DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin

Abstract

Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamases (ESBLs) are commonly associated with Gram-negative, hospital-acquired infections worldwide. Several beta-lactamase inhibitors, such as clavulanate, are used to inhibit the activity of these enzymes. To understand the mechanism of CTX-M-15 activity, we have determined the crystal structures of CTX-M-15 in complex with two specific classes of beta-lactam compounds, desfuroylceftiofur (DFC) and ampicillin, and an inhibitor, clavulanic acid. The crystal structures revealed that Ser70 and five other residues (Lys73, Tyr105, Glu166, Ser130, and Ser237) participate in catalysis and binding of those compounds. Based on analysis of steady-state kinetics, thermodynamic data, and molecular docking to both wild-type and S70A mutant structures, we determined that CTX-M-15 has a similar affinity for all beta-lactam compounds (ceftiofur, nitrocefin, DFC, and ampicillin), but with lower affinity for clavulanic acid. A catalytic mechanism for tested β-lactams and two-step inhibition mechanism of clavulanic acid were proposed. CTX-M-15 showed a higher activity toward DFC and nitrocefin, but significantly lower activity toward ampicillin and ceftiofur. The interaction between CTX-M-15 and both ampicillin and ceftiofur displayed a higher entropic but lower enthalpic effect, compared with DFC and nitrocefin. DFC, a metabolite of ceftiofur, displayed lower entropy and higher enthalpy than ceftiofur. This finding suggests that compounds containingmore » amine moiety (e.g., ampicillin) and the furfural moiety (e.g., ceftiofur) could hinder the hydrolytic activity of CTX-M-15.« less

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Washington State University, Pullman, WA (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Murdock Charitable Trust
OSTI Identifier:
1903868
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
International Journal of Molecular Sciences (Online)
Additional Journal Information:
Journal Name: International Journal of Molecular Sciences (Online); Journal Volume: 23; Journal Issue: 9; Journal ID: ISSN 1422-0067
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; antimicrobial resistance; β-lactamase; CTX-M-15; inhibitor; antibiotic; β-lactam compounds; crystal structure; inhibition mechanism

Citation Formats

Ahmadvand, Parvaneh, Avillan, Johannetsy J., Lewis, Jacob A., Call, Douglas R., and Kang, ChulHee. Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin. United States: N. p., 2022. Web. doi:10.3390/ijms23095229.
Ahmadvand, Parvaneh, Avillan, Johannetsy J., Lewis, Jacob A., Call, Douglas R., & Kang, ChulHee. Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin. United States. https://doi.org/10.3390/ijms23095229
Ahmadvand, Parvaneh, Avillan, Johannetsy J., Lewis, Jacob A., Call, Douglas R., and Kang, ChulHee. Sat . "Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin". United States. https://doi.org/10.3390/ijms23095229. https://www.osti.gov/servlets/purl/1903868.
@article{osti_1903868,
title = {Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin},
author = {Ahmadvand, Parvaneh and Avillan, Johannetsy J. and Lewis, Jacob A. and Call, Douglas R. and Kang, ChulHee},
abstractNote = {Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamases (ESBLs) are commonly associated with Gram-negative, hospital-acquired infections worldwide. Several beta-lactamase inhibitors, such as clavulanate, are used to inhibit the activity of these enzymes. To understand the mechanism of CTX-M-15 activity, we have determined the crystal structures of CTX-M-15 in complex with two specific classes of beta-lactam compounds, desfuroylceftiofur (DFC) and ampicillin, and an inhibitor, clavulanic acid. The crystal structures revealed that Ser70 and five other residues (Lys73, Tyr105, Glu166, Ser130, and Ser237) participate in catalysis and binding of those compounds. Based on analysis of steady-state kinetics, thermodynamic data, and molecular docking to both wild-type and S70A mutant structures, we determined that CTX-M-15 has a similar affinity for all beta-lactam compounds (ceftiofur, nitrocefin, DFC, and ampicillin), but with lower affinity for clavulanic acid. A catalytic mechanism for tested β-lactams and two-step inhibition mechanism of clavulanic acid were proposed. CTX-M-15 showed a higher activity toward DFC and nitrocefin, but significantly lower activity toward ampicillin and ceftiofur. The interaction between CTX-M-15 and both ampicillin and ceftiofur displayed a higher entropic but lower enthalpic effect, compared with DFC and nitrocefin. DFC, a metabolite of ceftiofur, displayed lower entropy and higher enthalpy than ceftiofur. This finding suggests that compounds containing amine moiety (e.g., ampicillin) and the furfural moiety (e.g., ceftiofur) could hinder the hydrolytic activity of CTX-M-15.},
doi = {10.3390/ijms23095229},
journal = {International Journal of Molecular Sciences (Online)},
number = 9,
volume = 23,
place = {United States},
year = {Sat May 07 00:00:00 EDT 2022},
month = {Sat May 07 00:00:00 EDT 2022}
}

Works referenced in this record:

The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter
journal, September 2006


Ambler Class A Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella spp. in Canadian Hospitals
journal, April 2004


Clavulanic Acid Inactivation of SHV-1 and the Inhibitor-resistant S130G SHV-1 β-Lactamase
journal, October 2005

  • Sulton, Deley; Pagan-Rodriguez, Doritza; Zhou, Xiang
  • Journal of Biological Chemistry, Vol. 280, Issue 42
  • DOI: 10.1074/jbc.M501251200

Atomic Resolution Structures of CTX-M β-Lactamases: Extended Spectrum Activities from Increased Mobility and Decreased Stability
journal, April 2005


Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography
journal, December 2015

  • Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.
  • Journal of Medicinal Chemistry, Vol. 59, Issue 1
  • DOI: 10.1021/acs.jmedchem.5b01215

AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility
journal, December 2009

  • Morris, Garrett M.; Huey, Ruth; Lindstrom, William
  • Journal of Computational Chemistry, Vol. 30, Issue 16
  • DOI: 10.1002/jcc.21256

Extended-Spectrum β-Lactamases (ESBLs): Characterization, Epidemiology and Detection
journal, January 2004


An Ultrahigh Resolution Structure of TEM-1 β-Lactamase Suggests a Role for Glu166 as the General Base in Acylation
journal, May 2002

  • Minasov, George; Wang, Xiaojun; Shoichet, Brian K.
  • Journal of the American Chemical Society, Vol. 124, Issue 19
  • DOI: 10.1021/ja0259640

Metallo-β-lactamase structure and function: Metallo-β-lactamase structure and function
journal, November 2012


Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern
journal, March 2008


Cephalosporins in Veterinary Medicine - Ceftiofur Use in Food Animals
journal, June 2002


Dissecting the catalytic triad of a serine protease
journal, April 1988

  • Carter, Paul; Wells, James A.
  • Nature, Vol. 332, Issue 6164
  • DOI: 10.1038/332564a0

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Rapid Emergence ofblaCTX-MAmong Enterobacteriaceae in U.S. Medical Centers: Molecular Evaluation from the MYSTIC Program (2007)
journal, September 2008

  • Castanheira, Mariana; Mendes, Rodrigo E.; Rhomberg, Paul R.
  • Microbial Drug Resistance, Vol. 14, Issue 3
  • DOI: 10.1089/mdr.2008.0827

β-Lactams and β-Lactamase Inhibitors: An Overview
journal, June 2016


Site-directed mutagenesis on TEM-1 ß-lactamase: role of Glul66 in catalysis and substrate binding
journal, January 1991

  • Delaire, Myriam; Lenfant, Francoise; Labia, Roger
  • "Protein Engineering, Design and Selection", Vol. 4, Issue 7
  • DOI: 10.1093/protein/4.7.805

The CTX-M β-lactamase pandemic
journal, October 2006


Binding Energy and Catalysis:  The Implications for Transition-State Analogs and Catalytic Antibodies
journal, August 1997

  • Mader, Mary M.; Bartlett, Paul A.
  • Chemical Reviews, Vol. 97, Issue 5
  • DOI: 10.1021/cr960435y

Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution
journal, October 1992

  • Strynadka, Natalie C. J.; Adachi, Hiroyuki; Jensen, Susan E.
  • Nature, Vol. 359, Issue 6397
  • DOI: 10.1038/359700a0

Recent Emergence of Escherichia coli with Cephalosporin Resistance Conferred by bla CTX-M on Washington State Dairy Farms
journal, July 2015

  • Davis, Margaret A.; Sischo, William M.; Jones, Lisa P.
  • Applied and Environmental Microbiology, Vol. 81, Issue 13
  • DOI: 10.1128/AEM.00463-15

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Structural Aspects for Evolution of β-Lactamases from Penicillin-Binding Proteins
journal, August 2003

  • Meroueh, Samy O.; Minasov, George; Lee, Wenlin
  • Journal of the American Chemical Society, Vol. 125, Issue 32
  • DOI: 10.1021/ja034861u

Structure of the wild-type TEM-1 β-lactamase at 1.55 Å and the mutant enzyme Ser70Ala at 2.1 Å suggest the mode of noncovalent catalysis for the mutant enzyme
journal, July 2005

  • Stec, Boguslaw; Holtz, Kathleen M.; Wojciechowski, Cheryl L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 61, Issue 8
  • DOI: 10.1107/S0907444905014356

The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril!
journal, October 2005


Evaluation of ceftiofur crystalline free acid sterile suspension for control of metritis in high-risk lactating dairy cows
journal, March 2013


Discovery of CTX-M-Like Extended-Spectrum β-Lactamases in Escherichia coli Isolates from Five U.S. States
journal, July 2003


Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria
journal, April 2012


Updated Functional Classification of  -Lactamases
journal, December 2009

  • Bush, K.; Jacoby, G. A.
  • Antimicrobial Agents and Chemotherapy, Vol. 54, Issue 3
  • DOI: 10.1128/AAC.01009-09

Extended-Spectrum  -Lactamases: a Clinical Update
journal, October 2005


Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity
journal, February 2005

  • Fisher, Jed F.; Meroueh, Samy O.; Mobashery, Shahriar
  • Chemical Reviews, Vol. 105, Issue 2
  • DOI: 10.1021/cr030102i

CTX-M-type β-lactamases: A successful story of antibiotic resistance
journal, August 2013

  • D’Andrea, Marco Maria; Arena, Fabio; Pallecchi, Lucia
  • International Journal of Medical Microbiology, Vol. 303, Issue 6-7
  • DOI: 10.1016/j.ijmm.2013.02.008

Structural Perspective of Peptidoglycan Biosynthesis and Assembly
journal, July 2012


The New β-Lactamases
journal, January 2005

  • Jacoby, George A.; Munoz-Price, Luisa Silvia
  • New England Journal of Medicine, Vol. 352, Issue 4
  • DOI: 10.1056/NEJMra041359

Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria
journal, March 2012


Structural Insight into Potent Broad-Spectrum Inhibition with Reversible Recyclization Mechanism: Avibactam in Complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-Lactamases
journal, February 2013

  • Lahiri, Sushmita D.; Mangani, Stefano; Durand-Reville, Thomas
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 6
  • DOI: 10.1128/AAC.02247-12

Irreversible Inhibition of the Mycobacterium tuberculosis β-Lactamase by Clavulanate
journal, October 2007

  • Hugonnet, Jean-Emmanuel; Blanchard, John S.
  • Biochemistry, Vol. 46, Issue 43
  • DOI: 10.1021/bi701506h

Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria
journal, October 2011


Antibiotic Resistance Mechanisms of Clinically Important Bacteria
journal, March 2011


Structure of the SHV-1 β-Lactamase
journal, May 1999

  • Kuzin, Alexandre P.; Nukaga, Michiyoshi; Nukaga, Yasuko
  • Biochemistry, Vol. 38, Issue 18
  • DOI: 10.1021/bi990136d

Clinical relevance of the ESKAPE pathogens
journal, March 2013

  • Pendleton, Jack N.; Gorman, Sean P.; Gilmore, Brendan F.
  • Expert Review of Anti-infective Therapy, Vol. 11, Issue 3
  • DOI: 10.1586/eri.13.12

AmpC  -Lactamases
journal, January 2009


Biochemical and Structural Characterization of Mycobacterium tuberculosis β-Lactamase with the Carbapenems Ertapenem and Doripenem
journal, May 2010

  • Tremblay, Lee W.; Fan, Fan; Blanchard, John S.
  • Biochemistry, Vol. 49, Issue 17
  • DOI: 10.1021/bi100232q