10 mA cm-2. 
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Figure 3.  Selected programmable catalyst simulations for 𝐸𝑎
𝑒𝑞

= 0.46 eV at different overpotentials corresponding 

to different quality ratchets. All panels have the same waveform parameters (center point Δ𝐺2
𝑐𝑡𝑟 = 1.5 eV, duty cycle 

𝜙 = 50%, amplitude ΔΔ𝐺2 = 1 eV, and frequency 𝑓 = 1 kHz).   (a) Reaction coordinate of an ‘effective’ forward 

ratchet at 𝜂 = 650 mV; (b) catalyst waveform and corresponding (c,d) time on stream data for surface coverages and 

current density; (e) frequency response plot. The frequency response traces overlap the parity line, indicating there is 

~1 catalytic turnover per catalyst oscillation, corresponding to an efficient ratchet.  (f) Reaction coordinate of an 

‘intermediate’ ratchet at 𝜂 = 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 (451 mV); (g,h) time on stream data for surface coverages and current density; (i) 

frequency response plot.  (j) Reaction coordinate of a ‘reverse’ ratchet at 𝜂 = 250 mV; (k,l) time on stream data for 

surface coverages and current density; (m) frequency response plot where traces are far from the parity line, indicating 

an inefficient programmable catalyst. 
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Figure 4.  Programmable OER simulation results. Unless noted otherwise, results are shown for 𝐸𝑎
𝑒𝑞

= 0.46 eV with 

waveform parameters duty cycle 𝜙 = 50% and frequency 𝑓 = 10 kHz.  (a) Comparison of static (dashed lines) and 

programmable (markers) OER catalysts at overpotentials 𝜂 of 250 and 451 mV with waveform amplitude ΔΔ𝐺2 = 0.5 

eV. At both 𝜂 values shown, the programmable catalyst achieves current densities ~60× above the corresponding 

volcano peak.  (b) Heatmap showing the current density achieved by a programmable catalyst operating at 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 (451 

mV) as a function of waveform center point and amplitude. ΔΔ𝐺2 = 0 eV represents static results.  (c) Heatmap 

showing the minimum overpotential (𝜂𝑖=10) needed to achieve 𝑖𝑂𝐸𝑅 = 10 mA cm-2  as a function of waveform center 

point and amplitude. ΔΔ𝐺2 = 0 eV represents static results (see Figure 1c).  (d) Maximum current density achieved 

by optimized programmable catalysts operating at 𝜂𝑖=10
𝑝𝑒𝑎𝑘

 as a function of the reversible activation barrier 𝐸𝑎
𝑒𝑞

 (see 

Table S8  for corresponding waveform parameters). Numbers represent the enhancement over the static volcano peak.  

(e) Reduction in 𝜂𝑖=10 by programmable catalysts as a function of the reversible activation barrier 𝐸𝑎
𝑒𝑞

. Static values 

correspond to volcano peaks of Figure 1c, and programmable values to optimized waveforms (see Table S9 for 

corresponding waveform parameters). 
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