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Abstract. Hydrogen gas is a promising renewable energy storage medium when produced via water
electrolysis, but this process is limited by the sluggish kinetics of the anodic oxygen evolution reaction
(OER). Herein, we used a microkinetic model to investigate promoting the OER using programmable oxide
catalysts (i.e., forced catalyst dynamics). We found that programmable catalysts could increase current
density at a fixed overpotential (100x to 600x over static rates) or reduce the overpotential required to reach
a fixed current density of 10 mA cm (45% to 140% reduction vs. static). In our kinetic parameterization,
the key parameters controlling the quality of the catalytic ratchet were the O*-to-OOH* and O*-to-OH*
activation barriers. Our findings indicate that programmable catalysts may be a viable strategy for
accelerating the OER or enabling lower-overpotential operation, but a more accurate Kkinetic
parameterization is required for precise predictions of performance, ratchet quality, and resulting energy
efficiency.



Development of carbon-neutral energy sources and energy storage mechanisms is the major challenge
of the 21st century required to address climate change. Hydrogen gas is a promising energy storage medium
when produced via water electrolysis to store renewable energy in the form of stable chemical bonds.*?
However, water electrolysis is not yet cost-competitive with fossil-derived H,.3* One of the major
contributors to the high cost of green H; is the slow kinetics of the anodic oxygen evolution reaction (OER),
which transforms water into Oy via a four electron transfer.> Slow kinetics require large overpotentials
to achieve industrially relevant current densities (n > 0.5 V at 0.3 — 10 A cm®),! and state of the art catalysts
are comprised of rare and expensive precious metal oxides such as Ir0,.*

Despite intensive research efforts over the past two decades, the intrinsic activity of OER catalysts has
only modestly improved.?® Activities are limited by linear free energy relationships (LFERS) that couple
the binding energies of OER intermediates (i.e., O*, OH*, and OOH*) on metals and oxides.”* Reported
for the OER by Narskov®'® and Koper* via density functional theory (DFT) calculations, LFERs constrain
catalyst design such that each reaction intermediate cannot be independently stabilized, preventing the
design of a catalyst with thermodynamically ideal reaction energies of 1.23 eV/step.

We propose using programmable catalysts (i.e., forced dynamics) as a strategy to accelerate the OER.
Programmable catalysts bypass the limitations conventionally imposed by LFERs by varying the properties

of a catalyst during reaction with application of an oscillating stimulus (e.g., light,®® voltage,’*

24

ferroelectric polarization,® etc.) on the time scale of a catalytic turnover.® Microkinetic models of

26-29 and ammonia synthesis® have predicted that

programmable catalysts applied to both model reactions
reaction rates can be increased by one or more orders of magnitude over a range of applied frequencies.
Regarding the OER specifically, switchable ferroelectric polarization has been proposed as a programmable
catalyst,®2 but no studies have analyzed the kinetics of promoting the OER via programmable catalysis.
In this work, programmable oxide catalysts were evaluated using a mean-field microkinetic model to
assess the viability for accelerating the OER. The model is schematically represented in Figure 1a, and the

model equations and computational methods are described in Section S1 of the Supporting Information

(see Tables S1 & S2 for nomenclature and model parameters). The elementary steps were written based on
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the acidic Eley-Rideal type adsorbate evolving mechanism (AEM, Equations S1-S4), which features four
proton-coupled electron transfer (PCET) steps.>*° This mechanism has been used in numerous OER

83336 and there exists supporting experimental evidence.*"3® Additionally, recent

modeling studies,
experiments excluded the meaningful participation of lattice oxygen on IrO,* and RuO2,*“° providing
evidence against alternate mechanisms such as the lattice evolving mechanism (LOM) on those materials.
However, we acknowledge that the precise mechanistic details of the OER remain debated.*"334:-44

For this kinetic study, a continuum descriptor space was needed to model and optimize a generic (i.e.,
unspecified external stimulus) programmable OER catalyst. However, parameters for both thermodynamic
and kinetic scaling relations are currently unknown for this system. Periodic trends of monometallic oxides®
were thus used as a first approximation of the thermodynamic scaling behavior of programmable OER
catalysts. Following convention, the reaction free energy of step 2 at zero applied potential (AGJ") was
used as the catalyst descriptor.>*> We acknowledge that it is likely that programmable catalysts will feature
scaling parameters distinct from those of periodic trends, because methods of implementing programmable
catalysts change a property of the catalyst rather than the material itself. For example, programmable

catalysts based on semiconductor devices tune the electron density, not nuclear composition, of metal, 618

19-21 22,46

oxide, and transition metal dichalcogenide“=™ catalysts. However, the results presented herein provide
insights into the design of programmable OER catalysts and motivation for future analyses that will further
refine their precise behaviors.

To parameterize the activation barriers of the OER elementary steps, we adopted the strategy used by
Ngrskov*” and Mavrikakis* in which all PCET reactions were assumed to have the same reversible
activation barrier (E.?, see Figure 1b), independent of catalyst material; the catalyst identity was
incorporated into the reaction kinetics through the elementary reversible potential. This strategy was
utilized because there is no widely-accepted method for calculating electrochemical activation barriers;***°
kinetic information also cannot be simply extracted from Tafel slopes for the OER.>**2 This leads to large

variation in reported activation barriers (Figures S1 — S3) and scant Brgnsted-Evans-Polanyi relations for
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the OER (Table S3).5*% Therefore, E;? was treated as an adjustable model parameter and varied between
0.16 and 0.66 eV; these bounds were approximated from a literature review of calculated kinetic barriers
for the OER on oxide catalysts (details, SI Section S2 discussion and Tables S4 & S5).34365456-67 The
kinetics of the OER were then evaluated using the Butler-Volmer framework with symmetry coefficient g
of 0.5 (Figure 1a),%® and the microkinetic model was solved at differential conversion conditions at pH
=0 in Julia.”*™ Mass transport effects were not considered.

To assess the values of the reversible activation barrier (E.7) used in the model, simulations were
conducted at static (i.e., non-oscillating) conditions to determine the minimum overpotential (1;-1,)
required to reach a current density of 10 mA cm, a common benchmark value.” Figure 1c depicts these
simulated overpotential volcanoes (see Figures S4 & S5 for reaction coordinates, coverages). Markers
overlaid on the volcano plot compare both theoretical (black)® and experimental (pink)”®"” overpotentials

for various oxide catalysts (see Figure S6 for a magnified view near the volcano peak). Models with E¢7

between 0.26 and 0.46 eV returned peak overpotentials (n?°%) of 229 — 451 mV (Table S6), which is in
the range of experimentally-measured overpotentials of highly active OER catalysts in highly acidic
electrolyte at this current density (e.g., 220 — 260 mV for RuOy,>™ 373 — 458 mV for IrO,,> " and 468
mV for CoO;"® see Table S7). These EZ? values are also within the range of DFT calculations for AEM
steps 3 and 4 on IrO, (0.36 — 0.54 eV and ~0.4 — 0.5 eV, respectively),*°5 put lower than reported for
step 3 on RuO, (~0.6 eV).* In our model, EZ? of 0.56 — 0.66 eV returned peaks between 645 and 845 mV,
far larger than experimental values; at Ec? of 0.16 eV, the model underpredicted both theoretical and
experimental overpotentials.

During reaction, a programmable catalyst will be held at a constant working electrode potential (i.e.,

constant overpotential); the application of an additional stimulus oscillates the properties of the catalyst

and thus surface energetics. This additional stimulus can be a voltage applied to a catalytic condenser*®*°

20-22,46 24,31,32

or transistor, strain,® ferroelectric polarization, etc.; this mechanism is not specified in our

model. To generate a performance baseline, we simulated OER current density volcanoes at a constant
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overpotential for an intermediate E-7 value of 0.46 eV, which featured close agreement between model and

experimental 775%; the results are shown in Figure 2. Each current density volcano has several distinct

regions (Figure 2a): to the left of the peak, step 3 (OOH* formation) was the potential determining step
(PDS) for all simulated overpotentials (see e.g., Figure 2f) and the surface is covered by O* (Figure 2d).
To the right of the peak, the PDS was step 2 (O* formation) (see e.g., Figure 2g) and the dominant coverage
transitioned from O* to OH* to empty sites as AGY" increased (Figures 2¢c & 2b). Step 4 (O formation)
was essentially barrierless at n > 0 V across most of the descriptor space, so there was never any
appreciable coverage of OOH* (Figure 2¢). A degree of rate control analysis (Figure S7) revealed that the
rate-determining step (RDS) at the high-AG2YV side of the volcano was step 2; to the immediate left of the
peak, the RDS switched to step 3. While only steps 2 and 3 are considered relevant from a purely
thermodynamic viewpoint,® recent studies considering kinetic barriers have proposed that O, formation can
be rate limiting on 1r02***2"® and RuO,.”® Our model predicted Xz¢ 4~1 at AGSY < 1 eV, which is lower
than the DFT-calculated® AGYY of 1IrO; (1.3 — 1.5 eV) and RuO; (1.47 — 1.49 eV). Similar trends were
observed for constant-potential simulations at other E¢ values (Figures S8 — S12).

Programmable catalysts were simulated by defining two states between which the catalyst oscillated
according to a square waveform with tunable frequency (f), amplitude (AAG,), center point (AG5'"), and
duty cycle (¢, fractional time at state 1). All waveform parameters were defined with respect to the zero
applied potential reaction coordinate. One set of rate constants was calculated for each catalyst state, and
the programmable catalyst was modeled by switching the rate constants at the specified time points
(determined by the waveform frequency and duty cycle) during ODE integration using callbacks in Julia
(details, SI Section S1).7%™* After the model reached a dynamic steady state (i.e., limit cycle), the time-
averaged OER current density was calculated by averaging over five oscillations.

We note that oscillation of a working electrode potential has been experimentally demonstrated to

81,82

accelerate formic acid electro-oxidation rates 20-30x, improve the Faradaic efficiency of CO;

83,84

electrolysis, and even increase the rate of ethylene hydrogenation (which is not promoted by static
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potentials) by ~550%.%8° However, it should be emphasized that oscillating the electrode potential is
conceptually distinct from the type of programmable catalyst modeled in this study.?® When a potential is
oscillated to a higher value, all (electrochemical) steps proceed with larger thermodynamic driving force
and lower activation energies (see e.g., the purple — blue reaction coordinates in Figure 2f). The low-
overpotential state is slower for all steps and, as shown by Holewinski & co-workers, oscillation to this
state does not provide any net benefit for Faradaic series reactions.?® Conversely, application of an
oscillating stimulus to a programmable catalyst (represented in our model as oscillating the catalyst
descriptor) modifies adsorbate energetics non-uniformly. Some steps become more energetically favorable,
and others less so (compare e.g., reaction coordinates in Figures 2f & 2g at U = 0 V: the PDS switches
from step 3 to step 2, respectively). This biases the reaction coordinate from one state to another, creating
a series of local minima and maxima that directionally drive (‘ratchet’) molecules from reactant to product.

Figure 3 depicts three examples of programmable catalyst simulations for an intermediate reversible
activation barrier (E.?) of 0.46 eV, with fixed waveform parameters (center point AGS™ = 1.5 eV,
amplitude AAG, = 1 eV, frequency f = 1 kHz, and duty cycle ¢ = 50%). Figures 3a-3e show the results
of a simulation at n = 650 mV, which yields an effective state 2 forward ratchet for O* (i.e., O* prefers to
react forwards to OOH* rather than backwards to OH*). The dominant reaction pathway of surface
molecules is shown in Figure 3a as the catalyst oscillated between the two states. In state 1 (navy), water
dissociates to form OH* and then O*, which covers the surface (Figure 3c) because it cannot react further
due to the large barrier of step 3. Upon switching the catalyst to state 2 (grey), the majority of surface O*
followed the more kinetically facile pathway to produce O(); this created open sites on the catalyst surface,
which were slowly populated with OH* (Figure 3c). Upon switching back to state 1, the OH* and any
remaining empty sites were rapidly converted to O*, completing the catalytic cycle. The relative rates of
surface coverage changes were determined by the forward activation barriers (Figure 3a): formation of O*
is barrierless in catalyst state 1, while formation of both OH* and OOH?* in state 2 have small barriers (0.34

and 0.16 eV, respectively). Rapid change in surface coverages was also apparent in the magnitude of the
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current density spikes that occurred when switching catalyst states (Figure 3d), with the switch from state
2 to state 1 (barrierless O* formation) featuring the larger spike due to the faster catalytic rate. Figures S13
& S14 depict similar time-on-stream results obtained at different waveform frequencies and duty cycles.

The example of Figures 3a-3e is characterized as an ‘effective’ forward ratchet due to small forward
activation barriers and simultaneously large backward activation barriers. For every catalyst cycle between
states (1 — 2 — 1), each site predominately yields one turnover to form Ozg). This is apparent in the
frequency response plot of Figure 3e, which shows the time-averaged catalytic rates (s?) relative to applied
waveform frequency (Hz [=] s) at oscillation amplitudes (AAG,) between 0.4 and 1.0 eV. At AAG, > 0.4
eV, each trace overlaps with the parity line (y = x), indicating an efficient dynamic catalyst of one catalytic
turnover per oscillation.

Figures 3f-3i depict an intermediate quality catalytic ratchet in state 2 (grey), which results from a
simulation at n = 451 mV (nP<%% for E? of 0.46 eV). As shown in Figure 3f, the forward barrier for O*-
to-OOH* formation in state 2 (grey) is only slightly smaller than the reverse barrier of O*-to-OH* formation
(0.26 vs. 0.3 eV, respectively). Thus, as the catalyst switches from state 1 to state 2, a small fraction of the
O* reacts backwards to form OH* instead of following the forward pathway to produce Oy (Figure 3g &
3h; see also Figures S15 & S16 for varied f and ¢). However, the majority of molecules still proceed
forward such that frequency response traces (Figure 3i) are comparable to the parity line, indicating that
one catalyst oscillation (1 — 2 — 1) still yields about one catalytic turnover.

The third example in Figures 3j-3m depicts a reverse O* ratchet in state 2 for a simulation conducted
at n = 250 mV. Consistent with the prior two examples, the catalyst surface is covered in O* in state 1
(Figure 3Kk). However, as depicted in Figure 3j, the kinetically favorable reaction pathway for O* in state
2 is the reverse reaction pathway from O* to OH* (0.2 eV barrier vs. 0.36 eV for O* to OOH*). When the
catalyst switches from state 1 to state 2, the surface coverage of OH* immediately increases to ~1 (Figure
3K); after forming OH*, the molecules continue along the reverse reaction pathway to produce empty sites.

Because most molecules are following the reverse reaction pathway, the current density is negative in state
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2 (Figure 3l). For this programmable catalyst, only a small fraction of O* molecules react to OOH* and
follow the forward pathway to O,). However, because state 1 exhibits strong forward bias (promotes H,O
— OH* — O%*), the programmable catalyst increased rates ~1,200x above the corresponding static volcano
peak when oscillated at sufficiently high frequencies (albeit inefficiently, as apparent in Figure 3m).
Similar behaviors are observed for programmable catalysts operating at lower amplitudes (Figure S17).

Programmable catalysts were then simulated with different waveform parameters to maximize OER

peak
i=10"

activity. Simulations were conducted at both corresponding to an intermediate quality ratchet (e.g.,
Figures 3f-3i), and at the minimum overpotential (17;~,,) required to reach 10 mA cm, which typically
corresponded to a ‘reverse O*’ ratchet (e.g., Figures 3j-3m). The key results from these simulations at an
intermediate reversible activation barrier (E.?) of 0.46 eV are shown in Figures 4a-4c. Figure 4a compares

static (dashed lines) and programmable (markers) catalyst performance at overpotentials (1) of 250 mV and

451 mV (nPee) for a 50% duty cycle waveform with amplitude AAG, = 0.5 eV and frequency f = 10
kHz. At both n values, the programmable catalyst achieved ~60x higher current densities than the

respective static volcano maximum. The heatmap of Figure 4b shows the results of simulations at the larger

peaky where the amplitude (AAG,) was varied between 0.1 and 1.0 eV; static

overpotential (451 mV, n
results are depicted at AAG, = 0 eV. As AAG, increased, the current density also increased, as expected.
The maximum current density achieved by this programmable catalyst was ~5,300 mA cm™ at AAG, = 1.0
eV, corresponding to a ~520x increase over the static volcano peak.

Next, the ability of programmable catalysts to decrease overpotential was assessed by setting a target
current density of 10 mA cm and simulating the minimum overpotential (1;=1,) required to reach this
target in 50 mV increments. The heatmap of Figure 4c shows the results at a reversible activation barrier

(EZ7) of 0.46 eV as a function of waveform center point (AGSt™) and amplitude (AAG,) for a 50% duty

cycle waveform oscillating at 10 kHz frequency; static results are again shown at AAG, =0 eV. A
minimum AAG, of 0.3 eV was necessary to outperform the static volcano peak (n”e“k = 451 mV).

i=10

Increasing AAG,, to 0.4 eV further decreased ;-4 to 350 mV, and at AAG, of 0.9 eV or higher, a minimum
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peak

ni=10 Of 250 mV was achieved, corresponding to a 45% decrease from the static n;_;,. Tuning the

waveform duty cycle (¢) allowed a larger range of AGS'" to reach the target current density at the minimum
N;=10 OF 250 mV (details, SI Section S4.2 discussion and Figures S18-S20).

Figures 4d-4e show how the reversible activation barrier (E;?) value impacts the simulated performance
of programmable catalysts. Figure 4d compares the maximum current densities achieved by optimized
programmable catalysts within the bounds of sampled parameters (waveform parameters, Table S8)

operating at the respective static volcano peak overpotentials (n7<2%, Table S6). For E? of 0.16 —0.26 eV,
~300x enhancement was achieved, correspond to current densities ~3,200 mA cm™. Ec? of 0.36 eV returned
the lowest performance at only 110x enhancement (1,100 mA cm?), and E.? of 0.56 — 0.66 eV both
achieved 620x enhancement (~6,400 mA cm). For Ec? < 0.26 eV, ratchets are of ‘intermediate’ quality
(Figure S21d & S22d). However, barriers are almost nonexistent, resulting in resonance frequencies far

above 10 kHz (Figures S21b & S22b). For ES? of 0.36 eV, which returned the lowest rate enhancement,

the ratchet is a mild ‘reverse’ ratchet (Figure S23d) and resonance frequencies are above 10 kHz (Figure

peak .
i—10 resultsin

S23b); this combination hinders rate enhancement. Finally, for E.? of 0.46 eV and larger, n
‘effective’ forward ratchets with relevant forward barriers of ~0.2 eV (Figures 3f, S24d, S25d). This leads
to these systems experiencing close to maximal performance at the maximum oscillation frequency sampled
(i.e., resonance frequencies on the order of 10 kHz, Figures 3i, S24b, S25b).

Figure 4e compares overpotential-optimized programmable catalysts (waveform parameters, Table S9)

with the highest-performing static catalysts. For the most physically-representative reversible activation

barrier values sampled in this model (ES? of 0.26 — 0.46 eV), 1;-1, of programmable catalysts was 30 —

250 mV (compare to nP% of 229 — 451 mV). At the larger end of E? values simulated, reductions of
~50% were achieved, corresponding to n;—, values of 300 and 410 mV for ES? of 0.56 eV and 0.66 eV,
respectively. For Ec? of 0.16 eV, the optimized programmable catalyst resulted in 7;—;, of -70 mV. While

this may seem like an error in our model, the overall reaction free energy change does not necessarily dictate
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the net reaction direction if the reaction coordinate changes with time.® In fact, artificial molecular ratchets
have been designed to drive endergonic reactions by coupling to an orthogonal energy source (one which
does not impact the reaction coordinate of interest, but instead provides energy to drive the uphill reaction
by e.g., switching between potential energy surfaces with different local minima and maxima to
directionally ratchet molecules).-® Programmable catalysts are an ‘energy ratchet’®® where the work from
an external oscillating stimulus enables chemical transformations not possible by conventional methods,
such as supra-equilibrium conversion?”? and imparting significant net turnover into a closed catalytic
loop.*

Kinetic models of prototype chemistries have predicted that optimized programmable catalysts can
increase rates by several orders of magnitude,”® % while more complex models of ammonia synthesis** and
steam methane reforming® predicted modest rate increases of 10x (f = 2 kHz) and 15% (f > 10 MHz),
respectively, for the initial catalyst perturbations modeled. In comparison, our model of the OER predicts
approximately 100 to 600x rate enhancement at oscillation amplitudes comparable to prototype chemistry
models (1 eV), which decreases to <65x (Figure S26; waveform parameters, Tables S10 & S11) at a lower
amplitude of 0.5 eV (f = 10 kHz). The kinetics in our model are more approximate than those of refs. 23,30
as we are not modeling a specific stimulus, but our results nonetheless indicate that programmable catalysts
may be a viable strategy for accelerating the OER beyond the Sabatier volcano peak.

In this work, microkinetic simulations of programmable OER catalysts were conducted using a simple
kinetic parameterization in which all proton-coupled electron transfer (PCET) reaction steps featured the
same reversible activation barrier (E;7), which was varied between 0.16 — 0.66 eV. We found that volcano
peak overpotentials (n;—,) predicted by our model at intermediate values of E.? (0.26 — 0.46 eV) featured
closest agreement with literature. For this range of E.? values, programmable catalyst simulations
conducted at the volcano peak overpotential(s) achieved current densities ~100 — 500x higher than static,
while programmable catalysts simulated at a benchmark current density of 10 mA cm were able to operate

at 45 — 90% lower overpotentials than static. Additionally, we found that this kinetic parameterization led
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to ‘effective’ forward ratchets at high overpotentials, while the ratchets became less effective (even
promoting backwards reaction) at low overpotentials. The key parameters controlling ratchet quality were
the O*-to-OOH* and O*-to-OH* formation barriers at the high AG2" catalyst state.

This simple kinetic model demonstrated that programmable catalysts are a potentially viable strategy to
accelerate the OER and/or reduce the overpotential required to reach a specific current density. By
accelerating the OER, programmable catalysts may enable the use of cheaper, more abundant catalyst
materials. Alternately, programmable thin film IrO.-based catalysts may enable commercial PEM
electrolysers to operate at lower catalyst loadings, reducing cost and consumption of this rare precious
metal. However, future work improving the parameterization of OER kinetics by replacing the assumed
LFERs and single-valued reversible activation barrier is required to enable more accurate predictions of
rate enhancement and ratchet quality for the programmable OER. This is requisite for determining the

energy efficiency of programmable OER catalysts.
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(c) OER overpotential volcano at a current density of iprr = 10 mA cm. Solid lines show

microkinetic model results as a function of the reversible activation barrier (E;? € [0.16,0.66] eV); black *° are
theoretical overpotentials predicted via DFT; pink markers™~"" are experimentally measured overpotentials in acidic
electrolyte (details, Table S7).
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¢ = 50%, amplitude AAG, = 1 eV, and frequency f = 1 kHz). (&) Reaction coordinate of an ‘effective’ forward
ratchet at n = 650 mV; (b) catalyst waveform and corresponding (c,d) time on stream data for surface coverages and
current density; (e) frequency response plot. The frequency response traces overlap the parity line, indicating there is
~1 catalytic turnover per catalyst oscillation, corresponding to an efficient ratchet. (f) Reaction coordinate of an

‘intermediate’ ratchet at = nfjf(',‘ (451 mV); (g,h) time on stream data for surface coverages and current density; (i)
frequency response plot. (j) Reaction coordinate of a ‘reverse’ ratchet at n = 250 mV; (k1) time on stream data for
surface coverages and current density; (m) frequency response plot where traces are far from the parity line, indicating

an inefficient programmable catalyst.
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Figure 4. Programmable OER simulation results. Unless noted otherwise, results are shown for E;? = 0.46 eV with
waveform parameters duty cycle ¢ = 50% and frequency f = 10 kHz. (a) Comparison of static (dashed lines) and
programmable (markers) OER catalysts at overpotentials n of 250 and 451 mV with waveform amplitude AAG, = 0.5
eV. At both n values shown, the programmable catalyst achieves current densities ~60x above the corresponding
volcano peak. (b) Heatmap showing the current density achieved by a programmable catalyst operating at nf:f('f (451
mV) as a function of waveform center point and amplitude. AAG, = 0 eV represents static results. (c) Heatmap
showing the minimum overpotential (17;~,,) needed to achieve iogzz = 10 MA cm™? as a function of waveform center

point and amplitude. AAG, = 0 eV represents static results (see Figure 1c). (d) Maximum current density achieved
peak

by optimized programmable catalysts operating at n'<;, as a function of the reversible activation barrier E;" (see
Table S8 for corresponding waveform parameters). Numbers represent the enhancement over the static volcano peak.
(e) Reduction in 1;-,, by programmable catalysts as a function of the reversible activation barrier E?. Static values
correspond to volcano peaks of Figure 1c, and programmable values to optimized waveforms (see Table S9 for
corresponding waveform parameters).
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