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A B S T R A C T   

Population data are normally collected at various census administrative levels, and areal interpolation of pop
ulation is often required to transform population to the desired spatial resolution. Building footprint datasets, 
such as Microsoft building footprints, have proven to be useful in estimating population distribution and can 
therefore be used for areal interpolation of population. In addition to Microsoft building footprints, the recently 
released USA Structures dataset provides additional information such as building type and building height for 
some regions, which may provide valuable information for a better depiction of population distribution and 
improved population areal interpolation accuracy. In this study, we have conducted areal interpolation of 
population projections consistent with three different Shared Socioeconomic Pathways (SSP2, SSP3, and SSP5) 
from 1-km grid cells to block level in Washington state for every ten years from 2020 to 2040 based on USA 
Structures. We assessed USA Structures-based population downscaling accuracy using U.S. decennial survey data 
in 2020 under three different downscaling schemes, including population downscaling from census tracts to 
block groups, from census tracts to blocks, and from block groups to blocks. The resulting accuracies were 
compared with those based on Microsoft building footprints. The comparison showed that USA Structures 
achieved higher accuracies across different population density regions and areas with different urbanization 
extent within our study area.   

1. Introduction 

Projected population data are an essential data input in numerous 
research questions that target future predictions, such as future eco
nomic modeling, disaster prevention, urban design, environmental 
modeling, etc. (Brecht, Dasgupta, Laplante, Murray, & Wheeler, 2012; 
Chen, Paltsev, Reilly, Morris, & Babiker, 2016; Georgescu, Morefield, 
Bierwagen, & Weaver, 2014; Riordan and Rundel, 2014). Projected 
population is often produced at national level (Gerland et al., 2014). For 
example, Samir and Lutz (2017) produced population projections for 
195 countries under five different Shared Socioeconomic Pathways 
(SSPs). These SSPs represent five plausible socioeconomic global change 
scenarios developed by the climate research community to facilitate 
comprehensive analysis of future climate impacts, vulnerabilities, 

adaptation, and mitigation (Riahi et al., 2017). Table 1 shows the 
summary of each SSPs. SSP1 represents a sustainability scenario guided 
by environmentally conscious development strategies while SSP2 por
trays a middle-of-the-road scenario, reflecting moderate socioeconomic 
and environmental changes. SSP3 depicts a regional rivalry scenario 
highlighting geopolitical tensions and fragmented development while 
SSP4 presents an inequality scenario, focusing on high disparities and 
limited social cohesion. SSP5 is a fossil-fueled development scenario, 
characterized by extensive reliance on fossil fuels and limited environ
mental regulations (O’Neill et al., 2017). The global population pro
jections differ among the SSPs. SSP1 and SSP5 have the lowest projected 
population of around 7 billion people by 2100, while SSP3 has the 
highest projection of 12.5 billion by 2100. SSP2 and SSP4 show a me
dium projected population of around 9.4 billion people (Riahi et al., 
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2017). 
Besides national-level, some subnational population projections also 

are produced to capture the regional heterogeneity in demographic 
processes and its corresponding outcomes (Wilson & Bell, 2004; Zor
aghein & O’Neill, 2020). In Europe, Eurostat regularly produces regional 
population projections, and the most recent release is based on 2019 
data (Buettner, 2022; Rees, Van Der Gaag, De Beer, & Heins, 2012; Van 
der Gaag, Van Imhoff, & Van Wissen, 2000). In China, provincial pop
ulation projections have been estimated under different SSPs from 2010 
to 2100 (Chen et al., 2020). 

However, in the United States, state level population projections are 
not routinely produced or updated, even as the demand for sub-national 
population projections is increasing. While some states produce their 
own version of state-level population projections, the projected time is 
relatively short (typically only covering the following 10 to 20 years), 
and the implemented methods and underlying assumptions vary from 
state to state (Jiang, O’Neill, Zoraghein, & Dahlke, 2020). 

To address the lack of a long-term state-level population projection 
with a national consensus on method and assumption, Jiang et al. 
(2020), relied on a cohort-component population projection model 
extended for multiregional demography to produce the very first set of 
such population projections for each state across different SSPs. In their 
method, state-level population projections were updated based on a 
modified national-level population projection, by considering different 
migration patterns between states across different gender and age 
groups. The modified national-level population projection accounts for 
updated demographic data and a more realistic long-term international 
migration mechanism consistent with the historical experience in the U. 
S. Population projections finer than the state level have also been pro
duced for the U.S. For example, Hauer (2019) estimated U.S. population 
projections at county level by age, sex, and race across different SSPs. 
Zoraghein and O’Neill (2020) downscaled state-level population pro
jections from Jiang et al. (2020) to 1-km resolution using a gravity-based 
population downscaling method. 

Despite the existence of population data at different spatial resolu
tions, however, the data may still not match the spatial resolution 
required by the research (Merkle et al., 2022; Van Vuuren, Smith, & 
Riahi, 2010). To obtain the population data at the desired spatial reso
lution, it is imperative to transfer population data from one set of spatial 
units (source zones) to another (target zones), which is defined as areal 
interpolation process (Eicher & Brewer, 2001). 

The simplest areal interpolation method is simple areal weighting, 
which directly redistributes population from the source zone to its cor
responding target zones in proportion to the areas of the target zones 
(Goodchild, Anselin, & Deichmann, 1993). The limitation of simple 
areal weighting is that it assumes the population distribution is uniform 
across the study area, which is often not accurate (Sadahiro, 1999). 
Dasymetric mapping is another commonly used areal interpolation 
method, which disaggregates population to finer spatial units based on 
ancillary dataset (Eicher & Brewer, 2001; Zandbergen & Ignizio, 2010). 

Land cover data derived from satellite imagery are the mostly commonly 
used ancillary data in dasymetric mapping (Cartagena-Colón, Mattei, & 
Wang, 2022; Mennis, 2009). Other commonly used datasets include 
imperviousness, road networks, nighttime lights, etc. (Li & Zhou, 2018; 
Swanwick et al., 2022; Zandbergen & Ignizio, 2010). Due to its flexi
bility for the selection of ancillary datasets, in recent studies, dasymetric 
mapping has incorporated some novel data as ancillary datasets. For 
example, Wan, Yoon, Srikrishnan, Daniel, and Judi (2022) adopted 
settlement-related U.S. property data as an ancillary dataset and ach
ieved comparatively high population downscaling accuracy when 
compared with other traditionally used ancillary datasets. Zandbergen 
(2011) implemented a high-resolution address point dataset for high 
accuracy dasymetric mapping of the population. Wan, Yoon, Srik
rishnan, Daniel, and Judi (2023) explored the use of landscape metrics 
and found that they regularly outperform other traditionally used 
ancillary datasets in the dasymetric mapping of the population. 

In recent years, dasymetric mapping of population efforts has 
leveraged building-level datasets because the distribution of residential 
buildings is directly related to population distribution (Boo et al., 2022). 
Huang, Wang, Li, and Ning (2021) utilized Microsoft building footprints 
dataset and Open Street Map (OSM) land use data to downscale popu
lation data. In their paper, non-residential buildings in the Microsoft 
building footprint were first removed based on OSM land use data, and 
then census tract level American Community Survey (ACS) 5-year 
population estimates (2013–2017) were redistributed to each corre
sponding 100-m grid cell in proportion to the Microsoft building area. 
The downscaled 100-m population grid cells were then re-aggregated to 
block group level for comparison with actual block group population 
data from ACS. The accuracy assessment showed that dasymetric map
ping of population based on Microsoft building footprints could achieve 
high population downscaling accuracy when compared with other 
traditionally used population downscaling methods. One major limita
tion of using the Microsoft building footprint in dasymetric mapping is 
that it lacks building type information, making the removal of non- 
residential buildings a decision guided solely by the OSM land use 
data, which suffers from incompleteness and relatively low accuracy. 
Another limitation is that it lacks information on building height, which 
may not account for the highly urbanized areas dominated by high-rise 
buildings. 

USA Structures is a recently released nationwide building footprint 
dataset. Compared with Microsoft building footprints, USA Structures 
provides additional building type and building height information for 
some regions, which may serve as valuable information for a better 
depiction of population distribution and thus improving population 
areal interpolation accuracy. The objective of this paper aims to map 
Washington state population projections consistent with three different 
SSPs (SSP2, SSP3, and SSP5) from 1-km resolution to block level for 
every ten years from 2020 to 2040 based on USA Structures. These block 
level population projections are important data input for our larger 
project – Grid Operations, Decarbonization, Environmental and Energy 
Equity Platform (GODEEEP), which aims at modeling the U.S. energy 
system interactions across scales under decarbonization and assessing its 
impact on environmental and energy equity. Specifically, population is a 
key input in accurately estimating disadvantaged communities (also 
referred to as DAC). Recently, DOE Justice40 initiatives defined DAC at 
the census tract level across the USA to determine where benefits of 
climate and energy investments are or are not currently accruing. By 
integrating with our spatial disaggregation work, DAC can be estimated 
at a much higher spatial resolution – at the block level. 

As accuracy assessment is not feasible for our mapped future popu
lation projections, assessing the accuracy of population downscaling on 
historical data based on USA Structures can provide insights into the 
reliability and effectiveness of our mapping approach. Therefore, we 
utilized USA Structures to downscale U.S. decennial survey population 
data in 2020 and assessed its accuracy under three different downscaling 
schemes, including downscaling from census tracts to block groups, 

Table 1 
Summary of SSPs.  

Scenarios Summary Projected 
population by 2100 

SSP1 Sustainability scenario: environmentally 
conscious development strategy 

7 billion 

SSP2 
Middle of the Road scenario: moderate 
socioeconomic and environmental changes 9.4 billion 

SSP3 
Regional Rivalry scenario: geopolitical tensions 
and fragmented development 

12.5 billion 

SPP4 Inequality scenario: high disparities and limited 
social cohesion 

9.4 billion 

SSP5 
Fossil-fueled Development scenario: extensive 
reliance on fossil fuels and limited 
environmental regulations 

7 billion  
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from census tracts to blocks, and from block groups to blocks. Our aim 
was to showcase the capability of USA Structures in mapping population 
distributions in our study area, acknowledging the inherent differences 
in assessing accuracy between historical population downscaling and 
future projected population downscaling. 

2. Method 

2.1. Study area 

Washington state is selected as the study area. According to the U.S. 
decennial census in 2020, Washington state has an average population 
density of 45 persons/km2, and it consists of both highly urbanized areas 
with very high population density and rural areas with very low popu
lation density. Its broad spectrum of population density could facilitate 
the evaluation of USA structures on population downscaling across 
different areas with varying population densities and urbanization 
extent. Fig. 1 shows the population density at the census tract level for 
Washington state in 2020. We classify all the census tracts into low (<
250 persons/km2), medium (250–1000 persons/km2), and high (> 1000 
persons/km2) population density areas based on classification thresh
olds defined in Zandbergen and Ignizio (2010). A barplot showing the 
number of census tracts categorized by different population densities is 

also included. According to Fig. 1, Washington state is dominated by low 
population density census tracts in terms of land area, with approxi
mately 97% of total land belonging to low population density census 
tracts. High population density census tract constitutes approximately 
53% of all the census tracts while 27% and 20% of the census tracts 
belong to the medium and low population density categories, 
respectively. 

2.2. Data 

2.2.1. Microsoft building footprints 
Microsoft released the Microsoft building footprints dataset in June 

2018, which contains >1.29 million building footprint polygon geom
etries obtained from Bing imagery across the United States. These Bing 
images are collected from multiple sources with varying image- 
acquisition dates. Some of these images were acquired between 2019 
and 2020, and a large portion of them were captured in previous years, 
with an averaging year of 2012 approximately. Microsoft building 
footprints depict U.S. buildings with a good performance, with a com
mission error of only 0.7% and an omission error of 6.5% (Microsoft, 
2019). 

Fig. 1. Washington state population density in 2020 by census tract. The barplot on the lower-left corner shows the number of census tracts by population density, 
with “L”, “M”, and “H” indicating low population density (< 250 persons/km2), medium population density (250–1000 persons/km2), and high population density 
(> 1000 persons/km2) categories. 
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2.2.2. USA Structures 
USA Structures is the nation’s first comprehensive inventory of all 

structures >450 square feet which is jointly developed and recently 
released by Department of Homeland Security, Federal Insurance and 
Mitigation Administration, Federal Emergency Management Agency’s 
Response Geospatial Office, Oak Ridge National Laboratory, and the U. 
S. Geological Survey (USA Structures, 2023). However, its accuracy has 
not yet been assessed. Compared with Microsoft building footprints 
generated from Bing imagery, the USA Structures dataset contains 
building polygons extracted from commercially available satellite im
agery including Maxar’s Worldview 1, 2, and 3 (USA Structures, 2023). 
It also provides additional information such as building height derived 
from LiDAR and building type (e.g., residential, commercial, industrial 
building) derived from multiple sources including Census Housing Unit 
data, Homeland Infrastructure Foundation-Level Data, and LightBox 
parcel data, though the coverage of the additional information is limited 
(USA Structures, 2022). Fig. 2 shows the building height information 
coverage for Washington state at the census tract level. Building height 
information in Washington state is mainly available in highly urbanized 
areas, such as Seattle, Vancouver, and Spokane. Building type infor
mation can assist with excluding non-residential buildings in USA 
Structures and building height information can assist in delineating 
population distributions in highly urbanized areas dominated by high- 
rise buildings. The two of these, together, can potentially contribute to 
increasing population downscaling accuracy. 

2.2.3. Open Street Map building footprint and land use parcel data 
OSM building footprint is a crowd-sourced dataset (Brovelli & 

Zamboni, 2018). It relies on the efforts of volunteers from around the 
world who contribute to the dataset by utilizing various data sources 
(Hecht, Kunze, & Hahmann, 2013). OSM building footprints are typi
cally digitized from satellite or aerial imagery, while other data sources 
such as GPS surveys, government data, and ground-based mapping may 
also be utilized depending on the specific region or contributor’s pref
erence (Neis & Zielstra, 2014). However, it is relatively incomplete in 
rural areas. The OSM land use parcel dataset depicts the land use at
tributes of each parcel. Both OSM building footprint and land use parcel 
data are used to remove non-residential buildings in the building foot
print dataset. 

2.2.4. Population projections consistent with different SSPs at 1-km 
resolution 

Based on SSP-specific state-level population projections from Jiang 
et al. (2020), Zoraghein and O’Neill (2020) produced 1-km resolution 
urban and rural population projections using a gravity-based population 
downscaling method. This downscaling method redistributes the total 
state-level population change to each 1-km grid cell in proportion to its 
suitability value, which reflects the grid cell’s potentiality for population 
growth. This set of 1-km population projections serve as our projected 
population data source for mapping block level population projections. 
We have chosen to utilize population projections under SSP2, SSP3, and 
SSP5 for mapping future block level populations in Washington state. 
Among the five SSPs, SSP3 predicts the lowest population growth in the 
U.S. due to low fertility, low international migration, and high mortality 
while SSP5 produces the highest population growth due to high fertility, 
high international migration, and low mortality (Samir & Lutz, 2017). 
SSP2 anticipates a medium level of population growth in the U.S. driven 
by medium levels of fertility, mortality, and international migration 
(Samir & Lutz, 2017). Selecting these three SSPs for projected popula
tion mapping enables us to capture the full spectrum of potential pop
ulation dynamics in our study area as their qualitative assumptions 
would produce the widest possible range of population sizes for our 
study area (Jiang et al., 2020). 

More details about the generation of this 1-km population dataset are 
discussed in Zoraghein and O’Neill (2020), and below is a brief 
description about the downscaling process. 1-km grid cell urban and 

rural population in 2010 for each state is used as the baseline for pop
ulation projections. The population projection is a stepwise process and 
is done for every decade. For example, the 1-km population projection in 
2020 is achieved by updating the 1-km population in 2010 by down
scaling the state-level population change between the year 2010 and 
2020 based on suitability value. The calculation of the suitability value 
for a target cell depends on a series of factors, including total population 
from neighboring cells, distances between the target cell and neigh
boring cells, as well as its topographic and land use/land cover char
acteristics. There are two parameters that govern how the total 
population from the neighboring cells and the distance between the 
target cell and the neighboring cells influence the suitability value of the 
target cell, which determines the spatial pattern of the projected popu
lation change. These two parameters are uniquely estimated for each 
state and each SSP scenario based on the state’s historical estimations 
and the spatial pattern of the projected population change associated 
with each SSP. 

2.3. Data processing 

2.3.1. Areal interpolation of population projections based on USA 
Structures 

Fig. 3 shows the flowchart of data processing for areal interpolation 
of population projections based on the USA Structures dataset, and a 
picture of areal interpolation is included in the lower left corner. We 
noted that some buildings had an erroneously low building height (e.g., 
0.3 m), and we enforced a minimum building height of 4.2 m, which is 
the average height of one-story building. All buildings with height <4.2 
m were reassigned a height value of 4.2 m. 

Before using USA Structures in areal interpolation of population 
projections, non-residential buildings need to be removed. We used 
three different sets of ancillary information to exclude non-residential 
buildings in the dataset. We first removed all non-residential buildings 
that were labeled by building type information. Due to the incom
pleteness of building type information, it is not possible to remove non- 
residential buildings completely. Then USA Structures was overlaid with 
OSM land use parcel data to mask out all the buildings within non- 
residential land use parcels. The third removal step overlaid USA 
Structures with OSM building footprints, and all the buildings labeled as 
non-residential type based on OSM building attributes were removed. 

After removing non-residential buildings, the resulted residential 
structures were overlaid with the 1-km fishnet grids, resulting in resi
dential structure fragments (in picture of areal interpolation), the resi
dential structure (smaller white polygon) in the middle of the picture 
was split into two structure fragments after overlying residential struc
tures with 1-km fishnet grids). Population projection was redistributed 
from each 1-km grid cell to its corresponding residential structure 
fragment in proportion to the building area of each structure fragment. 
For grid cells where building height information was available, building 
volume was used to redistribute the population. If a grid cell contains 
structure fragments both with and without height information, then a 
height of 4.2 m was assigned to those structure fragments without height 
information (structures without height information in USA Structures 
were mostly one-story), and building volumes were calculated for pop
ulation redistribution. After this population redistribution process, 
population was then aggregated from residential structure fragments to 
block fragment, which was the overlay result between block boundary 
and 1-km fishnet grids. In picture representation in Fig. 3, the green 
block was split into four block fragments after overlaid with 1-km 
fishnet grids. To correct for unusual high population density, an upper 
population density threshold is normally applied (Eicher & Brewer, 
2001). Population density was calculated for each block fragment, and 
we set the 90th percentile block level population density (3690 persons/ 
km2) from U.S. decennial survey in 2020 as the upper threshold for 
population density. For each block fragment with population density 
greater than the threshold, excess population was redistributed to its 
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counterparts within the same 1-km fishnet grid. In general, the overflow 
of population to each block fragment was in proportion to its area. But if 
the population density threshold were reached for any block fragment 
receiving the overflow of population, it would stop receiving population 
and the excess population that was initially designed to flow to this 
block fragment will be redistributed to the remaining fragments which 
had not yet reached population density threshold. If all the block frag
ments have reached the population density, the excess population would 
remain in the original block fragment. This population adjustment 
ensured the pycnophylactic property of areal interpolation is met, that 
the population within each source zone (1-km grid cell) remain the same 
after population redistribution. Finally, population projections were 
aggregated from block fragment level to block level. 

2.3.2. Population downscaling 
Population downscaling based on USA Structures or Microsoft 

buildings was conducted for three different schemes, including down
scaling population from census tracts to block groups, from census tracts 
to blocks, and from block groups to blocks. 

For population downscaling based on USA Structures, building 
height reclassification and non-residential buildings removal processes 
followed the same procedures as described in areal interpopulation of 
population projections. Once completed, population was directly 
redistributed from source zone to its corresponding target zones in 
proportion to the total building area of each target zone (For areas with 
building height information available, redistribution was based on 
building volume). 

For population downscaling based on Microsoft building footprints, 
non-residential buildings were removed based on OSM land use parcel 
data and OSM building footprints as described previously. Then 

population was directly reassigned from source zones to target zones in 
proportion to the total building area of each target zone. 

2.4. Accuracy assessment 

Accuracy assessments for projected population areal interpolation 
results were not possible because we could not obtain true population 
data for the future, thus we assessed population downscaling accuracies 
for historical population data based on USA Structures in three different 
downscaling schemes instead. Accuracies for population downscaling 
based on Microsoft building footprints were also assessed for compari
son purposes. 

After population downscaling, Pearson’s correlation value (R2), Root 
Mean Square Error (RMSE), Percentage of People Placed Incorrectly 
(PPPI1), and Median Absolute Error (MAE) were calculated by 
comparing the downscaled population with the ground-truth population 
data from U.S. decennial census survey. 

We also assessed population downscaling performance by areas with 
different population density and impervious cover percentage. We 
divided target zones into low (< 250 persons/km2), medium (250–1000 
persons/km2), and high (> 1000 persons/km2) population density areas 
according to the population thresholds implemented by Zandbergen and 

Fig. 2. USA Structures building height information coverage for Washington state at census tract level.  

1 PPPI is calculated as the percentage of the sum of the population difference 
between each downscaled population and actual population at the downscaled 
resolution over the total actual population divided by 2. The division of 2 
considers the fact that one incorrectly placed person would result in one person 
increase in the targeted block where it is incorrectly placed, and one person 
decrease in the block where it should reside. 
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Ignizio (2010). We adopted the NLCD urban category classification 
strategy with minor adjustment and reclassified each target zone into 
non-urban (< 20% impervious cover), low-intensity urban (20–49% 
impervious cover), medium-intensity urban (50–79% impervious 
cover), and high-intensity urban (≥ 80% impervious cover) categories 
(Wan et al., 2023). 

To explore whether height information contributes to a higher 
population downscaling accuracy, we also compared accuracy across 
two groups, one group with height information available in the USA 
Structures and the other without height information. 

3. Results 

3.1. Areal interpolation of population projections 

Block level urban/rural/total population projections in Washington 
state under SSP2, SSP3, and SSP5 for every ten years from 2020 to 2040 
were areal interpolated from 1-km grid cell population projections based 
on the USA Structures dataset. The data can be downloaded at doi: 
https://doi.org/10.5281/zenodo.7406280 

3.2. Accuracy assessment for population downscaling 

Table 2 shows accuracy assessment results for three different popu
lation downscaling schemes, namely census tract level to block group 

level, census tract level to block level, and block group level to block 
level, based on USA Structures and Microsoft building footprints, 
respectively. According to Huang et al. (2021), Microsoft building 
footprints have a high correlation with population distribution and can 
therefore be used to achieve high accuracy population downscaling. 
Based on Table 2, USA Structures dataset achieved better accuracy than 
Microsoft building footprints for all the three population downscaling 
schemes within Washington state, though the improvements were not 
dramatic. This result showed that USA Structures could be used for 
achieving population downscaling with high accuracy within our spe
cific study area. We noticed that downscaling population from census 

Fig. 3. Flowchart of data processing. A picture of areal interpolation is included in the lower left corner, with different colors of polygons representing different block 
and smaller white rectangles represent residential structures. 

Table 2 
Population downscaling accuracy results for three different downscaling 
schemes. Note: PPPI represents Percentage of People Placed Incorrectly; MAPE 
represents Median Absolute Percentage Error.   

USA Structures  MS buildings  

R2 PPPI MAPE  R2 PPPI MAPE 

Census tract to 
block group 0.60 8.30% 12.08%  0.57 8.74% 12.63% 

Census tract to 
block 0.71 19.00% 36.17%  0.68 20.41% 36.54% 

Block group to 
block 0.80 16.66% 33.33%  0.78 17.84% 34.07%  
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tract level to block group level had the highest accuracy (PPPI value of 
8.3%) while census tract level to block level had the lowest accuracy 
(PPPI value of 19%). This might be because the former scheme has fewer 
average target zones per source zone than the latter scheme, as one 
census tract generally has only several block groups while one census 
tract could contain over one hundred blocks. 

Table 3 shows population downscaling accuracy by areas with 
different population density and impervious cover percentage, and only 
PPPI is included as the assessing metric for simplicity. Based on Table 3, 
we observed that both USA Structures and Microsoft building footprints 
achieved comparably high accuracy across different population density 
and impervious cover percentage categories when downscaling popu
lation from census tract level to block group level. As for population 
downscaling scheme from census tracts to blocks and from block groups 
to blocks, both datasets had a much inferior performance in low popu
lation density category (< 250 persons/km2) and low impervious cover 
percentage category (< 20%), which were dominated by rural areas. 
This fact coincided with the finding from Zandbergen and Ignizio (2010) 
that small areal population estimation accuracy generally increases with 
the increase of population density due to more heterogenous population 
distribution in rural areas compared to urban areas. 

Table 4 shows the PPPI values for groups with and without height 
information for the two datasets, respectively. We observed that the 
group without height information outperformed the group with height 
information across three different population downscaling schemes and 
two different datasets. Areas with height information were mostly 
characterized by high-rise buildings, which added complexity to popu
lation distribution patterns and thus resulted in a lower accuracy. 
Additional height information from USA Structures did not provide a 
large improvement for population downscaling. This may be because the 
census tracts were designed to be relatively homogeneous in terms of 
population characteristics and living conditions (Clapp & Wang, 2006). 
Due to the intrinsic homogeneity of census tract, buildings within the 
same census tract tend to have similar height values, making the height 
information less useful when redistributing population based on build
ing volume. 

Fig. 4a and b show the state-wide percentage error between the 
estimated and actual block group population for population down
scaling from census tract level to block group level based on USA 
Structures and Microsoft building footprints, respectively. According to 
Fig. 4, we found that both datasets achieved high population down
scaling accuracy for the majority of the block groups (with error per
centage between − 10% and 10%). We also noticed that severe over 
estimation of population happened mainly in rural areas, commercial 
and industrial areas for both datasets, but USA Structures was less prone 
to overestimate the population in these areas. One possible explanation 
is USA Structures depicts buildings more accurately than Microsoft 
building footprints in Washington state. 

Fig. 5 shows the percentage of block group count over the total 
number of block groups by different categories of error percentage be
tween estimated and actual block group population for population 

downscaling from census tract to block group. Compared with Microsoft 
building footprints, USA Structures resulted in less block group count 
percentage in both severe overestimation (50% ~ 100%, and > 100%) 
and underestimation (− 100% ~ − 50%, and − 50% ~ − 30%) categories 
while higher block group count percentage in error percentage category 
of − 10% ~ 10%. This demonstrates that USA Structures outperforms 
Microsoft building footprints for severe overestimation and underesti
mation of population in our study area. 

4. Novelties and limitations 

To the best of our knowledge, this is the first study which explores 
the possibility of incorporating the recently released building footprint 
dataset, USA structures, in population areal interpolation. We also 
assessed whether the additional building height information could help 
improve population downscaling accuracy, which has not been 
researched before due to the lack of height information in other 
nationwide building footprints datasets. This study also contributes to 
high-resolution (block level) population projections across different 
SSPs for Washington state for every ten years from 2020 to 2040. 

One major limitation of this study is that we used current building 
footprints to areal interpolate future population projections, which 
could cause some problems due to time inconsistency between popula
tion data and building footprints data. One solution is to model building 
footprints projection, which is correlated with land use land cover 
change prediction, to the year consistent with the targeted population 
projection data, and then use the projected building footprints to 
conduct population projection areal interpolation. However, this step 
wouldn’t increase accuracy in our implementation of population pro
jection areal interpolation. This is because in this study, the 1-km res
olution population projections that served as the source population data 
were obtained through a gravity-based population downscaling model, 
which had already considered future land use land cover change infor
mation at 1-km resolution. When conducting areal interpolation of 
population projections from 1-km grid cells to blocks in rural areas, it is 

Table 3 
Percent of People Placed Incorrectly (PPPI) values for three different population downscaling schemes categorized by different population density and impervious 
cover percentage (Note: “n” is the number of target zones (i.e., block group, or block) in each category).   

Population density (persons/km2)  Impervious cover percentage  

< 250 250–1000 > 1000  < 20% 20% ~ 49% 50% ~ 79% ≥ 80% 

Census tract to block group n = 1227 n = 990 n = 3082  n = 775 n = 675 n = 838 n = 3011 
USA Structures 8.53% 8.13% 8.27%  8.16% 7.98% 8.03% 8.47% 
MS Buildings 9.26% 8.81% 8.52%  8.63% 8.26% 8.26% 9.01% 
Census tract to block n = 74,751 n = 16,573 n = 62,884  n = 39,830 n = 14,958 n = 11,245 n = 88,175 
USA Structures 34.48% 17.86% 15.86%  24.58% 18.87% 18.39% 18.46% 
MS Buildings 40.92% 19.95% 16.01%  25.79% 19.26% 19.81% 20.01% 
Block group to block n = 74,751 n = 16,573 n = 62,884  n = 39,830 n = 14,958 n = 11,245 n = 88,175 
USA Structures 30.43% 16.00% 13.79%  22.02% 16.61% 15.22% 16.27% 
MS Buildings 35.37% 17.88% 13.98%  23.06% 17.00% 16.59% 17.52%  

Table 4 
Percent of People Placed Incorrectly (PPPI) values for three different population 
downscaling schemes categorized by areas with USA Structures height infor
mation and areas without height information (Note: “n” is the number of target 
zones (i.e., block group, or block) in each category).   

With height Without height 

Census tract to block group n = 1280 n = 4019 
USA Structures 8.71% 8.16% 
Microsoft Buildings 9.00% 8.65% 
Census tract to block n = 32,250 n = 121,958 
USA Structures 20.48% 18.53% 
Microsoft Buildings 21.89% 19.93% 
Block group to block n = 32,250 n = 121,958 
USA Structures 18.00% 16.23% 
Microsoft Buildings 19.18% 17.40%  
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not necessary to consider the newly constructed buildings (or land use 
land cover change) in the future since rural blocks are much larger than 
1-km grid cell in terms of area, thus areal interpolation of population is 
achieved by simply aggregating populations from all the grid cells 
within each block. For the urban core areas, blocks are much smaller 
than 1-km grid cell, and areal interpolation of population projection 
requires disaggregating source zone population to each building. 
Meanwhile, these urban center grid cells are highly urbanized, and 
newly constructed buildings from a non-urban land cover is rare. 
Therefore, it is reasonable to use the current building footprints distri
bution to approximate the future building footprints distribution when 
conducting areal interpolation of population projections. It is those 
suburb blocks where they are smaller than 1-km grid cell and contain 
large quantity of open space for the new construction of buildings that 
require predicting future building constructions to help achieve a better 
areal interpolation of population projections. But the improvement of 
accuracy is only under the circumstance of having a high accuracy 
building footprints projection, which is hard to model and so far, does 
not exist for the study area. In this study, areal interpolations of popu
lation projections for these suburb areas from 1-km grid cells to block 
level using current building footprint datasets rely on the assumption 
that future building constructions in each 1-km grid cell are equally 
distributed. Moreover, as a developed country, U.S. now has a relatively 
low urbanization rate and is projected to keep this trend in the next 
couple decades (Chen, Zhang, Liu, & Zhang, 2014; Hsieh, 2014). Thus, 
we are more confident to use the current building footprints distribution 
to approximate the distribution of future building footprints projections 
as our projected years are not far into the future (i.e., 2020–2040). 
Future research should consider implementing projected building foot
prints for the areal interpolation of population projections if such 
dataset is produced with high accuracy. 

Another limitation is that USA Structures does not include buildings 
<450 square feet, thus certain residential building type (i.e., recrea
tional vehicle park) is not represented. As recreational vehicle park 
typically houses a high proportion of low-income residents, and its 
importance is increasing in population distribution depiction and pop
ulation downscaling field, future work should consider incorporating a 
recreational vehicle park dataset with USA Structures to improve pop
ulation downscaling accuracy. 

5. Conclusions and discussions 

We conducted areal interpolations of Washington state population 
projections under different SSPs for every ten years from 2020 to 2040 
from 1-km grid cells to block level based on USA Structures, which 
serves as U.S.’s first national inventory of structures. To assess the 
capability of USA Structures in mapping population distributions in our 
study area, population downscaling accuracy based on USA Structures 
was assessed based on US decennial survey in 2020 under three different 
downscaling schemes, namely downscaling population from census tract 
to block groups, from census tract to block, and from block group to 
block. Its accuracy was compared with that of Microsoft building foot
prints dataset, which had been proven to be robust and accurate in 
population estimation and downscaling. We found that population 
downscaling performance was inferior in low population density areas 
for both building footprints datasets across three population down
scaling schemes, which could be explained by a more heterogeneous 
population distribution in rural areas when compared with urban areas. 
Further comparison between the two datasets revealed that USA Struc
tures outperformed Microsoft building footprints in our study area, 
which may be due to its more accurate depiction of the US buildings in 
Washington state and additional building type information used for 
filtering out non-residential buildings. Compared with Microsoft build
ing footprints, USA Structures contains additional height information for 
some highly urbanized areas, but our study found that this additional 
height information did not contribute in improving the accuracy. One 

Fig. 4. Error percentage between estimated and actual block group population 
for population downscaling from census tract level to block group level. 
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possible explanation could be attributed to the data quality as we are 
unaware of the potential errors or inaccuracies in the building height 
data. Conducting a comprehensive accuracy assessment of the building 
height data in the future would provide valuable insights and help 
address this question effectively. Another possible explanation is due to 
the homogeneity of the census tracts in terms of building characteristics. 
Even though height information did not have a significant impact on all 
the three population downscaling schemes, we could not conclude it was 
not useful for mapping population distributions. If the source zone does 
not follow a census administrative unit boundary, buildings within the 
source zone would have much less homogeneity, potentially making 
height information more valuable for population downscaling. For 
example, in our implementation of areal interpolations of population 
projections from 1-km resolution to block level, the source zones are 1- 
km grid cells, and each grid cell could arbitrarily contain buildings with 
varying heights. Under this circumstance, building height information 
provides additional valuable information for mapping population dis
tribution and is thus promising to improve areal interpolation accuracy. 
Future research should compare model accuracy with and without using 
height information for population downscaling schemes where source 
zones are more heterogenous in building characteristics. 

To improve population downscaling accuracies, OSM land use data 
and OSM building footprints data were used as ancillary dataset to 
remove non-residential buildings contained in both USA Structures and 
Microsoft building footprints. However, due to its crowed-sourced 
characteristic, OSM data suffer from low accuracy and severe incom
pleteness. Therefore, the removal of non-residential buildings based on 
OSM was not complete, and the remaining non-residential buildings 
could heavily impact population downscaling accuracy. Compared with 
Microsoft building footprints, USA Structures provides additional 
building type information, which was further used for the removal of 
non-residential buildings in this dataset. However, its building type in
formation is also highly incomplete and thus could not fully remove all 
the non-residential buildings. Future research should incorporate more 
accurate and complete building type information when using building 
footprints for the areal interpolation of population. 

Our study contributes to high spatial (block level) and temporal (for 
every ten years) resolution population projections for the state of 
Washington from 2020 to 2040. These population projections are 
consistent with three different SSPs (SSP2, SSP3, and SSP5), producing a 

comprehensive range of population changes within our study area. As a 
result, they hold significant value in informing various aspects of urban 
planning, transportation, healthcare, and emergency management. With 
a more detailed understanding of future population distribution, poli
cymakers could make informed decisions regarding disaster prevention, 
resource allocation, infrastructure development, and service provision 
at local scales. 

As building footprint datasets incorporate more ancillary informa
tion, such as building type and building height, their role in depicting 
population distribution becomes increasingly important. By utilizing the 
USA Structures dataset for areal interpolation of population projections 
and incorporating ancillary data like building type and building height, 
our study has the potential to inspire researchers to explore similar 
methodologies for mapping population distribution by integrating 
building footprints with diverse data sources. Additionally, our 
approach of integrating ancillary data and building footprints can 
encourage interdisciplinary collaboration among researchers from fields 
such as demography, urban planning, data science, and geography. This 
collaborative effort may result in the development of innovative meth
odologies, improved modeling techniques, and a more comprehensive 
understanding of population distribution. 
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