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ABSTRACT: Rechargeable batteries provide crucial energy <
storage systems for renewable energy sources, as well as consumer

20 s

electronics and electrical vehicles. There are a number of important £
parameters that determine the suitability of electrode materials for e
battery applications, such as the average voltage and the maximum m
specific capacity which contribute to the overall energy density. &
Another important performance criterion for battery electrode
k4

materials is their volume change upon charging and discharging,
which contributes to determine the cyclability, Coulombic
efficiency, and safety of a battery. In this work, we present deep
neural network regression machine learning models (ML), trained
on data obtained from the Materials Project database, for
predicting average voltages and volume change upon charging
and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average
mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of
our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by
systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good
performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine
learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results

reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.

KEYWORDS: metal-ion batteries, machine learning, deep learning, deep neural networks, electrode voltage, electrode volume change

B INTRODUCTION

The quest for environmentally friendly energy sources has
resulted in a growing interest in the search of novel materials
for sustainable energy.' Renewable energy sources are mostly
intermittent, and hence, there is a need for efficient energy
storage systems. Rechargeable batteries provide appropriate
storage technologies for renewable energy sources and are also
heavily used in consumer electronics and electrical vehicles.””

A leading technology in the battery market is the Li-ion
battery (LIB). These batteries provide high efficiencies, high
energy densities and long cycle life.”> However, the limited
abundance of Li and the associated high cost of LIBs is a
challenge, especially for large scale applications.™* Alternative
battery technologies to meet current and future energy storage
needs are being explored. Two other alkali metals, Na and K,
have relatively low ionic radius and are abundant in the earth’s
crust.” These properties have sparked research in appropriate
electrode materials for efficient Na- or K-ion batteries.'’™ ">
Unfortunately, materials that work well for Li ions do not
necessarily work for Na and K,"* which makes finding suitable
electrode materials for these larger ions a challenging task. The
exploration of the chemical space for new materials using
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quantum mechanical methods is computationally demanding
and time-consuming. However, over the past decade, robust
databases have been made available to the scientific
community. These databases, generated over time partly
from combinatorial experimentsw’15 and, majorly, from high-
throughput calculations that utilize quantum mechanical
methods, such as density functional theory (DFT),'
combined with improved ML algorithms, are accelerating the
discovery of materials for energy conversion and storage.” '’

ML applications to materials science range from the
exploration of microscopic properties of materials, such as
the band structure,” > density of states,”” and formation
energy,”* to applications in specific areas that include solar
cells,”?° catalysis,””*® and batteries.”” ™ Regarding battery
technologies, a number of studies have been reported on the
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use of ML to identify promising candidates as electrolytes for
LIBs.**~*® Relatively fewer studies have been reported on
electrodes.'”*” These reports include the prediction of three
types of crystal symmetries (monoclinic, orthorhombic, and
triclinic) of cathode materials with Li—Si—(Mn, Fe, Co)—0O
composition,”® machine learning potential to predict voltage of
graphite-based LIBs,®” a utilization of ridge regression model
by Eremin et al”’ to predict the energy of LiNiO, and
LiNij Coy 15Al) 45O, as cathode materials and a combination of
DFT and ML to predict redox potentials of carbon-based
electrode materials."’ Recently, we presented a more general
study on the voltage of electrode materials in metal-ion
batteries*' in which we show that deep learning models can be
used to predict the voltages of diverse electrode materials with
reasonable accuracy.

Important metrics to measure battery performance include
specific capacity, voltage, energy density, thermal stability,
Coulombic efficiency, safety, cyclability, electrical conductivity
of electrodes, and lifetime.>** Many of these metrics, including
the Coulombic efficiency, as well as the cyclability and safety,
largely depend on the volume change of the electrode upon
charging and discharging.“’44 So far, the volume change of
electrode materials has been studied only through either
demanding DFT simulations or experiments. In this work, we
present the first machine learning model to quantify the
volume change in electrode materials upon charging and
discharging. The model is obtained employing regression
based deep neural networks (DNN). In addition, we extend
and improve our previous work*' for predicting the voltages of
electrode materials for metal-ion batteries by including a larger
and more balanced training data set. Using this ML approach,
we propose top candidates with small changes in volume and
large energy density as potential cathode materials for Na-ion
batteries. These materials are further validated through first-
principles simulations.

Data and Methods. Machine Learning. The data for
training our models was retrieved from the Materials Project
(MP) database'®* using the Materials Application Program-
ming Interface (MAPI)*® and the Python Materials Genomics
(pymatgen)*” material analysis package. We extracted nearly
4860 unique instances of computed data for training our ML
models from the MP database. The distribution of the data set,
based on the working intercalation ion, is shown in Figure 1.
For each instance in the database, we gathered the chemical

55
50
45
40
35
30
25

% of Electrodes

Li Na K Rb C Mg Ca Al Zn Y

Figure 1. Distribution of instances in the training data set based on
the active metal ion.

formula of the electrodes with low and high concentration of
the working ion, the working ion (Li, Na, K, Rb, Cs, Mg, Ca,
Al, Zn, or Y), the type of the electrode (either intercalation or
conversion), the Bravais lattice type, the space group, the
average voltage (V,,), and the percentage change in the volume
of the electrodes with low and high concentration of working
ions (AVy).

By utilizing the stoichiometries of both charged and
discharged electrodes and the matminer software®® we
generated additional features to form a set of 306 features to
uniquely represent each reaction in our ML models. These
additional atomic features are derived from the structural and
chemical compositions of the electrodes and have been
previously used to predict several properties of crystalline
materials, including Voltages.“’49 A more detailed discussion
on featurization is presented in Supporting Information. Once
features are generated, feature-wise normalization is carried out
such that the value of each feature ranges from —1 to 1 to
make learning easier for our neural network.”® To avoid the
dimensionality curse associated with a large dimension of the
feature vector, we use principal component analysis (PCA) to
optimize the total number of features.”' This analysis shrinks
the dimension of the feature vector by 65%. We assessed the
performance of our models with and without PCA
optimization and we found that while model performance for
AVy, is not significantly affected by PCA, the mean absolute
errors for the V,, models are about 20% smaller when PCA is
used. Therefore, all results presented in this work are obtained
employing the PCA optimized dimension of the feature vector.

Our previous work on voltages of battery electrodes, trained
with about 22% less data than the present work, has shown
that the deep learning algorithm performed significantly better
than shallow learning.41 Therefore, in this work, we have used
regression based deep neural network (DNN) as our working
model. We train models with three different sets of data: (i) on
the entire data set consisting of electrode materials for 10
different active metal-ions (labeled All), (ii) on all alkali-ion
based electrode materials (labeled Alkali), and (iii) on only Li-
ion based electrode materials (labeled Li). We utilize the Keras
deep learning library’® to build our models where hyper-
parameters are optimized to find the optimal model
architecture. The architecture that exhibits the best perform-
ance consists of an input layer, three hidden layers and an
output layer. For the three different data sets (All, Alkali, and
Li) and for both targets, V,, and AV, the number of nodes for
the input layer is 106 as obtained by PCA, while the number of
nodes for the first, second and third hidden layers is 360, 90,
and 30, respectively.

We used the relu activation function and the adam optimizer
in our models.'"” Batch normalization was applied to the V,,
models, while dropout®” and weight decay™ were utilized to
combat overfitting in both V,, and AV, models. The mean
squared error is used as the loss function while the
performance of each model is measured employing the mean
absolute error (MAE).

Density Functional Theory. To assess the performance of
our ML models, we carried out additional DFT calculations
using the Quantum-Espresso software.”¥>> Projector-aug-
mented wave pseudopotentials (PAW) are used to replace
core electrons and the generalized gradient approximation
exchange-correlation density functional for solids by Perdew,
Burke, and Ernzerhof (PBEsol) with Hubbard U correction is
employed in all calculations’”*” and dubbed DEFT+U
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Table 1. Distribution of MAE for V,, (in V) for Each of the 10 Rounds (R;) in Models Trained with the Entire Data Set (All),
the Alkali-Only Data Set (Alkali), and the Li-Only Data Set (Li)“

R R, Ry Ry Ry Rg
All 0.42 0.39 0.38 0.38 0.43 0.39
Alkali 0.37 0.38 0.43 0.41 0.36 0.39
Li 0.42 0.43 0.42 0.43 0.38 0.44

R, R, R, Ry, SD MAE  MAE;
0.38 0.39 0.39 0.37 0.02 0.39 0.35
0.36 0.41 0.40 0.39 0.02 0.39 0.45
0.42 0.40 041 0.38 0.02 0.41 043

“The standard deviation (SD), the average MAE across the 10 rounds (MAE), and the MAE for the final model in the test set (MAEy) for each
training set (All, Alkali, and Li) are shown in the last three columns, respectively.
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Figure 2. Distribution of the average voltage, V,,, in the entire data set.

Table 2. Distribution of MAE for V,, (in V) for Each of the 10 Rounds (R;) in Models Trained after Removing the
Underrepresented Instances, with the Entire Data Set (All), the Alkali-Only Data Set (Alkali), and the Li-Only Data Set (Li)“

R, R, Rs Ry Rs Re
All 0.36 0.39 0.41 0.37 0.35 0.36
Alkali 0.38 0.40 0.42 0.46 0.38 0.38
Li 0.37 0.40 0.38 0.40 0.36 0.40

R, Rg Ry Ry SD MAE MAE}
0.34 0.36 0.35 0.36 0.02 0.37 0.37
0.38 0.40 0.42 0.36 0.03 0.40 0.38
0.40 0.40 0.33 0.33 0.03 0.38 0.38

“The standard deviation (SD), the average MAE across the 10 rounds (MAE), and the MAE for the final model in the test set (MAEy) for each
training set (All, Alkali, and Li) are shown in the last three columns, respectively.

throughout this work. In order to compare ML results with
DFT+U, we utilized the same U values documented in MP*®
from which our training data was retrieved. The value of the
kinetic energy cutoffs for the wave functions and charge
densities are 140 and 1400 Ry, respectively. Appropriate
Monkhorst—Pack™ meshes are used depending on the
structure by ensuring that the total energy is converged to 1
mRy. Structural optimizations were carried out with con-
vergence thresholds in the total energy, the atomic forces, and
the pressure of 107" Ry, 107> Ry/Bohr, and 0.5 kbar,
respectively.

B RESULTS AND DISCUSSION

Average Voltage Models. We begin our analysis by
targeting the average voltage, V,,. Different models were built,
trained, and assessed independently utilizing the three different
sets of data: All, Alkali, and Li. In each data set, the data is
randomly divided into two parts, with 90% of instances used
for training and validation (training set), and 10% of instances
saved exclusively for testing final models (test set). Con-
strained by the relatively small amount of training data, we
employed a 10-fold cross-validation procedure on the training
set in order to guide the hyperparameter tuning as well as to

better assess the predictive capacity of our models. In addition
to hyperparameter tuning, batch normalization was observed
to improve the performance of the V,, models. The values of
the MAEs for the 10 different rounds in the 10-fold cross-
validation are shown in Table 1, where R; (withi =1, 2, 3, ...,
10) represents the different rounds in the cross-validation
(additional details presented in Supporting Information). For
the model trained on the All data set (Table 1-all), we obtain a
distribution of MAEs in the range of 0.37—0.43 V among the
10 rounds of cross-validation with an average MAE (MAE) of
0.39 V. Similar results are obtained for the models trained on
the Alkali and Li training sets (Table 1-Alkali, Li). With the
optimum hyperparameters obtained from the cross-validation,
we build the final models (for each training data set, All, Alkali,
and Li) using the corresponding entire training set (90% of the
training data). These final models are then tested in the
corresponding test sets held specifically for this purpose. The
MAE results for the final models (MAE;) are 0.35, 0.45, and
0.43 V for the All, Alkali, and Li data sets, respectively.

We further investigated how the performance of the models
for V,, is impacted by the presence of statistical under-
represented instances which are defined as those instances in
the training set with V,, values that are either negative or too
large and are scarcely represented in the data set. These
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Table 3. Distribution of MAE for AV, for the 10 Rounds of Training (R;) in Models Trained with the Entire Data Set (All), the

Alkali-Only Data Set (Alkali), and the Li-Only Data Set (Li)“

Ry R, Ry R, Ry Re
All 8.6 9.4 16.7 11.0 7.4 49.4
Alkali 35 72 6.6 5.0 42 36
Li 39 S4 2.5 6.0 5.0 2.6

R, R, R, Ry, SD MAE MAE,
6.7 563 16.8 49.5 19.1 232 10.6
55 5.8 115 4.1 2.3 5.7 7.8
2.1 22 26 7.0 1.7 39 3.8

“The standard deviation (SD), the average MAE across the 10 rounds (MAE), and the MAE for the final model in the test set (MAEy) for each
training set (All, Alkali, and Li) are shown in the last three columns, respectively.

instances could impact the learning and, hence, the perform-
ance of our models. Negative V,, and those with values greater
than 6 V constitute about 3.5% of the data (Figure 2).
Considering these instances as underrepresented we retrained
our models with the remaining data. Our results show no
significant differences with the results shown in Table 2.
However, even if significant differences were obtained by
removing statistical underrepresented instances, we believe
that including these instances is important for the predictive
capacity of our models, especially when considering electrode
materials with low voltages or those that will not work as
battery electrodes (V,, < 0). The scarcity of data in these
voltage ranges presents a problem for ML models such as, for
instance, the poor performance recently reported for graphite
based electrodes.’”

Overall, our DNN models for V,, exhibit a moderate
increase in accuracy compared to our previous work*" in which
we obtained a MAE of 0.43 and 0.47 V for an All data set
(consisting of only 6 metal-ion electrodes) and a Li-only data
set, respectively. There are about 22% more data instances in
our database than in the one used previously, with most of the
additions being active metals other than Li. Therefore, the
slight improvement in performance of the current models
could be attributed, in part, to the more robust data set used
for training. However, in the case of the Li-only models, we
obtain a MAE of 0.41 V compared to the 0.47 V obtained
previously, despite using roughly the same data set. Therefore,
the moderate improvement observed in this work can be
attributed to the more robust architecture of the current DNN
models that are deeper and wider than the ones employed in
the previous work."'

An additional assessment of the performance of our V,
models is presented in Supporting Information Table S4.

Change in Volume Models. Utilizing the same optimum
architecture employed in the V,, models, we set out to train
ML models for predicting the percentage of their volume
variation upon charging and discharging, AV,,. The perform-
ance of our models for AV, in each data set is presented in
Table 3. For the model trained on the All data set, MAE values
in each round vary in the range of 6.7% to 56.3% depending on
the fold considered, with a MAE of 23% and a SD of 19% in
the 10-fold set. For the model trained on alkali-ion based
electrode materials, MAE values for AV, drop to the range of
3.6% to 11.5%, with a SD of 2.3% and a MAE of 5.7%. Further
improvement is observed for the model trained on Li-only data
where we obtain a MAE of 3.9%, a range of 5% among the 10
fold set. For the final model trained with all 90% of the data in
each corresponding database (All, Alkali, and Li), the mean
absolute errors on the corresponding holdout test set (MAEr)
are 10.6%, 7.8%, and 3.8% for the All, Alkali, and Li models,
respectively.

While there are no significant variations in the performance
of the models targeting V,, trained on the All, Alkali, and Li

data sets, this trend contrasts sharply with the one obtained for
the AV, models. The MAE and the SD observed for models
trained on the All data set are too large for its use in predicting
the AV, of new electrode materials. However, these
differences in performance are to be expected if we consider
the relatively small range in the values of V,, and the extremely
large range of the AVy, values. The distribution of the AV, in
the All data set is shown in Figure 3. This distribution shows a
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Figure 3. Distribution of AV in the entire data set.

heavily imbalanced data set toward small volume variations.
The values of the AV, in our data set range from about 0% to
as much as a staggering 26 000%. However, more than 80% of
the data present small values of AV, of less than 10%. Just to
understand the influence of the low frequency data on the
performance of our models, we retrained our models after
removing instances with AV, greater than 30%.

Not surprisingly, the MAE for models trained on the All,
Alkali, and Li databases is significantly reduced to 2.7%, 2.4%,
and 2.1%, respectively, accompanied by a substantial reduction
in the corresponding SDs (Table 4). These results indicate that
our models will perform best for materials that are not
expected to expand or contract significantly upon charging and
discharging. On the other hand, it is clear that more data is
needed to expand current databases in the literature to account
for materials with large volume changes upon charging or
discharging in order to produce more robust ML models.

Li to Na Knowledge Transfer. To further assess the
potential of the models built in the previous sections, we set
out to investigate the robustness of these models by screening
novel electrodes for Na-ion batteries. We are particularly
interested in finding new Na-based electrodes with large values
of voltages and large changes in active-ion stoichiometries to
target high-energy density electrodes. We also considered
candidate electrodes with minimal AV, on charging and
discharging since, on one hand, small changes in volume
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Table 4. Distribution of MAE for AV, for the 10 Rounds of Training (R;) in Models Trained after Removing Instances with
AV, Greater than 30% with the Entire Data Set (All), the Alkali Only Data Set (Alkali), and the Li Only Data Set (Li)“

Ry R, Ry R, Ry Rg
All 2.7 24 2.5 24 2.7 29
Alkali 22 2.6 2.1 2.6 2.5 23
Li 1.9 23 2.5 22 22 22

R, Rg Ry Ryo SD MAE MAE;
2.8 2.8 2.9 2.7 0.17 2.7 2.7
2.5 2.4 2.5 2.4 0.15 2.4 22
1.9 2.3 1.9 22 0.20 2.1 2.0

“The standard deviation (SD), the average MAE across the 10 rounds (MAE), and the MAE for the final model in the test set (MAEy) for each
training set (All, Alkali, and Li) are shown in the last three columns, respectively.

Table S. Absolute Deviation in AV, and V,, between Values Predicted by the ML Models Trained with the Alkali Data Set and

First-Principles DFT+U Calculations”

absolute deviation

electrode AV, Vv, (V)

charged discharged reduced whole reduced whole
1 NaMn;OF; Na,Mn;OF, 10.0 14.6 043 0.12
2 Na(Co0,), Na,Co0, 30.0 19.1 231 072
3 NaNbTe,WO,, Na,NbTe,WO,, 117 6.8 0.40 031
4 NaCuF, Na,CuF, 10.1 10.6 0.02 0.19
S Na,CrO, Na,CrO, 14 2.6 2.12 1.38
6 NaMn,F, Na,Mn,F, 0.9 32 0.63 051
7 Mn,P,WO,, NagMn;PWO,, 24.4 19.1 037 0.13
8 CrWOy Na,CrWO, 1.8 2.4 031 034
9 NaNbF, Na,NbF, 11 9.7 191 0.18
10 NaVTe(WO,), Na,VTe(WO), 8.2 6.0 0.01 0.09
11 NaSbF¢ Na;SbFq 6.3 0.4 0.87 0.81
12 NaVOF,, Na,VOF,, 15.8 57 0.20 0.50
13 NaV,0, Na,VO, 20.1 29.3 2.78 1.62
14 NaV,OF, Na,V,0F, 6.4 144 0.06 042
15 CrPOF Na;Cr,P,(0,F), 189 115 0.67 1.05
16 NbO,F NaNbO,F 2.4 1.6 0.47 0.84
17 TiCrO, Na, TiCrO, 12.1 17.5 0.72 0.53
18 NaTiV;0,, Na,TiV;0,, 16.6 73 0.52 0.04
19 Mn,CrOg Na;Mn,CrO, 53 3.8 0.53 0.16
20 NaMn(PO,), Na;Mn(PO,), 183 154 124 0.66
21 NaMngOs4 Na,;Mn, O 83 14.6 2.12 0.07
22 VE, Na,VE, 1.8 1.0 043 1.32
MAE 10.5 9.8 0.87 0.55

“Reduced and whole represent the models trained on data excluding underrepresented instances and including underrepresented instances,

respectively.

produce better cyclability of electrodes and, on the other hand,
our models perform best for small volume expansions. We
therefore replaced Li with Na in a wide range of Li-ion
electrodes already present in our database and used our ML
models trained on the Alkali data set to predict V,, and AV,
We then selected those materials with large energy density and
small volume variations. With the new electrodes identified, we
performed additional DFT+U calculations to assess the
performance of the ML models in electrodes outside the
training set. Absolute deviations between our ML results in this
set of 22 new materials are presented in Table 5 (individual
DFT+U and ML results are provided in Supporting
Information). As seen in Table S, deviations between results
from ML models and DFT+U calculations are somewhat larger
than the MAE obtained for training. However, this trend is
expected since we are testing in novel Na-ion electrodes
outside the training data set. Additionally, we are assessing the
performance of ML models in Na-ion battery electrodes which
are severely underrepresented in our training data set (Figure

1).

We note that the results in Table 5 indicate that, on average,
deviations obtained with the unfiltered data set (i.e., without
removing underrepresented instances) performs slightly better
for both targets, AV, and V,,, indicating the importance of
including all instances in the training of ML models. Overall,
we observe that while there is a clear need to significantly
increase the number of instances with working ions other than
Li through systematic high-throughput first-principles calcu-
lations, our current models provide a valuable tool for the
initial screening of a large number of electrodes.

B CONCLUSIONS

We have built deep neural network regression machine
learning models for predicting the percentage change in
volume (AVy) and the average voltage (V,,) of battery
electrodes upon charging and discharging with metal ions. Our
models exhibit a good performance as measured by the MAE
obtained by using 10-fold cross-validation, as well as the MAEy
obtained on the independent test sets. Further assessment is
carried out by investigating the screening potential of ML
models outside instances included in the database. Novel Na-
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ion electrodes are produced by systematically replacing Li-ions
in the original database by Na-ions, and selecting those
electrodes that exhibit good performance in energy density, as
well as small volume variations upon charging and discharging,
as predicted by ML models. ML results for the selected
electrodes is then compared to DFT+U calculations. As
expected, we find that on this new evaluation set, MAEs for V,
and AV, are relatively larger than the ones obtained in the 10-
fold cross-validation. Nonetheless, the results are encouraging
considering the negligible amount of time involved in the ML
screening compared to the quantum-mechanics based
methods. We also investigated the effect of removing
underrepresented instances from the training database. We
find that while removing these instances decreases the MAE in
the 10-fold cross-validation, the predictive performance of the
models in electrode materials outside the database diminishes
when these instances are removed from the training.
Therefore, the predictive capacity of these models is expected
to improve further as more data is made available to the
scientific community in public databases, especially if new data
instances produce more balanced data sets for model
generation.

In summary, our work underscores the fundamental role of
deep learning in the exploration of materials for battery
applications.
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