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Abstract—Tokamak is a torus-shaped nuclear fusion device
that uses magnetic fields to confine fusion fuel in the form
of plasma. Tearing instability in plasma is a major issue in
which the magnetic field breaks and recombines in tokamak.
This instability can lead to plasma disruption that terminates
the fusion power generation and damages the plasma-facing
wall materials. For a successful steady operation of a large-
scale tokamak without disruption, it is required to predict and
alarm the tearing instabilities well in advance to avoid them. In
this work, we develop and validate a deep neural network-based
multimodal prediction system that estimates the future tearing
instability likelihood from multi-diagnostics signals in the DIII-D
tokamak.

Index Terms—deep neural network, multimodal prediction,
nuclear fusion, tokamak, tearing instability

I. INTRODUCTION

A tokamak is one of the most promising concepts for a
commercial nuclear fusion reactor, which confines the hydro-
gen plasmas with magnetic fields in a torus-shaped device.
Recently, the Joint European Torus (JET) broke the world
record by producing 59 MJ of fusion energy for five sec-
onds [1], and the Korea Superconducting Tokamak Advanced
Research (KSTAR) sustained 100 million Kelvin plasma for
30 seconds [2]. ITER, the international tokamak project with
a collaboration of 35 nations, is also being constructed and
will operate as of 2025 [3].

Although tokamaks have drawn successful achievements,
there are still several obstacles we must resolve. While recent
advances in tokamak control using deep reinforcement learn-
ing (RL) have been very promising [4]–[7], the main hurdle
during the control to achieve a high-performance plasma has
been plasma instability leading to plasma disruption [4], [8],
[9]. Especially in ITER-scale fusion reactors, even a few
events of plasma disruption can exert extreme damage on the
components. Therefore, it is essential to develop techniques
to reliably predict and avoid major disruptive instabilities
such as magnetic field tearing. The physics research and
experiments for mitigation of the existing tearing instability are
advancing [10]–[13], as well as detection and classification of
Alfvénic instabilities [14]–[16]. However, prediction of such
instabilities to avoid them is still a major challenge.

Fu et al. [17] used decision tree-based machine learning
(ML) algorithms to evaluate the likelihood of tearing events,

so-called “tearability”, in the DIII-D tokamak [18]. They
successfully implemented the algorithm in the plasma control
system (PCS) of DIII-D and maintained the tearability at a
low level by adjusting the injected beam power based on the
estimation of the tearability. However, their ML model only
provides the tearability metric at a given time, not the dynam-
ics of the future tearability when the actuators change. Such an
approach is suitable for simple proportional control of a single
actuator, as demonstrated by Fu et al., but not convenient for
nonlinear control of multi-variate actuators, which is required
to achieve even higher performance without exceeding the
stability limit. Especially the tearing instabilities in the ITER-
relevant plasma have complex nonlinear dynamics [19]. For
a more active and flexible control with multi-variate actuators
such as beam power, torque, and plasma shape to avoid the
instabilities, we require a dynamic model that predicts the
response of future plasma performance and tearability based
on the proposed changes of the actuators.

In this paper we propose a deep neural network (DNN)-
based system for predicting the dynamics of the future plasma
performance and tearability from future actuators’ conditions
and the current plasma state measured by multiple diagnostics.
Our prediction model differs from [17] in two aspects: (1) It
uses multimodal inputs including spatial profile information
that highly affects tearing stability, and (2) it predicts “fu-
ture” tearing probabilities based on proposed actuator control
commands rather than current tearing likelihood based on mea-
surement signals. The overall diagram of the prediction system
is described in Fig. 1. The rest of this paper is structured in
four sections. Section II describes the characteristics of the
experimental data and the architecture of the DNN model. In
Section III, we show the comparison of the training results
with different settings and the prediction results on several
actual experiments in DIII-D. Finally, Section IV summarizes
the paper with a conclusion and possible future research.

II. DNN-BASED PREDICTION OF TEARING ONSET

A. Data collection and preprocessing

Tearing instability is a phenomenon in which the magnetic
field tears by finite plasma resistivity at rational surfaces of
safety factor q = m/n, where m and n are the integer poloidal
and toroidal mode numbers, respectively. A possible tearing



Fig. 1. The diagram of the proposed tearing instability prediction model and
the selected diagnostics of DIII-D tokamak that are used as inputs to the
model. A possible tearing instability of m = 2 and n = 1 is illustrated with
an orange shade.

instability of m = 2 and n = 1 is also illustrated in Fig. 1,
which is the most prone to induce plasma disruption. In many
present tokamaks, the tearing instability is linearly stable but
becomes unstable nonlinearly by a large enough seed magnetic
perturbation. In high-pressure plasmas, which are favorable for
a nuclear fusion reactor, the perturbation of the pressure-driven
(so-called bootstrap) current becomes a seed that destabilizes
the metastable state [20]. Therefore, the plasma pressure
in present tokamaks is often limited by the tearing onset.
This instability induces irreversible degradation of the plasma
performance and often leads to plasma disruption [19], [21],
hence, it is required to operate the tokamak below the tearing
onset limit while pursuing high plasma pressure. As a first
step for avoiding this instability, the dynamics of the tearing
likelihood should be modeled.

In order to predict the future tearing likelihood (tearability)
with DNN, the 1D plasma profiles should be considered as
inputs of the model because the tearing stability strongly
depends on the spatial information and the gradient of the
kinetic and magnetic profiles near the rational surface [19].
The DIII-D PCS system is already equipped with a data-
driven plasma profile predictor [22] and we used the same
profiles of that model as the 1D input signals to our pro-
posed DNN model as described in Table I. Electron density
and temperature profiles can be estimated by the Thomson
scattering measurements [23], and ion rotation profiles can
be obtained by the charge exchange recombination (CER)
spectroscopy [24]. The safety factor profile and the magneto-
hydrodynamics equilibrium quantities can be calculated by RT-

TABLE I
INPUT AND OUTPUT SIGNALS FOR THE DNN MODEL

Name Units Type Preprocessing Time
(inputs)
Electron 1019m−3 Thomson mtanh t
density scattering fitting

Electron keV Thomson mtanh t
temperature scattering fitting

Ion kHz CER spline t
rotation spectroscopy fitting

Safety - Magnetic RT-EFIT t
factor measurement

Plasma Pa Magnetic RT-EFIT t
pressure measurement

Magnetic T Actuator - t+∆t
field

Plasma A Actuator - t+∆t
current

Major m Plasma RT-EFIT t+∆t
radius shape

Plasma - Plasma RT-EFIT t+∆t
elongation shape

Top - Plasma RT-EFIT t+∆t
triangularity shape

Bottom - Plasma RT-EFIT t+∆t
triangularity shape

Inner gap m Plasma RT-EFIT t+∆t
shape

Beam power kW Actuator - t+∆t

Beam torque Nm Actuator - t+∆t

RF power W Actuator - t+∆t

RF position - Actuator - t+∆t

Name Units Type Preprocessing Time
(outputs)

Normalized - Magnetic RT-EFIT t+∆t
pressure, βN measurement

Tearability - Mirnov Fourier t+∆t
measurement decomposition

EFIT reconstruction based on magnetic measurements [25].
This information can be preprocessed in real-time during the
tokamak discharge and provided as inputs for our model [26].
The controllable actuators, such as magnetic field strength,
plasma current, beam power/torque, and RF injection, are also
set as inputs. The other inputs, the plasma shape parameters,
can be controlled by DIII-D PCS [25], [27]. These actuators
and plasma shape parameters affect the plasma stability, so we
can model the dynamics of the tearability depending on the
“suggested” actuators’ control.

Our ultimate goal is to push up the plasma pressure as
much as possible without crossing a tearing onset limit.



Fig. 2. The histogram of the input signals of the collected dataset. For the
1D signals, such as electron density, electron temperature, ion rotation, safety
factor, and plasma pressure, only the axial values are counted.

Therefore, the prediction outputs of the DNN model are set
as the normalized plasma pressure (βN ) and the tearability,
as shown in Table I. The tearing instability label (tearability)
is determined by the root-mean-square (RMS) amplitude of
the n = 1 fluctuation signals, which are obtained by Fourier
decomposition of the Mirnov coil signals [17]. At each time-
step t, the model is supposed to predict βN and tearability at
t + ∆t by looking at the plasma profile signals at time t as
well as “suggested” actuators values for t +∆t. Considering
that the energy confinement time of the DIII-D plasmas is
O(25 ms) [22], setting ∆t = 25 ms is a reasonable choice for
capturing the stability dynamics based on the profile variation.

We used the MDS+ database [28] to collect the experimental
data of DIII-D shots from the 2011 through 2022 campaigns
(shots 147000 to 190985). Since real-time preprocessing of 1D
profiles sometimes generates non-physical outlier data due to
their loose constraint than the offline processing, we needed to
exclude those outliers from the collected data. Also the safety
factor (q) profile can diverge to infinity at the plasma boundary.
Therefore, the inverse of the safety factor (1/q) has been used
for the training data to reduce numerical difficulties [22]. The
preprocessed dataset includes 8,505 shots containing 639,555
time-slices. The distribution of the collected data for the input
and output signals are plotted in Figs. 2 and 3, respectively.
Here, the distributions for the 1D signals (electron density,
electron temperature, ion rotation, safety factor, and plasma
pressure) are counted only for the values at the axis of plasma.

The normalized plasma pressure shows a continuous and
well-distributed histogram, as shown in Fig. 3. However, the
tearability is a binary variable, where 0 indicates stable against

Fig. 3. The histogram of the output signals of the collected dataset. The
normalized plasma pressure has a continuous distribution, but the tearability
has a discrete one.

the tearing and 1 indicates unstable. In addition, the tearing
instability often induces plasma disruption that terminates the
tokamak discharge, and this property causes a strong imbal-
ance of the experimental data of the tearability. The difficulties
of (1) dealing with the continuous and the discrete outputs at
the same time and (2) the highly imbalanced distribution of
the tearability will be further discussed in Section III.

B. A DNN architecture for multimodal prediction

The raw signals from multiple diagnostic measurements
have different dimensions from 0D to 2D with different spatial
resolutions, as described in Fig. 1. Through real-time prepro-
cessing, the dimensions of these signals are reduced into 0D or
1D, and the resolutions of the 1D signals are unified onto 33
equally spaced grids of the magnetic flux coordinate, ψN . The
preprocessed input signals are then fed into the DNN model.
First, the information of the 1D signals is extracted via a
sequence of convolutional layers. Then, the extracted features
from the 1D signals are concatenated with the 0D signals
composed of the actuators and the plasma shape information.
The concatenated features are fed to a fully connected multi-
layer perceptron (MLP), which ends with the output layer to
predict βN and tearability. Here, all the activation functions
of the hidden layers are set as the sigmoid function. The
number of total parameters in the model is 12,086. The overall
architecture of the DNN model is described in Fig. 4.

The 1D input signals are the measured values at time t, and
the 0D inputs and the output signals are the values at time t+
∆t, as shown in Table I. The 0D inputs, such as actuators and
plasma shape, can be controlled by PCS in DIII-D. Therefore,
by using the DNN model, we can predict the response of future
plasma stability from possible actuator controls.

III. EXPERIMENTS AND DISCUSSIONS

We use the Keras deep learning API [29] to build and train
the DNN model. The final DNN model can be converted to C
code by Keras2C [30] to be compatible with the control system
in DIII-D. In order to reduce the possibility of overfitting
during the training, the dropout technique is used before the
last layer [31]. We also adopt the early stopping method during
the training, which finishes the training process when the
validation loss stops decreasing for ten epochs. The collected
data samples are split into training, validation, and test sets at



Fig. 4. The DNN model architecture to predict future plasma pressure and
tearability from the multiple diagnostic signals. The output signals consist of
the normalized plasma pressure (βN ) and the likelihood of tearing instability
(tearability) after 25 ms.

a ratio of 7:2:1 to evaluate the overfitting. The batch size was
determined as 512. For the training of the DNN model, we
used the Adam optimizer [32] with a learning rate of 10−4. A
challenge in the training of our model is that the distribution
of one output signal is discrete and highly imbalanced while
another output has continuous and balanced distribution, as
shown in Fig. 3. The mean-squared error (MSE) is suitable
for the loss function for βN which is a continuous output
signal. On the other hand, either MSE or binary cross entropy
(BCE) loss can be used for the tearability, the discrete output
signal. In fact, the continuous regression when using MSE can
also provide useful information about the possibility occurring
of tearing instability. The highly imbalanced distribution of
the tearability can be tackled by the weighted loss or the
oversampling of the minority classes. In this work, we trained
the models in four different ways depending on the type of
loss function and the presence of oversampling, as shown in
Table II.

The loss function L used for each case is defined in (1) and
(2). Equation (1) is for cases 0 and 1 in Table II, where the
losses of both outputs are calculated by MSE, and (2) is for

TABLE II
THE INFLUENCE OF THE TYPE OF LOSS FUNCTION AND OVERSAMPLING

Case Loss Loss for Over- R2 for AUC for
number for βN tearability sampling βN tearability

0 MSE MSE No 0.975 0.875

1 MSE MSE Yes 0.957 0.903

2 MSE BCE No 0.971 0.887

3 MSE BCE Yes 0.957 0.907

Fig. 5. The distribution of the accuracies of the output prediction for
each case. (a) The accuracy for βN is estimated with the coefficient of
determination, R2, and (b) the accuracy for the tearability is estimated by
the area under the ROC curve.

cases 2 and 3, where the loss for the tearability prediction is
determined by BCE. Here, N is the batch size, i is the sample
index, y1 is the true value of βN , y2 is the true value of the
tearability, and ŷ is the predicted values of the output signals.
Since the BCE loss tends to be larger than the MSE loss for
the same errors, we empirically multiplied the BCE loss by a
weight (wBCE = 1/3) in (2).

L0or1 =
1

N

N∑
i=1

[(y1,i − ŷ1,i)
2 + (y2,i − ŷ2,i)

2] (1)

L2or3 =
1

N

N∑
i=1

[(y1,i − ŷ1,i)
2

− wBCE(y2,i log ŷ2,i + (1− y2,i) log ŷ2,i)]

(2)

For statistically reliable comparison, we trained ten
identical-structure ensemble models using cross-validation in
each case. After training, the accuracies of βN and tearability
are evaluated with the coefficient of determination (R2) and
the area under the ROC curve (AUC), respectively. Here, the
ROC (receiver operating characteristic) curve is a graphical
representation of the trade-off between the true positive rate
and the false positive rate of a binary classifier. The ensemble-
averaged accuracies of the outputs are shown in Table II. The
distribution of R2 for the βN prediction and the ROC curve
for the tearability prediction can be seen in Fig. 5.



In cases 1 and 3, we oversampled the minority classes, the
tearing-unstable cases, so that they have the same number
of samples as the majority class during the training. As
the tearing-unstable cases are included more in the batch,
the DNN model becomes better for classifying the tearing
cases. However, the plasma with tearing instabilities tends to
fluctuate and often be disrupted, which causes uncertainty and
noise in the training data. Although this noise can potentially
induce the deterioration of the βN prediction accuracy (as
shown in Fig. 5 (a)), the accuracy of the βN prediction is
still high enough (R2 ≈ 0.957) despite the oversampling and
is sufficient to predict the dynamics of plasma performance.
Since the main goal of this work is to predict and alarm the
tearing instability, the DNN model trained with oversampling
will be used in the later discussion.

While the BCE loss is commonly used in binary class
problems such as predicting tearing instability, the results
using the MSE loss and the BCE loss do not show a significant
difference in prediction accuracy in Table II and Fig. 5. Further
analysis of the difference between using MSE and BCE for
tearing instability will be conducted in the future. In the rest of
this section, we use the DNN model trained with case 3 which
yields the highest AUC value for the tearability prediction.

After training the DNN model, we conducted DIII-D ex-
periments to test the feasibility of alarming the instability in
real experiments using the trained model. The future ITER
baseline scenario (IBS) characterizes the low edge safety factor
(q95 ≈ 3) and low toroidal rotation, which make the plasma
prone to disruption by tearing instability [19]. Therefore, it is
important to be capable of predicting the tearing likelihood
of the IBS plasmas. For this reason, the IBS demonstration
discharges in DIII-D with stable and unstable plasmas are
targeted for this test. Figs. 6, 7, and 8 show the prediction
results for different IBS discharges in DIII-D, which are all
unseen shots by the DNN model during the training. In these
discharges, we maintain the edge safety factor as q95 = 3.2 and
the beam torque below 1 Nm to constrain the IBS condition.
Shot 193207 (Fig. 6) and 193208 (Fig. 7) are operated under
the almost identical preprogrammed setting, but the tearing
instability occurred in the former and not in the latter.

In Fig. 6, the top graph shows the time traces of the plasma
current and injected beam power, which are key input features
of the actuators. Other actuators are not significantly varying
in this discharge. The next four graphs present the 1D input
profiles, namely, electron density, electron temperature, safety
factor, and ion rotation. In each graph, only four values (out
of 33) at ψN = 0.0, 0.3, 0.6, and 0.9 are shown for the sake
of visibility. The last two graphs show the normalized plasma
pressure and the tearability, which are the outputs of the DNN
model. The ground truth values are shown in black dashed
lines, and the predicted ones are in blue solid lines. The
uncertainty ranges from ten ensemble models are indicated
with blue-filled areas.

In Fig. 6, the tearing instability occurs at t = 3250 ms, the
rotating instability gets locked at t = 3400 ms, and finally,
the plasma is disrupted at t = 3800 ms. This sequence is a

Fig. 6. Tearing prediction result for shot 193207 in DIII-D. The tearing
instability occurs at t = 3250 ms, it locks to the wall at t = 3400 ms, and
the plasma is disrupted at t = 3800 ms.

typical process when the disruptive tearing instability occurs
in a tokamak. The tearability plot shows that the DNN model
successfully predicts the tearing instability long enough before
the event happens, so that we can respond or avoid it in
advance. In shot 193207, the model could predict a positive
value of the tearability 250 ms before the instability occurred.
This predicted tearability could be interpreted as a likelihood
of the occurrence of tearing events. 250 ms is several times
the typical value of energy confinement time (O(25 ms)) of
the DIII-D plasmas and is sufficient time to avoid instability
by changing the kinetic profiles using external actuators such
as beam, RF, and plasma shape.

Even though shot 193208 has been operated under almost
the same condition as shot 193207, the plasma of shot 193208
is stable until the end of the discharge, as shown in Fig. 7. The
DNN model also estimates almost zero tearability throughout
the discharge. The only difference of shot 193207 from shot
193208 at t = 3000 ms is that the toroidal rotation starts
to slow down. In IBS plasmas, the rotation drop opens the
stabilizing ion-polarization current gate, which can induce
tearing instability [21]. The lower rotation also deepens the



Fig. 7. Tearing prediction result for shot 193208 in DIII-D. The plasma is
stable against tearing in this shot.

well of the plasma current profile at the rational surface, which
is also correlated with instability [19]. The data-driven DNN
model could cover the complicated physics of the interaction
among the rotation, current profile, and tearing instability.
The prediction of tearability only requires a single forward
propagation of the DNN model, which takes less than 1ms
per inference. This suggests that the DNN model is suitable
for evaluating the tearability of the DIII-D plasmas in real-
time.

An interesting feature of the tearability prediction can be
observed in Fig. 8. Even though the predicted tearability is
close to 1 from t ≈ 2500 ms, the plasma is sustained longer
than 1000 ms without the instability before the tearing event
eventually happens at t ≈ 3800 ms. This indicates that high
tearability does not always lead to a tearing event. This is
because, as illustrated in Fig. 9, the tearing instability requires
not only high tearability but also a seed perturbation to grow.
The tearing event is a metastable phenomenon that is linearly
stable but nonlinearly unstable. High tearability only means
that the gate is opened for tearing events, but the actual occur-
rence of the events requires another factor, a seed perturbation.

Fig. 8. Tearing prediction result for shot 193211 in DIII-D. The model predicts
high tearability from t ≈ 2500 ms, but the plasma is sustained longer than
1000 ms until the tearing event eventually occurs at t ≈ 3800 ms

Fig. 9. The illustration of the metastable state of tearing instability that
requires a seed perturbation to become unstable. High tearability makes the
plasma marginally stable, and a seed perturbation excites the instability.

Therefore, even the plasma with high tearability can persist
stably if there is no large enough seed magnetic perturbation.
This physical property of tearing instability makes it difficult
to increase the AUC value beyond a certain level, as shown
in Table II and Fig. 5.

The seed can be a magnetic perturbation by sawtooth crash,
edge localized mode, higher mode number instabilities, or
external factors such as 3D field coils [21], [33]. Because
these phenomena are irregular and evolve in a time scale much
shorter than the prediction time interval, the actual onset of



Fig. 10. The prediction of the dynamics of tearability when the injected
beam power changes from the original shot 193211. Adjusting beam power
can lower the tearability.

tearing instability is nearly stochastic even after the tearability
increases. However, this property provides a time opportunity
to avoid instabilities before the seed perturbation occurs after
the model alarms. Fig. 10 shows the prediction of the dynamics
of tearability when the beam power actuator changes from the
original shot 193211. As the injected beam power decreases,
the tearability is also reduced compared to the other case,
which means the plasma moves away from the tearing onset
limit. This implies a possibility of avoiding tearing instabilities
by adjusting the tokamak actuators.

Fig. 11 shows the time trace of shot 193210, where a
primitive beam power control is tried to avoid the tearing
instability in the experiment. As the predicted tearability starts
to increase from t = 3000 ms, the beam power is reduced
from 7 MW to 3 MW. Then, the tearability decreases down
to zero again, and the plasma could sustain more than 1000
ms after that. The observation that the increased tearability
can be restored to zero by adjusting an actuator implies the
feasibility of the instability avoidance control while pursuing
high fusion performance. Although the tearability increased
again at t ≈ 4000 ms and the tearing event occurred eventually,
we expect a suitable control could avoid this instability event
as well. The tearability dynamic model using DNN in this
work can be an environment to train the tearing avoidance
control model by using deep reinforcement learning (RL) in
the future. The trained RL agent will be able to actively adjust
multiple actuators to avoid tearing instability while keeping
high plasma performance.

IV. CONCLUSION AND FUTURE WORK

In this work, we propose a multimodal prediction system
based on DNN that predicts the future dynamics of the
plasma pressure and the likelihood of tearing instability. The
multimodal signals obtained by measurements are processed
in real-time into 0D and 1D inputs, and the DNN model
estimates the normalized plasma pressure and the tearability
from the inputs. We tested this DNN-based tearing instability
alarming system with ITER-relevant experiments in DIII-
D, and it shows a reasonable prediction of the instability
a few hundred milliseconds ahead of the event. We also

Fig. 11. The result of tearing prediction and primitive avoidance control for
shot 193210 in DIII-D.

demonstrated the feasibility of avoiding instability using this
prediction system with a primitive beam power control. Ad-
justing the beam power upon the tearing instability alarm,
reduced the tearability again. This indicates that a more active
avoidance control using multiple actuators is also possible
in the future. By using the actuator control based on the
tearing instability prediction, we can achieve long sustainment
of high-performance plasmas just below the instability onset
limit. This tearing prediction system can also be combined
with the profile prediction technique installed in DIII-D [22],
which enables us to predict the dynamics of plasma stability
of a farther future by autoregressive prediction. Then, we can
optimize the whole trajectory of a tokamak discharge which
yields the highest performance without instability. Recently, it
has been demonstrated that deep reinforcement learning can be
used for the tokamak control and optimization [4]–[7]. We can
train the RL agent in the environment of the tearing instability
dynamic model, to obtain a robust tokamak controller to
achieve higher performance with a more stable condition.
Especially, the main hurdle of controlling fusion plasma in
previous trials is the tearing instability and disruption [4],
[7]. By resolving this issue using instability prediction and



avoidance, a basic technology for autonomous fusion reactor
control can be established.
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