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Abstract

Crystal plasticity finite element method (CPFEM) has been an inte-
grated computational materials engineering (ICME) workhorse to study
materials behaviors and structure-property relationships for the last few
decades. These relations are mappings from the microstructure space to
the materials properties space. Due to the stochastic and random nature
of microstructures, there is always some uncertainty associated with
materials properties, for example, in homogenized stress-strain curves.
For critical applications with strong reliability needs, it is often desir-
able to quantify the microstructure-induced uncertainty in the context
of structure-property relationships. However, this uncertainty quantifi-
cation (UQ) problem often incurs a large computational cost because
many statistically equivalent representative volume elements (SERVEs)
are needed. In this paper, we apply a multi-level Monte Carlo (MLMC)
method to CPFEM to study the uncertainty in stress-strain curves, given
an ensemble of SERVEs at multiple mesh resolutions. By using the infor-
mation at coarse meshes, we show that it is possible to approximate the
response at fine meshes with a much reduced computational cost. We
focus on problems where the model output is multi-dimensional, which
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requires us to track multiple quantities of interest (QoIs) at the same
time. Our numerical results show that MLMC can accelerate UQ tasks
around 2.23×, compared to the classical Monte Carlo (MC) method,
which is widely known as ensemble average in the CPFEM literature.

Keywords: structure-property, crystal plasticity finite element, uncertainty
quantification, multi-level Monte Carlo

1 Introduction

Designing materials with tailored properties requires a comprehensive under-
standing of the composition–process–structure–property relationship [1, 2],
which has been studied extensively with four paradigms of materials science,
namely experimental, theoretical, computational, and (scientific) machine
learning [3, 4]. For polycrystalline metals and alloys, the materials design
problem can often be formulated as optimization under uncertainty, where
uncertainty comes from many sources. Some common epistemic uncertainty
source includes observation noise, numerical solver tolerance, approximation
error, besides the aleatory uncertainty source, which often manifests in the
naturally random microstructure. Unfortunately, the materials design cycle
is one of the major computational bottlenecks for transformative technolo-
gies [2] due to their resource-intensive nature. To accelerate the materials
design cycle, computational materials paradigms were developed and imple-
mented in that context, across multiple length-scales and time-scales, with
the overarching goal of modeling and simulating experimental and theoreti-
cal physics [1]. Over the last few decades, multiple integrated computational
materials engineering (ICME) [5] models and simulations have been devel-
oped. ICME has become the third paradigm in materials science, the so-called
computational paradigm [4]. The Materials Genome Initiative (MGI) [6] was
created in 2011 in that scientific computing context, with the hope that ICME
models can significantly reduce the research and development time and cost by
leveraging the computational resource of high-performance computers. With
the emerging field of machine learning, the revised MGI [7] was updated in
2019 to include scientific machine learning (SciML) as the fourth paradigm of
materials science [3, 4].

Uncertainty quantification (UQ) plays several important roles in the mate-
rials design problem[8, 9]. First of all, many inverse UQ and optimization tools
are used to perform deterministic or statistical ICME model calibration. Sec-
ond, forward UQ tools are applied to quantify uncertainty associated with
calibrated ICME models, in order to establish a reliable, robust, and predictive
computing capability for ICME. Third, many UQ tools are currently developed
and applied to quantify uncertainty for ICME-based SciML. Last but not least,
multi-fidelity approaches also play a crucial role in ICME paradigm with multi-
ple fidelity parameters, such as meshes, numerical integrators, iterative solvers,



Springer Nature 2021 LATEX template

MF UQ for homogenization in CPFEM 3

order of element. Therefore, from this perspective, UQ is naturally immersed
in all four paradigms of materials science, from experiments to SciML.

Within the composition-process-structure-property relationship, the
microstructure is perhaps most uncertain due to its naturally inherent random-
ness, which can be associated with the aleatory uncertainty. It is well-known
that the final microstructure of an alloy is generated “from a very complex,
process-specific, history-dependent sequence of transformation” [2]. In this
paper, we are concerned with quantifying the microstructure-induced uncer-
tainty from the microstructure to the property space, where microstructures
are represented by an ensemble of statistically equivalent representative vol-
ume elements (SERVEs) in a hierarchical multi-fidelity manner using crystal
plasticity finite element model (CPFEM).

Numerous works have been done for UQ in ICME in the last decades.
Some notable works are summarized as follows. Nguyen et al. [10] employed
a Markov chain Monte Carlo to calibrate constitutive models for CPFEM in
a Bayesian context. Hasan and Acar [11] developed a microstructure-sensitive
design for performance optimization in titanium, aluminum, and galfenol. Tran
et al. [12, 13] applied stochastic collocation method, which is composed of
generalized polynomial chaos expansion and sparse grid for phase-field simu-
lation [12] and CPFEM [13], respectively. Venkatraman et al. [14] developed
a three-step Bayesian protocol for model calibration and model-form UQ for
CPFEM constitutive models in α+ β titanium alloys. Rixner and Koutsoure-
lakis [15] formulated and developed a probabilistic, data-driven convolutional
neural network to actively solve an inverse problem in structure-property link-
age. Tran and Wildey [16] applied a data-consistent inversion method [17, 18]
to infer a distribution of microstructure features from a distribution of yield
stress, where the push-forward density map is consistent with a target yield
stress density through a heteroscedastic Gaussian process regression. Tran et
al. [19] employed multi-level and multi-index Monte Carlo to estimate effective
yield strength and effective Young’s modulus in a hierarchical multi-fidelity
manner for a single quantity of interest (QoI). Rodgers et al. [20] simulated
the process-structure with kinetic Monte Carlo [21] and the structure-property
with CPFEM to study the effects of common microstructure in additive
manufacturing. Tran et al. [22] employed an asynchronous parallel Bayesian
optimization [23] to calibrate phenomenological constitutive models for sev-
eral materials systems. Ricciardi et al. [24] applied the model discrepancy
approach [25] with Gaussian process using a visco-plastic self-consistent model
to quantify uncertainty of homogenized stress-strain curve. Khalil et al. [26]
also applied an adaptive Metropolis-Hastings Markov chain Monte Carlo
to calibrate constitutive models accounting for uncertainty in homogenized
materials responses. Ghoreishi et al. [27] proposed a weighted linear average
approaches to combine multiple prediction from Gaussian process regression
for homogenized stress-strain response for dual-phase microstructures.

In this paper, we extend our previous work in [19] from a single QoI to
multiple QoIs, employing the multi-level Monte Carlo (MLMC) method to
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quantifying uncertainty in the stress-strain curves for a magnesium alloy. The
rest of the paper is organized as follows. In section 2, we describe the MLMC
method in the context of CPFEM applications. In section 3, we describe the
CPFEM case study for magnesium. Our main numerical results, including a
comparison between the MLMC method and the brute-force MC method, are
discussed in Section 4. In sections 5 and 6, we discuss our results and formulate
a conclusion.

2 Multi-level Monte Carlo for
microstructure-induced uncertainty
quantification

2.1 Microstructure from a statistical perspective

Given a probability space (Ω,A,P) and ω ∈ Ω, we consider an uncertain
microstructure m(x, ω) defined on a bounded domain D ⊂ Rd, with d = 2
or d = 3. The notation m(x, ω) entails that the microstructure depends on
both the spatial variable x ∈ D as well as the stochastic sample ω from
the sample space of the corresponding probability space. For a fixed ω, the
microstructure m(x, ·) is a deterministic but space-dependent function. For
a fixed location x, the microstructure m(·, ω) is a random variable. We are
interested in computing statistics of a certain QoI Q that is defined by a map-
ping f from the microstructure space to the homogenized material property,
i.e., Q = f(m(·, ω)). m(x, ω) is often known as the statistically equivalent
representative volume element (SERVE) in the materials science literature,
sampled independently and identically (i.i.d.) from statistical microstructure
measure P(ω) that describes all statistical microstructure descriptors, includ-
ing shape, size, morphology, neighboring, chord length, and crystal orientation
distribution functions.

For the remainder of this paper, we will be interested in computing the
first-order moment or expected value of the QoI Q(m), defined as

E [Q] :=

∫
Ω

Q(m(·, ω))dP(ω). (1)

Since the microstructure m(·, ω) is not directly accessible, the QoI is often
approximated by the quantity QL = f(mL(·, ω)), where mL is a finite-
dimensional approximation to the microstructure m at a particular mesh
resolution level L, typically the solution of a microstructure reconstruction
problem. For readers interested in statistical microstructure descriptors and
microstructure reconstruction problems, we refer to some notable works in the
literature, for example, [28–31].
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2.2 Monte Carlo method

Given an ensemble of microstructure ofN SERVEs, denoted as {m(·, ω(n))}Nn=1

with corresponding predictions for the material property of interest
{QL(m(·, ω(n)))}Nn=1 where QL is the map from microstructure to properties
(i.e. a CPFEM simulation), we can approximate Equation (1) by the average

QMC :=
1

N

N∑
n=1

QL(m(·, ω(n))), (2)

where the SERVE m(·, ω) is sampled from the measure P(ω), i.e. ω ∼ P(ω).
The ensemble average approach in Equation (2), also known as the Monte
Carlo (MC) method, is widely used in the CPFEM literature, see, e.g., [32–34].
For each microstructure SERVE m(·, ω(n)), CPFEM is deployed to evaluate
the corresponding material property QL(m(·, ω(n))).

It is natural to propose the average of an ensemble of material proper-
ties extracted from the microstructures {m(·, ω(n))}Nn=1 to approximate the
expected value in Equation (1). Since the sequence of microstructure SERVEs
are drawn from the same underlying sample space Ω with probability P(ω), we
have that the expected value E[QL(m

(1))] = · · · = E[QL(m
(N))] = E[QL], and

the strong law of large numbers guarantees that QMC → E [QL] almost surely
as the number of microstructure realizations (i.e. the number of SERVE) N
goes to infinity, see [35].

There are two sources of error in the MC estimator in Equation (2): a
stochastic error, present because we approximate the expected value by an
average, and a bias, present because samples of Q(m) are approximated by
samples of QL(m). The mean square error (MSE) of the estimator can be
decomposed into to the sum of these two terms:

MSE (QMC) := E
[
(QMC − E [Q])2

]
= E

[
((QMC − E [QMC]) + (E [QMC]− E [Q]))2

]
= E

[
(QMC − E [QMC])

2
]
+ (E [QL −Q])2

= V [QMC] + (E [QL −Q])2,

(3)

where the cross-product term vanishes because the MC estimator is an unbi-
ased estimator for QL, i.e., E [QMC] = E [QL]. The first term in Equation (3)
is the variance of the estimator and represents the stochastic error. Because
we assume the ensemble is uncorrelated, the variance can be written as

V [QMC] =
1

N2

N∑
n=1

V [QL] =
V [QL]

N
. (4)

The variance for the MC estimator V [QMC] decays as O(N−1) and can be
reduced by considering more SERVEs, i.e. increasing N . The second term in
Equation (3) is the square of the bias. It can be reduced by increasing the level
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of resolution L, i.e., by decreasing the mesh size, which leads to the notion of
h-convergence in FEM [36].

If we restrict the MSE to be less than or equal to ϵ2, then a sufficient
condition could be

V [QL]

N
≤ ϵ2

2
and |E [QL −Q]| ≤ ϵ√

2
. (5)

Hence, the number of microstructure SERVEs N scales as O(ϵ−2). Let CL be
the cost of a single model evaluation, the total computational cost of the MC
estimator in Equation (2) can be expressed as

cost(QMC) = NCL. (6)

Since CL is considered as a constant, the cost complexity of the MC estimator
cost(QMC) is the same as the number of SERVEs, i.e. N O(ϵ−2).

2.3 Multi-level Monte Carlo

The main idea of MLMC sampling [37] is that instead of sampling from only
one approximation QL, we sample from a hierarchy of approximation {Qℓ}Lℓ=0

for the QoI, denoted as Q. ℓ = 0 indicates the lowest level of fidelity and ℓ = L
indicates the highest level of fidelity. From the multi-fidelity perspective, the
intuition is to approximate the high-fidelity data using low-fidelity data by
their correlation and hopefully, reducing the computational cost while retaining
the approximation accuracy. In the context of this paper, ℓ = 0 corresponds
to the coarsest mesh size and ℓ = L corresponds to the finest mesh size,
respectively, and {Qℓ}Lℓ=0 is a sequence of meshes.

Thanks to the linear property of the expectation operator, we can decom-
pose the expectation at the highest level of fidelity into a telescoping sum
as

E [QL] = E [Q0] +

L∑
ℓ=1

E [Qℓ −Qℓ−1] =

L∑
ℓ=0

E [∆Qℓ] (7)

where the backward difference is

∆Qℓ :=

{
Qℓ −Qℓ−1, for ℓ > 0,

Qℓ, for ℓ = 0.
(8)

Using the MC estimator to estimate E [∆Qℓ] for 0 ≤ ℓ ≤ L, the MLMC
estimator can be written as

QMLMC :=

L∑
ℓ=0

1

Nℓ

Nℓ∑
n=1

∆Qℓ(m(·, ω(n))). (9)
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Theoretically, this means an ensemble of microstructure SERVEs {m(n)}Nℓ
n=1 is

used to estimate ∆Qℓ from the telescoping sum in Equation (7), for 0 ≤ ℓ ≤ L.
The MLMC estimator in Equation (9) is still an unbiased estimator for

E [QL], i.e., E [QMLMC] = E [∆QL] with variance

V [QMLMC] =

L∑
ℓ=0

V [∆Qℓ]

Nℓ
. (10)

Decomposing the MSE into the bias and variance as in (3), we have

MSE (QMLMC) = V [QMLMC] + (E [QL −Q])2 =

L∑
ℓ=0

V [∆Qℓ]

Nℓ
+ (E [QL −Q])2.

(11)
It is worthy to point out that the bias of the MLMC estimator is the same as
the bias of the MC estimator.

If the Qℓ and Qℓ−1 are strongly positively correlated, then

V [∆Qℓ] = V[Qℓ −Qℓ−1]
= V [Qℓ] + V [Qℓ−1]− 2cov(Qℓ, Qℓ−1)
≪ V [Qℓ] + V [Qℓ−1],

(12)

where cov(Qℓ, Qℓ−1) = ρℓ,ℓ−1

√
V [Qℓ]V [Qℓ−1] is the covariance between Qℓ

and Qℓ−1 and ρℓ,ℓ−1 is the Pearson correlation coefficient. Notice that the
backward difference E [∆Qℓ] is computed on the same input microstructure
m(·, ω(n)). As ℓ → ∞, we recover the h-convergence from the asymptotic
analysis of FEM when the mesh size approaches zero, i.e. h → 0.

If we require an MSE smaller than or equal to ϵ2, a sufficient condition is

L∑
ℓ=0

V [∆Qℓ]

Nℓ
≤ ϵ2

2
and |E [QL −Q]| ≤ ϵ√

2
. (13)

The total cost of the MLMC estimator is

cost(QMLMC) =

L∑
ℓ=0

Nℓ∆Cℓ, (14)

where ∆Cℓ is the sampling cost of the backward difference ∆Qℓ. The optimal
number of samples is [37]

Nℓ =
2

ϵ2

√
V [∆Qℓ]

∆Cℓ

(
L∑

ℓ=0

√
V [∆Qℓ]∆Cℓ

)
, (15)
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Numerically, Nℓ in (15) is rounded up to the nearest integer, which in turn,
may increase the cost of the estimator by at most one sample per level.

Assuming that the expectation, variance, and sampling cost are bounded
as

|E [∆Qℓ]| ≤ c1 2−αℓ, (C1)

V [∆Qℓ] ≤ c2 2−βℓ and (C2)

∆Cℓ ≤ c3 2γℓ (C3)

with 2α ≥ min(β, γ), the asymptotic cost complexity of the MLMC estimator
is [38]

cost (QMLMC) ≤


c4 ϵ−2 if β > γ,

c4 ϵ−2(log ϵ)2 if β = γ,

c4 ϵ−2−(γ−β)/α if β < γ.

(16)

The extension of MLMC methods to multi-output MLMC is simply done by
imposing the convergence criteria on the L∞ norm of the vector-valued output.

2.4 Integrated workflow: MultilevelEstimators.jl +
DREAM.3D + DAMASK

Figure 1 describes the integrated workflow used in this paper. In this work-
flow, three different software packages are integrated to create a UQ framework
for CPFEM problems. At each iteration, MultilevelEstimators.jl [39, 40]
requests an evaluation of the CPFEM model at fidelity levels ℓ and ℓ − 1.
DREAM.3D [41] is then employed to generate a microstructure SERVE on these
mesh resolution levels. DAMASK [42] uses the generated microstructure geome-
tries and computes the QoI using a PETSc [43, 44] backend. The workflow is
coupled together using a combination of Python and shell scripts.

3 Crystal plasticity finite element for
magnesium

3.1 Phenomenonlogical constitutive model

In this section, we followed [42, 45, 46] to summarize the basic of CPFEM
with phenomenological constitutive model. The multiplicative elasto-plastic
decomposition of deformation gradient for large deformations reads as

F = Fe · Fp, (17)

and the elasto-plastic decomposition of the velocity gradient is

L = Ḟ · F−1 = Ḟe · F−1
e + Fe · Ḟp · Fp · F−1

e = Le + Fe · Lp · F−1
e , (18)
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Fig. 1: Multi-fidelity uncertainty quantification workflow for CPFEM.

Lp and Le are the plastic and elastic velocity gradient, respectively. The flow
rules models the evolution of the inelastic deformation gradient Fp as

Ḟp = LpFp, (19)

(20)

where the plasticity velocity gradient in the intermediate configuration Lp is
determined by

Lp = Ḟp · F−1
p =

∑
α

γ̇α (sαs ⊗ nα
s ) . (21)

sαs is the unit vector along the slip direction and nα
s is the unit vectors normal

to the slip plane.
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Plasticity is considered in terms of resistance ξ on Ns slip and Ntw twin
systems. The resistances on α = 1, . . . , Ns slip systems evolve as

ξ̇α = hs-s
0

(
1 + c1

(
f tot
tw

)c2)
(1 + hα

int)

[
Ns∑

α′=1

|γ̇α′
|

∣∣∣∣∣1− ξα
′

ξα′
∞

∣∣∣∣∣
a

sgn

(
1− ξα

′

ξα′
∞

)
hαα′

]

+

Ntw∑
β′=1

γ̇β′
hαβ′

,

(22)
where f tot

tw is the total twin volume fraction, h is the matrices of the slip-slip
and slip-twin interactions, hs-s

0 , hint, c1, c2 are fitting parameters, ξ∞ is the
saturated resistance.

The resistances on the β = 1, . . . , Ntw twin systems evolve similarly:

ξ̇β = htw-s
0

(
Ns∑
α=1

|γα|

)c3 ( Ns∑
α′=1

|γ̇α′
|hβα′

)
+ htw-tw

0

(
f tot
tw

)c4 Ntw∑
β′=1

γ̇β′
hββ′

 ,

(23)
where htw-s

0 , htw-tw
0 , c3, and c4 are fitting parameters. Shear on each slip system

evolves as

γ̇α = (1− f tot
tw )γ̇0

α

∣∣∣∣ταξα
∣∣∣∣n sgn(τα). (24)

where slip due to mechanical twinning is

γ̇ = (1− f tot
tw )γ̇0

∣∣∣∣τξ
∣∣∣∣n H(τ). (25)

H is the Heaviside step function. The total twin volume is

f tot
tw = max

1.0,

Ntw∑
β=1

γβ

γβ
char

 , (26)

where γchar is the characteristic shear due to mechanical twinning and depends
on the twin system. Interested readers are referred to the work of Roters et
al. [45] for a complete picture of CPFEM model in general and for using
DAMASK [42] in particular. Table 1 lists the constitutive parameter used in this
example from the literature [47–51].

3.2 Crystallography and microstructure for magnesium

Figure 2 presents three different SERVEs with geometric mesh resolution levels
chosen as detailed in Table 2. The SERVEs are reconstructed using DREAM.3D,
where the grain sizes are log normally distributed with equiaxed grains, i.e.
d ∼ LogNormal(µd, σd), µd = 5.2983, σd = 0.2. Following [13, 52], the crys-
tallographic texture for magnesium is sampled from (ϕ1, θ, ϕ2) = (90◦, 0◦, 0◦)
and shown in Figure 3.
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Table 1: Parameters for Mg used in this case study (cf. Tables 7 and 8 [47, 48],
[49–51]).

variable description units reference value
c/a lattice parameter ratio – 1.635
C11 elastic constant GPa 59.3
C12 elastic constant GPa 61.5
C44 elastic constant GPa 16.4
C44 elastic constant GPa 25.7
C44 elastic constant GPa 21.4

γ̇0 twinning reference shear rate s−1 0.001

γ̇0 slip reference shear rate s−1 0.001
τ0,basal basal slip resistance MPa 10
τ0,pris prismatic slip resistance MPa 55

τ0,pyr⟨a⟩ pyramidal ⟨a⟩ slip resistance MPa 60
τ0,pyr⟨c+a⟩ pyramidal ⟨c+ a⟩ slip resistance MPa 60

τ0,T1 tensile twin resistance MPa 45
τ0,C2 compressive twin resistance MPa 80

τ∞,basal basal saturation stress MPa 45
τ∞,pris prismatic saturation stress MPa 135

τ∞,pyr⟨a⟩ pyramidal ⟨a⟩ saturation stress MPa 150
τ∞,pyr⟨c+a⟩ pyramidal ⟨c+ a⟩ saturation stress MPa 150

htw−tw
0 twin-twin hardening parameter MPa 50

hs−s
0 slip-slip hardening parameter MPa 500

htw−s
0 twin-slip hardening parameter MPa 150
ns slip strain rate sensitivity parameter – 10
ntw twinning strain rate sensitivity parameter – 5
a slip hardening parameter – 2.5

Table 2: Mesh resolutions and corresponding number of degrees of freedom
(i.e. SERVE size) used in this study.

ℓ Degrees of freedom # processors/sample cost/sample [s]

0 2× 2× 2 1 39
1 4× 4× 4 1 365
2 8× 8× 8 2 1955
3 16× 16× 16 4 3305
4 32× 32× 32 8 12487

4 Numerical results

4.1 Problem description

In this section, we discuss the setup of our numerical experiments. We are
interested in estimating homogenized stress curves for magnesium at different
strain levels. We compute those curves using both the MC method and the
MLMC method outlined in Section 2. For the MLMC method, we use a geo-
metric mesh resolution level hierarchy as shown in Table 2. Figure 4 shows the
increase in computational cost associated with each level, indicating that the
cost increases geometrically with the mesh resolution level number. Although
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(a) m1 : 2×2×
2

(b)m1 : 4×4×
4

(c) m1 : 8×8×
8

(d) m1 : 16 ×
16× 16

(e) m1 : 32 ×
32× 32

(f) m2 : 2×2×
2

(g) m2 : 4×4×
4

(h)m2 : 8×8×
8

(i) m2 : 16 ×
16× 16

(j) m2 : 32 ×
32× 32

(k)m3 : 2×2×
2

(l) m3 : 4×4×
4

(m) m3 : 8 ×
8× 8

(n) m3 : 16 ×
16× 16

(o) m3 : 32 ×
32× 32

Fig. 2: Three SERVE realizations, i.e. m1, m2, and m3, discretized at 5 geo-
metric mesh resolutions: 2 × 2 × 2, 4 × 4 × 4, 8 × 8 × 8, 16 × 16 × 16, and
32× 32× 32.

the number of degrees of freedom increases with a factor 8 as the mesh res-
olution level increases, the computational cost scales only as 2γℓ, where we
numerically fitted γ ≈ 1.98. This is because we use a different number of pro-
cessors at each level, following a constraint on the number of grid points per
processor imposed by DAMASK. The number of processors used for each mesh
resolution level is shown in Table 2.

4.2 MLMC estimation of homogenized mean
stress-strain responses

Figure 5 shows a collection of the stress-strain curve evaluated for an ensemble
of SERVEs at each mesh resolution level provided in Table 2. As the fidelity
level increases, the mesh becomes finer, and the number of SERVEs decreases.
Hence, the plot is dominated by stress-strain curves collected at 2× 2× 2, and
much less at 32×32×32. We interpolate the obtained stress-strain curves at a
set of 9 prescribed strain values ε = {0.1, 0.2, . . . , 0.9}. We use cubic Hermite
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Fig. 3: Magnesium texture component with Euler angles (ϕ1, θ, ϕ2) =
(90◦, 0◦, 0◦)

.

Fig. 4: Increase of the average computational cost per sample expressed in
seconds as a function of the level parameter ℓ using the mesh refinement as a
fidelity parameter in the MLMC experiment. The dashed line corresponds to
a fit of the computational cost proportional to 2γℓ with γ ≈ 1.98, see condition
(C3). The computational cost at each level can be found in Table 2).

spline interpolation [53] to obtain the values of the stress-strain curves at those
9 locations. This higher-order interpolation scheme should avoid additional
interpolation errors that converge at a slower rate than the bias in the predicted
stress-strain curves. The value of the stress-strain curve at those 9 locations
will be the set of QoIs we are interested in. Note that these QoIs are indicated

by×in Figure 5.
The behavior of the expected value of the QoIs Qℓ and the multilevel differ-

ence Qℓ−Qℓ−1 is shown in Figure 6. The expected value E [Qℓ] is stable across
all levels ℓ = 0, 1, . . . , 4, and the expected value of the multilevel difference
decays as the mesh resolution level ℓ increases. Table 3 shows the numerically
fitted decay rates α from condition (C1).
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Fig. 5: Compilation of stress-strain curves by sampling SERVEs at the differ-
ent mesh resolution levels shown in Table 2. The locations of the 9 QoIs are
plotted as ×.

The behavior of the variance of the QoIs Qℓ and the multilevel difference
Qℓ − Qℓ−1 is shown in Figure 7. As shown in Figure 5, the most materials
variability comes from 2×2×2, and the least materials variability comes from
32×32×32, possibly due to the number of grains in SERVEs. This observation
is consistent with the quantitative analysis of variance shown in Figure 7.
For mesh resolution levels 1 and 2 the variance of the multilevel difference
V [∆Qℓ], is more than the variance of the quantity of interest V [Qℓ] itself, i.e.
V [∆Qℓ] > V [Qℓ] with ℓ = 1, 2. This means that the necessary condition for an
efficient MLMC estimator required in (12) is not satisfied (note the logarithmic
axis for the variance). A lack of correlation between the QoIs derived from
microstructures at levels ℓ = 0, 1, and 2 explains this constraint violation, see
Figure 2 for an illustration. However, the variance of the multilevel difference
does satisfy condition (C2) with numerically fitted rates β shown in Table 3.
In order to ensure that our MLMC estimator is efficient, we remove the first
three levels in the multilevel hierarchy, leaving only mesh resolution levels
ℓ = 3 and ℓ = 4. Since 2α ≥ min(β, γ) for all QoIs, we expect an asymptotic
cost complexity of O(ϵ−2), see (16).

It is observed that the expectation across all fidelity levels ℓ is stable
(Figure 6), whereas the variance across all fidelity levels ℓ, while generally
still decreasing, is only useful when ℓ ≥ 3. We postulate that the convergence
of the expectation has more to do with the underlying constitutive models,
whereas the variance has more to do with the number of grains in SERVEs.
The converged expectation is consistent in the notion of unbiased estimator
(for both MLMC and MC methods, as any MC-based approach is naturally
unbiased), but the variance depends on number of SERVEs N (Equation (4)),
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(a) ε = 0.10 (b) ε = 0.20 (c) ε = 0.30

(d) ε = 0.40 (e) ε = 0.50 (f) ε = 0.60

(g) ε = 0.70 (h) ε = 0.80 (i) ε = 0.90

Fig. 6: Behavior of the expected value log2(E[|·|]) of the quantities of interest
Qℓ and the multi-level difference ∆Qℓ as a function of the level ℓ using the
mesh refinement as a fidelity parameter for each QoI. We numerically fitted
the values E[∆Qℓ] ∝ 2−αℓ with 1.34 ≲ α ≲ 2.93, see Table 3.

and implicitly the number of grains. In this sense, there may be a meaningful
criteria to establish a bound for low-fidelity representation of SERVEs, so that
the correlation constraint in Equation (12) can be satisfied.

4.3 Comparison between MC and MLMC

In Figure 8, we show a comparison of the computational cost, measured in wall
clock time, of the MC and MLMC methods, for different values of the tolerance
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(a) ε = 0.10 (b) ε = 0.20 (c) ε = 0.30

(d) ε = 0.40 (e) ε = 0.50 (f) ε = 0.60

(g) ε = 0.70 (h) ε = 0.80 (i) ε = 0.90

Fig. 7: Behavior of the variance log2(V[|·|]) of the QoI Qℓ and the multi-level
difference ∆Qℓ as a function of the level ℓ using the mesh refinement as a
fidelity parameter for each QoI. We numerically fitted the values V[∆Qℓ] ∝
2−βℓ with 2.62 ≲ β ≲ 3.53, see Table 3.

parameter ϵ. The MLMC method outperforms the MC method by a factor
of 2.23×. For a tolerance ϵ = 1.30e − 1, the plain MC method takes 1283.38
hours, while our MLMC method takes approximately 68.14 hours. Table 4
tabulates the comparison between MLMC and MCmethods, where the number
of SERVEs at level ℓ = 4, N4, in the MC method is approximated by N3 in the
MLMC method. The reasoning behind this approximation is that we assume
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Table 3: Fitted decay rates α and β in conditions (C1) and (C2), respectively.

ε α β
0.1 2.93 3.53
0.2 2.26 3.44
0.3 2.64 3.15
0.4 1.59 3.02
0.5 1.30 2.88
0.6 1.19 2.76
0.7 1.16 2.64
0.8 1.25 2.62
0.9 1.56 2.93

Fig. 8: Total cost comparison between MC and MLMC showing a factor of
around 2.23× speedup.

the variance on the low-fidelity (coarse) level, i.e. ℓ = 3 is approximately the
same with the high-fidelity (fine) level, i.e. ℓ = 4. The approximately same
variance means approximately the same number of samples, and therefore, the
number of SERVEs N4 in the MC method can be approximated by N3 in the
MLMC method. Because MF UQ methods generally aim to argue that it is
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possible to conduct UQ efficiently by multiple levels of fidelity, the best way
to highlight the efficiency is simply to compare the MF UQ method at hand
with the brute-force high-fidelity counterpart. Therefore, we only consider an
approximate N4 and not N3 for the MC method.

Table 4: Comparison of the distribution of the number of samples across the
mesh resolution levels for MLMC and MC, for different tolerances ϵ.

ϵ
MC MLMC

Speedup
Approx. N4 Approx. Cost (hr) N3 N4 Cost (hr)

3.51000000e-01 7 24.28 7 3 16.83 1.44×
3.14324193e-01 8 27.74 8 3 17.75 1.56×
2.81480622e-01 10 34.68 10 3 19.58 1.77×
2.52068859e-01 12 41.62 12 3 21.42 1.94×
2.25730315e-01 15 52.02 15 3 24.17 2.15×
2.02143872e-01 19 65.90 19 3 27.84 2.36×
1.81021965e-01 23 79.77 23 3 31.52 2.53×
1.62107074e-01 29 100.58 29 3 37.02 2.71×
1.45168590e-01 36 124.87 36 4 46.92 2.66×
1.30000000e-01 44 152.61 44 8 68.14 2.23×

Fig. 9: Total cost distribution for MLMC run with only levels ℓ = 3, 4 showing
an increase of computational resource allocation toward the low-fidelity level
as the total cost increases.

In Figure 9 we show the distribution of the total cost among the levels,
measured as a percentage of the wall clock time, as a function of the total cost.
As the total cost increases, more and more time is spent evaluating the QoIs
using a coarse mesh resolution level. For a total cost over 2000 hours, only a
quarter of the time is spent evaluating the QoIs at the finest resolution level.
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5 Discussion

The novelty of this paper lies in the integration of the methodology (i.e.
MLMC) and the application (CPFEM) by approaching the classical problem in
CPFEM at a different UQ perspective, but not the methodology or the appli-
cation itself. Given that the interest in UQ for materials science has emerged
in the last few years and the ensemble of SERVEs has been the main approach
for the last two decades or so, it is non-trivial to formulate the UQ problem
through the correct lens, where the right methodology is married to the right
application.

Several techniques that exploit a hierarchy of model approximations
have been introduced in the recent literature. The multi-index Monte Carlo
(MIMC) [54] method, for example, uses a multi-dimensional hierarchy to fur-
ther increase the efficiency. This multi-dimensional hierarchy may include
refinement levels such as constitutive models, integration time-step, or hp-
FEM, where h corresponds to mesh size and p corresponds to polynomial
degree of the finite element. In our previous work in [19] we applied MIMC
for a single-QoI CPFEM application. For non-hierarchical model approxima-
tions, we mention multi-fidelity MC (MFMC) [55–57] and approximate control
variates [58–61].

The analysis of the variance in Figure 7 shows that there is a limitation
to the amount of mesh coarsening we can perform in order to yield an effi-
cient multilevel estimator. When the mesh resolution becomes too coarse, the
QoIs extracted from the discretized microstructures are no longer correlated,
a necessary requirement for a good control variate as per equation (12). Such
behavior can only be observed through a preliminary analysis of the problem,
such as the one performed in this paper. In order to improve the correlation
between microstructure resolutions at intermediate mesh resolution levels, the
element agglomeration technique from the algebraic multigrid literature may
be useful.

There is a lower bound for low-fidelity levels (so that Equation (12) is not
violated), but there is no upper bound for high-fidelity levels. The MLMC
method is at most much better and at least on par with the MC method. The
equality in terms of performance occurs when there is only one level of fidelity,
as the MLMC method is a natural MF extension of the MC method.

One important limitation of the MLMC methods is that it requires a sub-
stantial correlation across multiple fidelity levels (i.e. Qℓ and Qℓ−1 in (12)).
Without sufficient correlation, the variance V [∆Qℓ] will not be substantially
reduced, and thus the gain of using MLMC methods would be marginal
compared to MC methods.

The generalization of MLMC methods for CPFEM in various materials
system is clear, where it can be applied to various materials systems of inter-
ests. The MLMC method is a generic framework for MF UQ problems, with
the objective of quantifying the uncertainty by leveraging a multi-fidelity hier-
archy. There are several mathematical restrictions, such as strong correlation
(12) and exponential decay in expectation, variance, and computational cost,
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i.e. (C1), (C2), and (C3). The exponential decay assumptions, in general, are
naturally satisfied as long as the CPFEM converges at all levels ℓ’s. Perhaps, it
is worthy to note that in this work, we focus solely on the case of 1-dimension
in fidelity parameters (i.e. mesh resolutions) and multi objectives (i.e. stress
observations at 9 collocated points), while in previous work [19], we focused on
multi-dimension in fidelity parameters (i.e. mesh resolutions and constitutive
models) with single objective (i.e. Young modulus or yield strength).

It is well-known that there is a close relationship between the materials tex-
ture characterized by the orientation distribution functions and the materials
stress-strain response. In this work, we follow Mangal and Holm [52] to study
the texture of magnesium with (ϕ1, θ, ϕ2) = (90◦, 0◦, 0◦) as an exemplar for
our proposed UQ problem. How material textures influence the material stress-
strain responses is certainly a very interesting question, but it lies beyond the
scope of this paper, and therefore, is an subject of interest for future study.

Finally, we point out that the CPFEM method, just as all other finite-
element-based method, introduces several layers of approximation errors. A
first error occurs because of the discretization of the geometry. A second source
of error is the accuracy of the sparse linear solver used to compute the finite
element solutions. In this work, we have focused on the former error, but it pos-
sible to include the solver accuracy as an additional dimension for refinement,
possibly in a multi-index Monte Carlo framework.

6 Conclusion

In this paper, we applied the MLMC method to study the effect of microstruc-
ture variation on the stress-strain curves for magnesium predicted by CPFEM.
We imposed a geometric mesh hierarchy with five different mesh resolution
levels, of which only the two finest levels were used in an efficient multilevel
sampling strategy. Our MLMC method outperforms the standard MC method
by a factor of 2.23×.
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