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Population data are normally collected at various census administrative levels, and areal interpolation of pop-
ulation is often required to transform population to the desired spatial resolution. Building footprint datasets,
such as Microsoft building footprints, have proven to be useful in estimating population distribution and can
therefore be used for areal interpolation of population. In addition to Microsoft building footprints, the recently
released USA Structures dataset provides additional information such as building type and building height for
some regions, which may provide valuable information for a better depiction of population distribution and
improved population areal interpolation accuracy. In this study, we have conducted areal interpolation of
population projections consistent with three different Shared Socioeconomic Pathways (SSP2, SSP3, and SSP5)
from 1-km grid cells to block level in Washington state for every ten years from 2020 to 2040 based on USA
Structures. We assessed USA Structures-based population downscaling accuracy using U.S. decennial survey data
in 2020 under three different downscaling schemes, including population downscaling from census tracts to
block groups, from census tracts to blocks, and from block groups to blocks. The resulting accuracies were
compared with those based on Microsoft building footprints. The comparison showed that USA Structures
achieved higher accuracies across different population density regions and areas with different urbanization
extent within our study area.

1. Introduction adaptation, and mitigation (Riahi et al., 2017). Table 1 shows the

summary of each SSPs. SSP1 represents a sustainability scenario guided

Projected population data are an essential data input in numerous
research questions that target future predictions, such as future eco-
nomic modeling, disaster prevention, urban design, environmental
modeling, etc. (Brecht, Dasgupta, Laplante, Murray, & Wheeler, 2012;
Chen, Paltsev, Reilly, Morris, & Babiker, 2016; Georgescu, Morefield,
Bierwagen, & Weaver, 2014; Riordan and Rundel, 2014). Projected
population is often produced at national level (Gerland et al., 2014). For
example, Samir and Lutz (2017) produced population projections for
195 countries under five different Shared Socioeconomic Pathways
(SSPs). These SSPs represent five plausible socioeconomic global change
scenarios developed by the climate research community to facilitate
comprehensive analysis of future climate impacts, vulnerabilities,

by environmentally conscious development strategies while SSP2 por-
trays a middle-of-the-road scenario, reflecting moderate socioeconomic
and environmental changes. SSP3 depicts a regional rivalry scenario
highlighting geopolitical tensions and fragmented development while
SSP4 presents an inequality scenario, focusing on high disparities and
limited social cohesion. SSP5 is a fossil-fueled development scenario,
characterized by extensive reliance on fossil fuels and limited environ-
mental regulations (O’'Neill et al., 2017). The global population pro-
jections differ among the SSPs. SSP1 and SSP5 have the lowest projected
population of around 7 billion people by 2100, while SSP3 has the
highest projection of 12.5 billion by 2100. SSP2 and SSP4 show a me-
dium projected population of around 9.4 billion people (Riahi et al.,
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Table 1
Summary of SSPs.
Scenarios Summary Projected
population by 2100
ssp1 Sustainability scenario: environmentally 7 billion

conscious development strategy
Middle of th io:

SsP2 1(?d e of tl e- Road SCEI-laI‘lO moderate 9.4 billion
socioeconomic and environmental changes

Regional Rivalry scenario: geopolitical tensions

S5p3 and fragmented development 12:5 billion
SPP4 Ineguahty sc.enano: high disparities and limited 9.4 billion
social cohesion
Fossil-fueled Development scenario: extensive
SSP5 reliance on fossil fuels and limited 7 billion

environmental regulations

2017).

Besides national-level, some subnational population projections also
are produced to capture the regional heterogeneity in demographic
processes and its corresponding outcomes (Wilson & Bell, 2004; Zor-
aghein & O’Neill, 2020). In Europe, Eurostat regularly produces regional
population projections, and the most recent release is based on 2019
data (Buettner, 2022; Rees, Van Der Gaag, De Beer, & Heins, 2012; Van
der Gaag, Van Imhoff, & Van Wissen, 2000). In China, provincial pop-
ulation projections have been estimated under different SSPs from 2010
to 2100 (Chen et al., 2020).

However, in the United States, state level population projections are
not routinely produced or updated, even as the demand for sub-national
population projections is increasing. While some states produce their
own version of state-level population projections, the projected time is
relatively short (typically only covering the following 10 to 20 years),
and the implemented methods and underlying assumptions vary from
state to state (Jiang, O’Neill, Zoraghein, & Dahlke, 2020).

To address the lack of a long-term state-level population projection
with a national consensus on method and assumption, Jiang et al.
(2020), relied on a cohort-component population projection model
extended for multiregional demography to produce the very first set of
such population projections for each state across different SSPs. In their
method, state-level population projections were updated based on a
modified national-level population projection, by considering different
migration patterns between states across different gender and age
groups. The modified national-level population projection accounts for
updated demographic data and a more realistic long-term international
migration mechanism consistent with the historical experience in the U.
S. Population projections finer than the state level have also been pro-
duced for the U.S. For example, Hauer (2019) estimated U.S. population
projections at county level by age, sex, and race across different SSPs.
Zoraghein and O’Neill (2020) downscaled state-level population pro-
jections from Jiang et al. (2020) to 1-km resolution using a gravity-based
population downscaling method.

Despite the existence of population data at different spatial resolu-
tions, however, the data may still not match the spatial resolution
required by the research (Merkle et al., 2022; Van Vuuren, Smith, &
Riahi, 2010). To obtain the population data at the desired spatial reso-
lution, it is imperative to transfer population data from one set of spatial
units (source zones) to another (target zones), which is defined as areal
interpolation process (Eicher & Brewer, 2001).

The simplest areal interpolation method is simple areal weighting,
which directly redistributes population from the source zone to its cor-
responding target zones in proportion to the areas of the target zones
(Goodchild, Anselin, & Deichmann, 1993). The limitation of simple
areal weighting is that it assumes the population distribution is uniform
across the study area, which is often not accurate (Sadahiro, 1999).
Dasymetric mapping is another commonly used areal interpolation
method, which disaggregates population to finer spatial units based on
ancillary dataset (Eicher & Brewer, 2001; Zandbergen & Ignizio, 2010).
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Land cover data derived from satellite imagery are the mostly commonly
used ancillary data in dasymetric mapping (Cartagena-Colon, Mattei, &
Wang, 2022; Mennis, 2009). Other commonly used datasets include
imperviousness, road networks, nighttime lights, etc. (Li & Zhou, 2018;
Swanwick et al., 2022; Zandbergen & Ignizio, 2010). Due to its flexi-
bility for the selection of ancillary datasets, in recent studies, dasymetric
mapping has incorporated some novel data as ancillary datasets. For
example, Wan, Yoon, Srikrishnan, Daniel, and Judi (2022) adopted
settlement-related U.S. property data as an ancillary dataset and ach-
ieved comparatively high population downscaling accuracy when
compared with other traditionally used ancillary datasets. Zandbergen
(2011) implemented a high-resolution address point dataset for high
accuracy dasymetric mapping of the population. Wan, Yoon, Srik-
rishnan, Daniel, and Judi (2023) explored the use of landscape metrics
and found that they regularly outperform other traditionally used
ancillary datasets in the dasymetric mapping of the population.

In recent years, dasymetric mapping of population efforts has
leveraged building-level datasets because the distribution of residential
buildings is directly related to population distribution (Boo et al., 2022).
Huang, Wang, Li, and Ning (2021) utilized Microsoft building footprints
dataset and Open Street Map (OSM) land use data to downscale popu-
lation data. In their paper, non-residential buildings in the Microsoft
building footprint were first removed based on OSM land use data, and
then census tract level American Community Survey (ACS) 5-year
population estimates (2013-2017) were redistributed to each corre-
sponding 100-m grid cell in proportion to the Microsoft building area.
The downscaled 100-m population grid cells were then re-aggregated to
block group level for comparison with actual block group population
data from ACS. The accuracy assessment showed that dasymetric map-
ping of population based on Microsoft building footprints could achieve
high population downscaling accuracy when compared with other
traditionally used population downscaling methods. One major limita-
tion of using the Microsoft building footprint in dasymetric mapping is
that it lacks building type information, making the removal of non-
residential buildings a decision guided solely by the OSM land use
data, which suffers from incompleteness and relatively low accuracy.
Another limitation is that it lacks information on building height, which
may not account for the highly urbanized areas dominated by high-rise
buildings.

USA Structures is a recently released nationwide building footprint
dataset. Compared with Microsoft building footprints, USA Structures
provides additional building type and building height information for
some regions, which may serve as valuable information for a better
depiction of population distribution and thus improving population
areal interpolation accuracy. The objective of this paper aims to map
Washington state population projections consistent with three different
SSPs (SSP2, SSP3, and SSP5) from 1-km resolution to block level for
every ten years from 2020 to 2040 based on USA Structures. These block
level population projections are important data input for our larger
project — Grid Operations, Decarbonization, Environmental and Energy
Equity Platform (GODEEEP), which aims at modeling the U.S. energy
system interactions across scales under decarbonization and assessing its
impact on environmental and energy equity. Specifically, population is a
key input in accurately estimating disadvantaged communities (also
referred to as DAC). Recently, DOE Justice40 initiatives defined DAC at
the census tract level across the USA to determine where benefits of
climate and energy investments are or are not currently accruing. By
integrating with our spatial disaggregation work, DAC can be estimated
at a much higher spatial resolution — at the block level.

As accuracy assessment is not feasible for our mapped future popu-
lation projections, assessing the accuracy of population downscaling on
historical data based on USA Structures can provide insights into the
reliability and effectiveness of our mapping approach. Therefore, we
utilized USA Structures to downscale U.S. decennial survey population
data in 2020 and assessed its accuracy under three different downscaling
schemes, including downscaling from census tracts to block groups,
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from census tracts to blocks, and from block groups to blocks. Our aim
was to showcase the capability of USA Structures in mapping population
distributions in our study area, acknowledging the inherent differences
in assessing accuracy between historical population downscaling and
future projected population downscaling.

2. Method
2.1. Study area

Washington state is selected as the study area. According to the U.S.
decennial census in 2020, Washington state has an average population
density of 45 persons/km?, and it consists of both highly urbanized areas
with very high population density and rural areas with very low popu-
lation density. Its broad spectrum of population density could facilitate
the evaluation of USA structures on population downscaling across
different areas with varying population densities and urbanization
extent. Fig. 1 shows the population density at the census tract level for
Washington state in 2020. We classify all the census tracts into low (<
250 persons/kmz), medium (250-1000 persons/kmz), and high (> 1000
persons/kmz) population density areas based on classification thresh-
olds defined in Zandbergen and Ignizio (2010). A barplot showing the
number of census tracts categorized by different population densities is
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also included. According to Fig. 1, Washington state is dominated by low
population density census tracts in terms of land area, with approxi-
mately 97% of total land belonging to low population density census
tracts. High population density census tract constitutes approximately
53% of all the census tracts while 27% and 20% of the census tracts
belong to the medium and low population density categories,
respectively.

2.2. Data

2.2.1. Microsoft building footprints

Microsoft released the Microsoft building footprints dataset in June
2018, which contains >1.29 million building footprint polygon geom-
etries obtained from Bing imagery across the United States. These Bing
images are collected from multiple sources with varying image-
acquisition dates. Some of these images were acquired between 2019
and 2020, and a large portion of them were captured in previous years,
with an averaging year of 2012 approximately. Microsoft building
footprints depict U.S. buildings with a good performance, with a com-
mission error of only 0.7% and an omission error of 6.5% (Microsoft,
2019).

Population Density * ;
(Persons/Km?)

[ ]<250
[ <1,000
B 1000

1000

500

O ™M H

260 Kilometers

Fig. 1. Washington state population density in 2020 by census tract. The barplot on the lower-left corner shows the number of census tracts by population density,
with “L”, “M”, and “H” indicating low population density (< 250 persons/km?), medium population density (250-1000 persons/km?), and high population density

(> 1000 persons/km?) categories.
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2.2.2. USA Structures

USA Structures is the nation’s first comprehensive inventory of all
structures >450 square feet which is jointly developed and recently
released by Department of Homeland Security, Federal Insurance and
Mitigation Administration, Federal Emergency Management Agency’s
Response Geospatial Office, Oak Ridge National Laboratory, and the U.
S. Geological Survey (USA Structures, 2023). However, its accuracy has
not yet been assessed. Compared with Microsoft building footprints
generated from Bing imagery, the USA Structures dataset contains
building polygons extracted from commercially available satellite im-
agery including Maxar’s Worldview 1, 2, and 3 (USA Structures, 2023).
It also provides additional information such as building height derived
from LiDAR and building type (e.g., residential, commercial, industrial
building) derived from multiple sources including Census Housing Unit
data, Homeland Infrastructure Foundation-Level Data, and LightBox
parcel data, though the coverage of the additional information is limited
(USA Structures, 2022). Fig. 2 shows the building height information
coverage for Washington state at the census tract level. Building height
information in Washington state is mainly available in highly urbanized
areas, such as Seattle, Vancouver, and Spokane. Building type infor-
mation can assist with excluding non-residential buildings in USA
Structures and building height information can assist in delineating
population distributions in highly urbanized areas dominated by high-
rise buildings. The two of these, together, can potentially contribute to
increasing population downscaling accuracy.

2.2.3. Open Street Map building footprint and land use parcel data

OSM building footprint is a crowd-sourced dataset (Brovelli &
Zamboni, 2018). It relies on the efforts of volunteers from around the
world who contribute to the dataset by utilizing various data sources
(Hecht, Kunze, & Hahmann, 2013). OSM building footprints are typi-
cally digitized from satellite or aerial imagery, while other data sources
such as GPS surveys, government data, and ground-based mapping may
also be utilized depending on the specific region or contributor’s pref-
erence (Neis & Zielstra, 2014). However, it is relatively incomplete in
rural areas. The OSM land use parcel dataset depicts the land use at-
tributes of each parcel. Both OSM building footprint and land use parcel
data are used to remove non-residential buildings in the building foot-
print dataset.

2.2.4. Population projections consistent with different SSPs at 1-km
resolution

Based on SSP-specific state-level population projections from Jiang
et al. (2020), Zoraghein and O’Neill (2020) produced 1-km resolution
urban and rural population projections using a gravity-based population
downscaling method. This downscaling method redistributes the total
state-level population change to each 1-km grid cell in proportion to its
suitability value, which reflects the grid cell’s potentiality for population
growth. This set of 1-km population projections serve as our projected
population data source for mapping block level population projections.
We have chosen to utilize population projections under SSP2, SSP3, and
SSP5 for mapping future block level populations in Washington state.
Among the five SSPs, SSP3 predicts the lowest population growth in the
U.S. due to low fertility, low international migration, and high mortality
while SSP5 produces the highest population growth due to high fertility,
high international migration, and low mortality (Samir & Lutz, 2017).
SSP2 anticipates a medium level of population growth in the U.S. driven
by medium levels of fertility, mortality, and international migration
(Samir & Lutz, 2017). Selecting these three SSPs for projected popula-
tion mapping enables us to capture the full spectrum of potential pop-
ulation dynamics in our study area as their qualitative assumptions
would produce the widest possible range of population sizes for our
study area (Jiang et al., 2020).

More details about the generation of this 1-km population dataset are
discussed in Zoraghein and O’Neill (2020), and below is a brief
description about the downscaling process. 1-km grid cell urban and
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rural population in 2010 for each state is used as the baseline for pop-
ulation projections. The population projection is a stepwise process and
is done for every decade. For example, the 1-km population projection in
2020 is achieved by updating the 1-km population in 2010 by down-
scaling the state-level population change between the year 2010 and
2020 based on suitability value. The calculation of the suitability value
for a target cell depends on a series of factors, including total population
from neighboring cells, distances between the target cell and neigh-
boring cells, as well as its topographic and land use/land cover char-
acteristics. There are two parameters that govern how the total
population from the neighboring cells and the distance between the
target cell and the neighboring cells influence the suitability value of the
target cell, which determines the spatial pattern of the projected popu-
lation change. These two parameters are uniquely estimated for each
state and each SSP scenario based on the state’s historical estimations
and the spatial pattern of the projected population change associated
with each SSP.

2.3. Data processing

2.3.1. Areal interpolation of population projections based on USA
Structures

Fig. 3 shows the flowchart of data processing for areal interpolation
of population projections based on the USA Structures dataset, and a
picture of areal interpolation is included in the lower left corner. We
noted that some buildings had an erroneously low building height (e.g.,
0.3 m), and we enforced a minimum building height of 4.2 m, which is
the average height of one-story building. All buildings with height <4.2
m were reassigned a height value of 4.2 m.

Before using USA Structures in areal interpolation of population
projections, non-residential buildings need to be removed. We used
three different sets of ancillary information to exclude non-residential
buildings in the dataset. We first removed all non-residential buildings
that were labeled by building type information. Due to the incom-
pleteness of building type information, it is not possible to remove non-
residential buildings completely. Then USA Structures was overlaid with
OSM land use parcel data to mask out all the buildings within non-
residential land use parcels. The third removal step overlaid USA
Structures with OSM building footprints, and all the buildings labeled as
non-residential type based on OSM building attributes were removed.

After removing non-residential buildings, the resulted residential
structures were overlaid with the 1-km fishnet grids, resulting in resi-
dential structure fragments (in picture of areal interpolation), the resi-
dential structure (smaller white polygon) in the middle of the picture
was split into two structure fragments after overlying residential struc-
tures with 1-km fishnet grids). Population projection was redistributed
from each 1-km grid cell to its corresponding residential structure
fragment in proportion to the building area of each structure fragment.
For grid cells where building height information was available, building
volume was used to redistribute the population. If a grid cell contains
structure fragments both with and without height information, then a
height of 4.2 m was assigned to those structure fragments without height
information (structures without height information in USA Structures
were mostly one-story), and building volumes were calculated for pop-
ulation redistribution. After this population redistribution process,
population was then aggregated from residential structure fragments to
block fragment, which was the overlay result between block boundary
and 1-km fishnet grids. In picture representation in Fig. 3, the green
block was split into four block fragments after overlaid with 1-km
fishnet grids. To correct for unusual high population density, an upper
population density threshold is normally applied (Eicher & Brewer,
2001). Population density was calculated for each block fragment, and
we set the 90th percentile block level population density (3690 persons/
km?) from U.S. decennial survey in 2020 as the upper threshold for
population density. For each block fragment with population density
greater than the threshold, excess population was redistributed to its
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Census tract
[ without height information

I with height information 0

65 130 "\\\{ 260 Kilometers

Fig. 2. USA Structures building height information coverage for Washington state at census tract level.

counterparts within the same 1-km fishnet grid. In general, the overflow
of population to each block fragment was in proportion to its area. But if
the population density threshold were reached for any block fragment
receiving the overflow of population, it would stop receiving population
and the excess population that was initially designed to flow to this
block fragment will be redistributed to the remaining fragments which
had not yet reached population density threshold. If all the block frag-
ments have reached the population density, the excess population would
remain in the original block fragment. This population adjustment
ensured the pycnophylactic property of areal interpolation is met, that
the population within each source zone (1-km grid cell) remain the same
after population redistribution. Finally, population projections were
aggregated from block fragment level to block level.

2.3.2. Population downscaling

Population downscaling based on USA Structures or Microsoft
buildings was conducted for three different schemes, including down-
scaling population from census tracts to block groups, from census tracts
to blocks, and from block groups to blocks.

For population downscaling based on USA Structures, building
height reclassification and non-residential buildings removal processes
followed the same procedures as described in areal interpopulation of
population projections. Once completed, population was directly
redistributed from source zone to its corresponding target zones in
proportion to the total building area of each target zone (For areas with
building height information available, redistribution was based on
building volume).

For population downscaling based on Microsoft building footprints,
non-residential buildings were removed based on OSM land use parcel
data and OSM building footprints as described previously. Then

population was directly reassigned from source zones to target zones in
proportion to the total building area of each target zone.

2.4. Accuracy assessment

Accuracy assessments for projected population areal interpolation
results were not possible because we could not obtain true population
data for the future, thus we assessed population downscaling accuracies
for historical population data based on USA Structures in three different
downscaling schemes instead. Accuracies for population downscaling
based on Microsoft building footprints were also assessed for compari-
son purposes.

After population downscaling, Pearson’s correlation value (R%), Root
Mean Square Error (RMSE), Percentage of People Placed Incorrectly
(PPPI]), and Median Absolute Error (MAE) were calculated by
comparing the downscaled population with the ground-truth population
data from U.S. decennial census survey.

We also assessed population downscaling performance by areas with
different population density and impervious cover percentage. We
divided target zones into low (< 250 persons/kmz), medium (250-1000
persons/km?), and high (> 1000 persons/km?) population density areas
according to the population thresholds implemented by Zandbergen and

1 PPPI is calculated as the percentage of the sum of the population difference
between each downscaled population and actual population at the downscaled
resolution over the total actual population divided by 2. The division of 2
considers the fact that one incorrectly placed person would result in one person
increase in the targeted block where it is incorrectly placed, and one person
decrease in the block where it should reside.
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Fig. 3. Flowchart of data processing. A picture of areal interpolation is included in the lower left corner, with different colors of polygons representing different block

and smaller white rectangles represent residential structures.

Ignizio (2010). We adopted the NLCD urban category classification
strategy with minor adjustment and reclassified each target zone into
non-urban (< 20% impervious cover), low-intensity urban (20-49%
impervious cover), medium-intensity urban (50-79% impervious
cover), and high-intensity urban (> 80% impervious cover) categories
(Wan et al., 2023).

To explore whether height information contributes to a higher
population downscaling accuracy, we also compared accuracy across
two groups, one group with height information available in the USA
Structures and the other without height information.

3. Results
3.1. Areal interpolation of population projections

Block level urban/rural/total population projections in Washington
state under SSP2, SSP3, and SSP5 for every ten years from 2020 to 2040
were areal interpolated from 1-km grid cell population projections based
on the USA Structures dataset. The data can be downloaded at doi:
https://doi.org/10.5281/zenodo.7406280

3.2. Accuracy assessment for population downscaling

Table 2 shows accuracy assessment results for three different popu-
lation downscaling schemes, namely census tract level to block group

Table 2

Population downscaling accuracy results for three different downscaling
schemes. Note: PPPI represents Percentage of People Placed Incorrectly; MAPE
represents Median Absolute Percentage Error.

USA Structures MS buildings
R? PPPI MAPE R? PPPI MAPE
Census tract to
block group 0.60 8.30% 12.08% 0.57 8.74% 12.63%
Census tract to
block 0.71 19.00% 36.17% 0.68 20.41% 36.54%
Block group to
block 0.80 16.66% 33.33% 0.78 17.84% 34.07%

level, census tract level to block level, and block group level to block
level, based on USA Structures and Microsoft building footprints,
respectively. According to Huang et al. (2021), Microsoft building
footprints have a high correlation with population distribution and can
therefore be used to achieve high accuracy population downscaling.
Based on Table 2, USA Structures dataset achieved better accuracy than
Microsoft building footprints for all the three population downscaling
schemes within Washington state, though the improvements were not
dramatic. This result showed that USA Structures could be used for
achieving population downscaling with high accuracy within our spe-
cific study area. We noticed that downscaling population from census


https://doi.org/10.5281/zenodo.7406280

H. Wan et al

tract level to block group level had the highest accuracy (PPPI value of
8.3%) while census tract level to block level had the lowest accuracy
(PPPI value of 19%). This might be because the former scheme has fewer
average target zones per source zone than the latter scheme, as one
census tract generally has only several block groups while one census
tract could contain over one hundred blocks.

Table 3 shows population downscaling accuracy by areas with
different population density and impervious cover percentage, and only
PPPI is included as the assessing metric for simplicity. Based on Table 3,
we observed that both USA Structures and Microsoft building footprints
achieved comparably high accuracy across different population density
and impervious cover percentage categories when downscaling popu-
lation from census tract level to block group level. As for population
downscaling scheme from census tracts to blocks and from block groups
to blocks, both datasets had a much inferior performance in low popu-
lation density category (< 250 persons/km?) and low impervious cover
percentage category (< 20%), which were dominated by rural areas.
This fact coincided with the finding from Zandbergen and Ignizio (2010)
that small areal population estimation accuracy generally increases with
the increase of population density due to more heterogenous population
distribution in rural areas compared to urban areas.

Table 4 shows the PPPI values for groups with and without height
information for the two datasets, respectively. We observed that the
group without height information outperformed the group with height
information across three different population downscaling schemes and
two different datasets. Areas with height information were mostly
characterized by high-rise buildings, which added complexity to popu-
lation distribution patterns and thus resulted in a lower accuracy.
Additional height information from USA Structures did not provide a
large improvement for population downscaling. This may be because the
census tracts were designed to be relatively homogeneous in terms of
population characteristics and living conditions (Clapp & Wang, 2006).
Due to the intrinsic homogeneity of census tract, buildings within the
same census tract tend to have similar height values, making the height
information less useful when redistributing population based on build-
ing volume.

Fig. 4a and b show the state-wide percentage error between the
estimated and actual block group population for population down-
scaling from census tract level to block group level based on USA
Structures and Microsoft building footprints, respectively. According to
Fig. 4, we found that both datasets achieved high population down-
scaling accuracy for the majority of the block groups (with error per-
centage between —10% and 10%). We also noticed that severe over
estimation of population happened mainly in rural areas, commercial
and industrial areas for both datasets, but USA Structures was less prone
to overestimate the population in these areas. One possible explanation
is USA Structures depicts buildings more accurately than Microsoft
building footprints in Washington state.

Fig. 5 shows the percentage of block group count over the total
number of block groups by different categories of error percentage be-
tween estimated and actual block group population for population

Table 3
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Table 4

Percent of People Placed Incorrectly (PPPI) values for three different population
downscaling schemes categorized by areas with USA Structures height infor-
mation and areas without height information (Note: “n” is the number of target
zones (i.e., block group, or block) in each category).

With height Without height
Census tract to block group n=1280 n = 4019
USA Structures 8.71% 8.16%
Microsoft Buildings 9.00% 8.65%
Census tract to block n = 32,250 n= 121,958
USA Structures 20.48% 18.53%
Microsoft Buildings 21.89% 19.93%
Block group to block n = 32,250 n = 121,958
USA Structures 18.00% 16.23%
Microsoft Buildings 19.18% 17.40%

downscaling from census tract to block group. Compared with Microsoft
building footprints, USA Structures resulted in less block group count
percentage in both severe overestimation (50% ~ 100%, and > 100%)
and underestimation (—100% ~ —50%, and — 50% ~ —30%) categories
while higher block group count percentage in error percentage category
of —10% ~ 10%. This demonstrates that USA Structures outperforms
Microsoft building footprints for severe overestimation and underesti-
mation of population in our study area.

4. Novelties and limitations

To the best of our knowledge, this is the first study which explores
the possibility of incorporating the recently released building footprint
dataset, USA structures, in population areal interpolation. We also
assessed whether the additional building height information could help
improve population downscaling accuracy, which has not been
researched before due to the lack of height information in other
nationwide building footprints datasets. This study also contributes to
high-resolution (block level) population projections across different
SSPs for Washington state for every ten years from 2020 to 2040.

One major limitation of this study is that we used current building
footprints to areal interpolate future population projections, which
could cause some problems due to time inconsistency between popula-
tion data and building footprints data. One solution is to model building
footprints projection, which is correlated with land use land cover
change prediction, to the year consistent with the targeted population
projection data, and then use the projected building footprints to
conduct population projection areal interpolation. However, this step
wouldn’t increase accuracy in our implementation of population pro-
jection areal interpolation. This is because in this study, the 1-km res-
olution population projections that served as the source population data
were obtained through a gravity-based population downscaling model,
which had already considered future land use land cover change infor-
mation at 1-km resolution. When conducting areal interpolation of
population projections from 1-km grid cells to blocks in rural areas, it is

Percent of People Placed Incorrectly (PPPI) values for three different population downscaling schemes categorized by different population density and impervious

cover percentage (Note: “n”

is the number of target zones (i.e., block group, or block) in each category).

Population density (persons/km?)

Impervious cover percentage

< 250 250-1000 > 1000 < 20% 20% ~ 49% 50% ~ 79% > 80%
Census tract to block group n=1227 n =990 n = 3082 n=775 n=675 n =838 n=3011
USA Structures 8.53% 8.13% 8.27% 8.16% 7.98% 8.03% 8.47%
MS Buildings 9.26% 8.81% 8.52% 8.63% 8.26% 8.26% 9.01%
Census tract to block n = 74,751 n=16,573 n = 62,884 n = 39,830 n = 14,958 n=11,245 n = 88,175
USA Structures 34.48% 17.86% 15.86% 24.58% 18.87% 18.39% 18.46%
MS Buildings 40.92% 19.95% 16.01% 25.79% 19.26% 19.81% 20.01%
Block group to block n = 74,751 n = 16,573 n = 62,884 n = 39,830 n = 14,958 n = 11,245 n = 88,175
USA Structures 30.43% 16.00% 13.79% 22.02% 16.61% 15.22% 16.27%
MS Buildings 35.37% 17.88% 13.98% 23.06% 17.00% 16.59% 17.52%
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Fig. 4. Error percentage between estimated and actual block group population
for population downscaling from census tract level to block group level.
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not necessary to consider the newly constructed buildings (or land use
land cover change) in the future since rural blocks are much larger than
1-km grid cell in terms of area, thus areal interpolation of population is
achieved by simply aggregating populations from all the grid cells
within each block. For the urban core areas, blocks are much smaller
than 1-km grid cell, and areal interpolation of population projection
requires disaggregating source zone population to each building.
Meanwhile, these urban center grid cells are highly urbanized, and
newly constructed buildings from a non-urban land cover is rare.
Therefore, it is reasonable to use the current building footprints distri-
bution to approximate the future building footprints distribution when
conducting areal interpolation of population projections. It is those
suburb blocks where they are smaller than 1-km grid cell and contain
large quantity of open space for the new construction of buildings that
require predicting future building constructions to help achieve a better
areal interpolation of population projections. But the improvement of
accuracy is only under the circumstance of having a high accuracy
building footprints projection, which is hard to model and so far, does
not exist for the study area. In this study, areal interpolations of popu-
lation projections for these suburb areas from 1-km grid cells to block
level using current building footprint datasets rely on the assumption
that future building constructions in each 1-km grid cell are equally
distributed. Moreover, as a developed country, U.S. now has a relatively
low urbanization rate and is projected to keep this trend in the next
couple decades (Chen, Zhang, Liu, & Zhang, 2014; Hsieh, 2014). Thus,
we are more confident to use the current building footprints distribution
to approximate the distribution of future building footprints projections
as our projected years are not far into the future (i.e., 2020-2040).
Future research should consider implementing projected building foot-
prints for the areal interpolation of population projections if such
dataset is produced with high accuracy.

Another limitation is that USA Structures does not include buildings
<450 square feet, thus certain residential building type (i.e., recrea-
tional vehicle park) is not represented. As recreational vehicle park
typically houses a high proportion of low-income residents, and its
importance is increasing in population distribution depiction and pop-
ulation downscaling field, future work should consider incorporating a
recreational vehicle park dataset with USA Structures to improve pop-
ulation downscaling accuracy.

5. Conclusions and discussions

We conducted areal interpolations of Washington state population
projections under different SSPs for every ten years from 2020 to 2040
from 1-km grid cells to block level based on USA Structures, which
serves as U.S.’s first national inventory of structures. To assess the
capability of USA Structures in mapping population distributions in our
study area, population downscaling accuracy based on USA Structures
was assessed based on US decennial survey in 2020 under three different
downscaling schemes, namely downscaling population from census tract
to block groups, from census tract to block, and from block group to
block. Its accuracy was compared with that of Microsoft building foot-
prints dataset, which had been proven to be robust and accurate in
population estimation and downscaling. We found that population
downscaling performance was inferior in low population density areas
for both building footprints datasets across three population down-
scaling schemes, which could be explained by a more heterogeneous
population distribution in rural areas when compared with urban areas.
Further comparison between the two datasets revealed that USA Struc-
tures outperformed Microsoft building footprints in our study area,
which may be due to its more accurate depiction of the US buildings in
Washington state and additional building type information used for
filtering out non-residential buildings. Compared with Microsoft build-
ing footprints, USA Structures contains additional height information for
some highly urbanized areas, but our study found that this additional
height information did not contribute in improving the accuracy. One
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Fig. 5. Bar plot for the percentage of block group count over the total number of block groups by different categories of error percentage between estimated and
actual block group population for population downscaling from census tract to block group.

possible explanation could be attributed to the data quality as we are
unaware of the potential errors or inaccuracies in the building height
data. Conducting a comprehensive accuracy assessment of the building
height data in the future would provide valuable insights and help
address this question effectively. Another possible explanation is due to
the homogeneity of the census tracts in terms of building characteristics.
Even though height information did not have a significant impact on all
the three population downscaling schemes, we could not conclude it was
not useful for mapping population distributions. If the source zone does
not follow a census administrative unit boundary, buildings within the
source zone would have much less homogeneity, potentially making
height information more valuable for population downscaling. For
example, in our implementation of areal interpolations of population
projections from 1-km resolution to block level, the source zones are 1-
km grid cells, and each grid cell could arbitrarily contain buildings with
varying heights. Under this circumstance, building height information
provides additional valuable information for mapping population dis-
tribution and is thus promising to improve areal interpolation accuracy.
Future research should compare model accuracy with and without using
height information for population downscaling schemes where source
zones are more heterogenous in building characteristics.

To improve population downscaling accuracies, OSM land use data
and OSM building footprints data were used as ancillary dataset to
remove non-residential buildings contained in both USA Structures and
Microsoft building footprints. However, due to its crowed-sourced
characteristic, OSM data suffer from low accuracy and severe incom-
pleteness. Therefore, the removal of non-residential buildings based on
OSM was not complete, and the remaining non-residential buildings
could heavily impact population downscaling accuracy. Compared with
Microsoft building footprints, USA Structures provides additional
building type information, which was further used for the removal of
non-residential buildings in this dataset. However, its building type in-
formation is also highly incomplete and thus could not fully remove all
the non-residential buildings. Future research should incorporate more
accurate and complete building type information when using building
footprints for the areal interpolation of population.

Our study contributes to high spatial (block level) and temporal (for
every ten years) resolution population projections for the state of
Washington from 2020 to 2040. These population projections are
consistent with three different SSPs (SSP2, SSP3, and SSP5), producing a

comprehensive range of population changes within our study area. As a
result, they hold significant value in informing various aspects of urban
planning, transportation, healthcare, and emergency management. With
a more detailed understanding of future population distribution, poli-
cymakers could make informed decisions regarding disaster prevention,
resource allocation, infrastructure development, and service provision
at local scales.

As building footprint datasets incorporate more ancillary informa-
tion, such as building type and building height, their role in depicting
population distribution becomes increasingly important. By utilizing the
USA Structures dataset for areal interpolation of population projections
and incorporating ancillary data like building type and building height,
our study has the potential to inspire researchers to explore similar
methodologies for mapping population distribution by integrating
building footprints with diverse data sources. Additionally, our
approach of integrating ancillary data and building footprints can
encourage interdisciplinary collaboration among researchers from fields
such as demography, urban planning, data science, and geography. This
collaborative effort may result in the development of innovative meth-
odologies, improved modeling techniques, and a more comprehensive
understanding of population distribution.
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