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Introduction 

Alignment of liquid crystal (LC) molecules is an important topic of physics of anisotropic fluids. The boundary 
conditions and the surface properties of the material in contact with an LC dictate the preferred orientation of the 
molecules at the interface. Several factors that affect the LC alignment include dipolar interactions, chemical bonding, 
van der Waals interactions, steric factors and surface topographies (Kahn et al. 1973; Lee 2014). 

There are three main types of director alignment: planar, tilted, and homeotropic (or perpendicular). The 
nomenclature reflects how the director n̂  that specifies the average molecular orientation of the LC is aligned at the 
surface, Figure 1. In the planar case, n̂  is parallel to a single direction in the plane of the interface, so that the polar 
angle   between the normal to the interface and n̂  is o90  and there is a well-defined direction in the plane, specified 
by some azimuthal angle  , Figure 1. A degenerate case, when n̂  is free to be along any direction in the plane, so 
that   is not fixed, is called a tangential alignment. Tilted alignment o0 90   can be along a single direction or 
conically degenerate. In the homeotropic alignment, n̂  is perpendicular to the interface, 0  . Numerous techniques 
have been employed to align rod-like calamitic LCs (Cognard 1982). The challenge, however, is to align LCs with 



molecules of complex shapes, such as bent-core and flexible dimer molecules, for which alignment is not always 
trivial (Iglesias et al. 2011; Elamain et al. 2013). Orienting water-based lyotropic LC systems is also difficult, but it is 
of great significance as this class of materials is often biocompatible. The stability of the alignment is one of the 
essential factors when assessing proposed methods, as environmental factors such as temperature, light polarization 
or humidity often affect the desired orientation. Though LCs are predominantly used in display technologies, the trend 
has now shifted towards biological application. Reports on LC alignment methods are vast. Therefore, in this chapter, 
we aim to briefly overview some of the widely used effective alignment approaches, report on the recently developed 
methods and extend on alignment techniques for non-calamitic LCs with molecules of complex shape. We conclude 
with discussing the advances, challenges and significance of using ordered, anisotropic LCs as templates for guiding 
biological matter. 

 
Planar alignment 

Below we discuss the most popular approaches to planar alignment and tilted alignment with a small “pretilt” angle, 
measured as o90   , o0 10  .  

 

Figure 1. Schematic representation of LC molecule depicting the polar    and the azimuthal   angles. 

Grooved surfaces 

One mechanism of alignment proposed by Berreman is based primarily on geometrical factors that arise from 
elastic energy if the surface in contact with LC is grooved (Berreman 1972, 1973). There are many methods that can 
be implemented to produce grooved surface topography, which include rubbing/polishing the substrate, deposition of 
material by evaporation, ion beam etching and lithographic techniques. Berreman considered the grooved surface as 

a sinusoidal wave sinz A qx  defined with an amplitude A  and wavelength 2
q
   (Figure 2) (Berreman 1972).  

 

 
Figure 2. Schematic representation of a sinusoidal grooved surface. 



Theoretical calculations of elastic energy of a liquid crystal in contact with such a substrate, assuming that the 
director is always tangential to the modulated surface and is aligned along a certain azimuthal direction  , leads to 
the following elastic energy per unit area 

2 3 2
d cos

4
KF A q  , (1) 

where K  is the elastic constant of the LC in the so-called one-constant approximation. As clear from Eq.(1), the 
equilibrium alignment of n̂  is along the grooves, i.e., along the y-axis in Figure 2, as this is the only direction of 
alignment that causes no elastic distortions of the LC.   
 

Deposition of polymeric coating  

A typical LC cell is comprised of two sandwiched glass plates separated by spacers. Prior the assembly, the inner 
side of each glass plate is treated with an aligning agent, such as a thin polymer layer, to induce the desired LC director 
orientation (Cognard 1982; Geary et al. 1987). Appropriate polymer coatings such as polyimides (PIs) are optically 
transparent, stable and can withstand relatively high temperatures  200 C  . The PI coating alone yields tangential 
anchoring of LCs, however, rubbing it with a velvet cloth, for example, will cause the rubbed surface to become 
unidirectionally anisotropic (Lee et al. 1996). Thus, rubbed PI layer induces a preferred azimuthal direction of LCs 
(Chen 2016). Van Aerle explored the degree of orientation of the rubbed polymer layer in terms of Hermans’ 
orientation factor f  and determined that 0.5 1f  , which indicates that rubbing process is an effective way to induce 
molecular orientation of a polymer layer (van Aerle and Tol 1994). Table 1 lists commercially available PI layers that 
produce the indicated pretilt angles (Takatoh 2005). 

Rubbing generates grooves and scratches on the polymer surface (Zhu et al. 1994). On that account, some suggest 
that surface topography may cause long-range elastic effects and orient the long axes of LC molecules in the grooves 
parallel to the rubbing direction, as in the Berreman’s model (Berreman 1972, 1973; Lee et al. 1993; Zhu et al. 1994). 
Another plausible mechanism is reorientation of polymer chains during rubbing (Castellano 1983; Geary et al. 1987; 
Vanaerle et al. 1993; Murata et al. 1993; van Aerle and Tol 1994; Toney et al. 1995; Lee et al. 1996; Lee et al. 1997). 
X-Ray scattering measurements demonstrate that rubbing a PI film causes near surface alignment of the polymer 
molecules parallel to the rubbing direction (Toney et al. 1995). Buffing-induced birefringence measurements by Geary 
et al and the Langmuir-Blodgett aligning films (nonrubbed) developed by Murata et al also show that the orientation 
of polymer molecules is the primary driving mechanism of the LC alignment, and not the nanogrooves (Geary et al. 
1987; Murata et al. 1993).  

The schematic representation of the rubbing process and generated molecular reorientation of polymer chains is 
illustrated in Figure 3. Intermolecular forces between the polymer and LC molecules are of great importance in 
aligning such buffed system and favor parallel alignment (Kleman and Lavrentovich 2003; Yang and Wu 2014). Even 
though rubbing PI layers results in good alignment of rod-like and bent shape LC molecules, a significant shortcoming 
of this technique is the accumulation of static charges and formation of fine dust particles which may deteriorate 
performance of LC displays (Lee 2014). 

The strength of alignment is determined by using anchoring energy concept (de Gennes and Prost 1995). The 
anchoring energy, ( , )W   , is defined as a measure of work per unit area needed to deviate the director from the so-

called “easy axis” 0 0( , )   that corresponds to the director orientation that sets the minimum of the surface energy: 
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W W    , where W  and W  is the polar and azimuthal anchoring coefficients. For 

small director deviations from the easy axis, the surface anchoring potential for tangentially anchored substrates may 
be approximated by Rapini-Papoular expression (Rapini and Papoular 1969): 
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Anchoring strength is considered weak, when  7 5 210 10  J/mW  : and strong, when 3 210  J/mW : ; typically, 

W W   by one or two orders of magnitude (Blinov and Chigrinov 1994; Kleman and Lavrentovich 2003; Yang and 
Wu 2014; Muševič 2017). 

 
Table 1. Commercially available polyimide alignment materials that generally yield planar alignment for conventional 
rod-like liquid crystals (Takatoh 2005). 

 

 
 

 
Figure 3. Schematic diagram of polyimide rubbing process resulting in microscopic molecular reorientation. Adapted with 
permission from Lee KW, Paek SH, Lien A, Durning C, Fukuro H (1996) Microscopic molecular reorientation of alignment layer 
polymer surfaces induced by rubbing and its effects on LC pretilt angles. Macromolecules 29 (27):8894-8899. Copyright (1996) 
American Chemical Society. 

 

Carbon nanotube films 

Carbon nanotubes (CNTs) are hollow cylindrical molecules which consist of rolled sheet of single-layer carbon 
atoms. Their aspect ratios may reach up to 710: , owing to their nanometer diameter and length that may extend up 
to centimeters (Ren et al. 2013). CNTs are a subject of intense research due to their extraordinary physical properties 
such as high tensile strength, high electrical and thermal conductivities, high ductility, high chemical and thermal 
stability (Ren et al. 2013). CNTs also exhibit anisotropic physical properties (Ren et al. 2013). 

Single-layer CNT sheets have attracted a lot of interest, since these highly optical transparent coatings may 
simultaneously serve as both a LC alignment layer and a conductive layer (Russell et al. 2006; Fu et al. 2010; Rahman 
et al. 2018; Truong et al. 2019). Single-layer sheet can be drawn continuously from a vertically grown CNT forest, 
which facilitates mass production of these sheets at a commercial level (Truong et al. 2019). Russell et al generated 

Name Pretilt angle Manufacturer  Name Pretilt angle Manufacturer 
AL1454 0.7˚ JSR AL1J508 4.7˚ JSR 
LQ-2200 0.8˚ Hitachi Chem. Dupont SE-150 4-5˚ Nissan Chem. Corp. 

JALS-146-R39 1˚ JSR SE-3310 4-5˚ Nissan Chem. Corp. 
AL5056 2˚ JSR SE7992 4-5˚ Nissan Chem. Corp. 
SE2555 2˚ Nissan Chemicals Corp. JALS-1024-R1 4-5˚ JSR 
SE-410 2˚ Nissan Chemicals Corp. JALS-9800-R1 4-5˚ JSR 
SE-130 2˚ Nissan Chemicals Corp. JALS-1077-R2 5˚ JSR 

SE-2170 2˚ Nissan Chemicals Corp. SE3140 5-6˚ Nissan Chem. Corp. 
LX-1400 2.6˚ Hitachi Chem. Dupont SE5291 5-6˚ Nissan Chem. Corp. 
AL8254 3˚ JSR JALS-9005-R1 5-6˚ JSR 
LQ-C100 3.1˚ Hitachi Chem. Dupont SE7492 6-7˚ Nissan Chem. Corp. 
AL3408 3-4˚ JSR LQ-T120-04 6.8˚ Hitachi Chem. Dupont 
AL3046 3.5˚ JSR SE-610 7-8˚ Nissan Chem. Corp. 

LQ-T120-03 3.5˚ Hitachi Chem. Dupont SE3510 7-8˚ Nissan Chem. Corp. 
JALS-1068-R2 4.3˚ JSR LQ-1800 8.0˚ Hitachi Chem. Dupont 

AL1F408 4.5˚ JSR    



aligned single-walled CNT films via self-assembly as well as dip-coating methods and achieved uniform planar 
alignment of nematic LCs on the scale of centimeters (Russell et al. 2006). Their inherent conductive property 
eliminates the need of additional costly transparent electrodes for electro-optical applications. The surface topography 
of aligned CNTs observed via atomic force microscopy shows parallel grooved structures with an amplitude on the 
order of 210:  nm, much larger than grooves resulted from rubbed PI layers described in the previous section (Fu et 
al. 2010; Truong et al. 2019). It is proposed that since the long-chain structure at the surface does not exist, the 
mechanism of LC alignment is realized via grooved surface roughness of unidirectionally aligned CNTs (Russell et 
al. 2006; Fu et al. 2010). 

CNTs are attractive aligning materials because they may be implemented in flexible/foldable electro-optical 
systems (Rahman et al. 2018). The current issue which is being addressed is the difficulty of attaining good adhesion 
between CNTs and substrate while keeping the orientational order as high as possible (Rahman et al. 2018). Truong 
and co-workers have recently explored this issue and reported that the hydrophobic treatment of the substrate using 
hexamethyldisilazane prior to the deposition of CNT sheet improved the adhesion between aligned CNT bundles and 
the glass substrate (Truong et al. 2019). The authors also eliminated the problem of short-circuit failure of the sandwich 
LC cell due to floating CNT nanofibrils that unintentionally connect two facing CNT-sheet electrodes by depositing 
an alumina passivation layer (Truong et al. 2019). 

Photoalignment 

One of the most powerful alignment methods employs light-matter interaction to induce controlled LC alignment. 
Contact-free photoinduced alignment technique eliminates undesired contaminants such as electrostatic charges, 
impurities as well as mechanical damage of the surface which may be caused by conventional rubbing of PI films 
(Ichimura et al. 1988; Gibbons et al. 1991; Schadt et al. 1992; Dyadyusha et al. 1992; Chigrinov et al. 2008; Pasechnik 
et al. 2009). Some of the greatest assets of this method is the ability to achieve rewritable, complex and nonuniform 
spatial patterns of the director field on flat or curved substrates, which are otherwise impossible to realize (Presnyakov 
et al. 2005). Additionally, photoalignment systems have an ability to achieve nano-scale alignment (Shteyner et al. 
2013). Photopatterning is widely used in LC display applications, however, recently this alignment method became 
extensively used to fabricate functional materials such as stimuli-responsive films/coatings (Figure 4), sorting systems 
and optical elements (Slussarenko et al. 2011; McConney et al. 2013; Gao et al. 2015; White and Broer 2015; Ware 
et al. 2015; Wai Tam et al. 2016; Peng et al. 2016a; Peng et al. 2017a; Babakhanova et al. 2018; Bushuyev et al. 2018).  

 

 

Figure 4. a) Scanning electron microscopy (Quanta 450) image of a plasmonic metamask made of nanoaperture arrays in Al film 
exhibiting an array of topological defects, (scale bar 1 μm ), b) LC PolScope (Abrio Imaging Systems) image of the director field 
of a photopatterned liquid crystal elastomer coating that closely follows the nanoaperture orientations in the plasmonic metamask 
in panel (a), (scale bar 50 μm ), c) digital holographic microscopy (DHM) image of a photopatterned thermoresponsive liquid 
crystal elastomer coating at 100 CT    forming nanometer surface profiles composed of hills/valleys in controlled locations 
preprogrammed by the director field orientation in (a,b). Bend deformations shown in (a,b) result in hills illustrated in (c) as 
described in (Babakhanova et al. 2018).  

 
One can distinguish at least four types of photoalignment mechanisms: 1) photochemically reversible trans-cis 

isomerization in materials containing azobenzene dyes, 2) reorientation of azo-dye chromophore molecules under the 
action of polarized light, 3) photodegradation and orientational bond breaking in polyimides, and 4) photochemical 
crosslinking in preferred directions of polymer precursors, such as cinnamoyl side-chain polymers (Chigrinov et al. 



2005; Chigrinov et al. 2008; Yaroshchuk and Reznikov 2012). The first two mechanisms are reversible, whereas the 
other two processes involve irreversible photochemical changes (Chigrinov et al. 2008). 

Azobenzene molecules have two conformations: trans and cis (Figure 5a), where the trans rod-like isomer is 
thermodynamically more stable than its bent (cis) counterpart (Aguilar and San Román 2014). Azobenzenes undergo 
reversible trans-cis isomerization when irradiated in their absorption bands (Bandara and Burdette 2012; Aguilar and 
San Román 2014). Usually, UV irradiation creates an excess of cis-isomers, while visible light converts most of the 
molecules into trans form. Ichimura and coworkers used azobenzene molecules attached to a substrate as a 
“commanding layer” of photoalignment: rod-like trans-isomers would align the adjacent LC molecules 
perpendicularly to the surface, while bent cis-isomers would support tangential alignment.  The alignment can thus be 
switched by light driven isomerization from homeotropic to tangential and back (Figure 5b) (Ichimura et al. 1988). It 
is important to note that the degradation of the dye layer may impact the number of possible reversible cycles from 
trans to cis conformation. 

 

 
Figure 5. a) Schematic representation of an azobenzene unit that changes from trans conformation to cis upon illumination of UV 
light  =365 nm , while visible light  400 nm   restores the trans form, b) cartoon image of photoinduced  homeotropic to 
planar alignments of LCs using trans-cis conformational changes of azo-dye moieties. Adapted with permission from Ichimura K, 
Suzuki Y, Seki T, Hosoki A, Aoki K (1988) Reversible Change in Alignment Mode of Nematic Liquid-Crystals Regulated 
Photochemically by Command Surfaces Modified with an Azobenzene Monolayer. Langmuir 4 (5):1214-1216. Copyright (1988) 
American Chemical Society. 

The second photoalignment mechanism is the pure reorientation of azo-dye molecules due to polarized light 
(Kozenkov et al. 1986; Barnik et al. 1989). The azo-dyes strongly absorb light if the exciting optical field polarization 
is parallel to the dipole transition moment (Lee 2003). Azobenzenes in trans conformation with their transition 
moments parallel to the polarization direction of the incident light undergo reversible isomerization to cis state, where 
the probability of absorption is 2cos  ;   is the angle between the transition moment of an azobenzene and the linear 
polarization direction of the irradiating light (Li 2013; Aguilar and San Román 2014). Thus, the isomers whose 
transition moments are perpendicular to the linear polarized light have a very low probability of undergoing 
photoisomerization (Bandara and Burdette 2012). Photodriven alignment of azobenzene chromophores perpendicular 
to the UV light polarization, also known as Weigert effect, is realized as the net population of azobenzene moieties 
reorient perpendicularly to the linearly polarized light (Li 2013). 

One of the recently developed methods utilizing pure azo-dye reorientation is the plasmonic photoalignment 
technique that utilizes plasmonic metamasks (PMMs). The PMM represents a thin Al film with an array of rectangular 
100 nm x 220 nm nanoapertures (Figure 4a) (Guo et al. 2016). Unpolarized light transmitted through a PMM acquires 
linear polarization that is perpendicular to the long axis of the nanoapertures. Thus, a transmitted light with a pattern 
of both intensity and polarization is produced, which is then projected onto an azo-dye coated photosensitive materials 
that is previously spin-coated onto a glass substrate. Guo et al used Brilliant Yellow (BY) (Sigma Aldrich) and PAAD-
72 (BeamCo) photoalignment materials (Guo et al. 2016). Once polarized light irradiates the azo-dye molecules, 
photochemical reaction is induced that results in the reorientation of their long axes perpendicularly to the local light 
polarization. When LC is in contact with prepatterned photoaligned coating, the director closely follows the orientation 



inscribed into the alignment of dye molecules; in other words, the orientational pattern of the liquid crystal is the same 
as that one of  nanoapertures  in the PMM (see Figure 4b and Figure 4a) (Guo et al. 2016). 

One of the major drawbacks of photoalignment using azo-dyes is the sensitivity of the photoalignment materials to 
humidity (Wang et al. 2017). Humidity may effect the wetting of the photoresponsive film during the spin-coating 
process (Hecht et al. 1998). Wang et al explored the effect of relative humidity (RH) levels at different stages of 
photoalignment preparation using dichroic azo-dye BY: at the stage of substrate storage before coating, during the 
spin-coating process, between film coating and exposure, and after exposure (Wang et al. 2017). The greatest effect 
of RH on the order parameter of the photoalignment layer was at the time of spin-coating process of the 
dimethylformamide/BY solution, the results in Figure 6 indicate that the best alignment is achieved at RH levels 
< 45 %, and no alignment is achieved at RH levels > 50 % (Wang et al. 2017). The absorption spectra of the prepared 
BY films (prepared at different RH levels at the time of spin-coating) shows a red-shift with increase in RH, possibly, 
due to the change in BY aggregation (Wang et al. 2017). Grazing incidence X-ray diffraction patterns in the case of 
BY dispersed in triacetyl cellulose show that humidity triggers restructuring of the BY assembly from 1D nematic-
like order to 2D rectangular lattice composed of columnar order of BY molecules, resulting in the dramatic increase 
in the order parameter (Matsumori et al. 2015). During the humidification process, hydration might occur site-
selectively around the sodium sulfonate hydrophilic functional groups that may enhance the lyotropic liquid crystalline 
property of BY which facilitates the reordering of the molecules into columnar assemblies (Matsumori et al. 2015). 
Storing conditions before polarized light exposure also greatly effect the photoalignment. Wang et al show that 
unexposed BY films kept at high humidity  80-90% RH  for 2.5 hr show no alignment  =0.01-0.11S , while films kept 
at moderate humidity  40-45% RH  show relatively constant order parameter  =0.76-0.79S  (Wang et al. 2017). Thus 
RH levels need to be taken into consideration as humidity absorption plays an important part during the 
photopatterning process. 

 
 

 
Figure 6. a) Azo-dye BY, b) Order parameter  S as a function of relative humidity levels during the spin-coating photosensitive 
layer BY Reprinted by permission of the publisher Taylor & Francis Ltd., Wang JR, McGinty C, West J, Bryant D, Finnemeyer V, 
Reich R, Berry S, Clark H, Yaroshchuk O, Bos P (2017) Effects of humidity and surface on photoalignment of brilliant yellow. 
Liquid Crystals 44 (5):863-872.  

Another photoinduced alignment mechanism involves breaking polyimide chains with UV light (Hasegawa 1999). 
Initially, the PI chains are randomly oriented in the plane of the film. Upon UV irradiation, the PI chains that are 
parallel to the UV polarization decompose. The remaining chains oriented perpendicular to the polarization of light 
remain intact. Thus, the direction of LC alignment due to van der Waals forces is parallel to  the maximum density of 
unbroken polyimide chains (Chigrinov et al. 2008). One of the major limitation of photodegradation is the small value 
of the orientational order parameter, its accurate control and high sensitivity to UV exposure time (Figure 7) (Sung et 
al. 2001; Chigrinov et al. 2008). Additionally, the by-products may contaminate the system by reducing the thermal 
stability of the alignment layer, producing ions that may cause image sticking or flickers (Yang et al. 1996; Wang et 
al. 2001). 

 



 
Figure 7. Order parameter of LC cells as a function of UV exposure time. Adapted from Sung SJ, Kim HT, Lee JW, Park JK. 

Photo-induced liquid crystal alignment on polyimide containing fluorine group. Synthetic Met 117 (1-3):277-279. Copyright 
(2001) Elsevier. 

 
The photoalignment mechanism developed by Schadt and coworkers is based on a different class of 

photoresponsive materials (typically used as a negative photoresist), called polyvinyl 4-methoxy-cinnamate (PVMC) 
(Schadt et al. 1992). The UV irradiation causes a topochemical reaction between the side chains of prepolymer 
containing cinnamate (Chrzanowski M. M. 2011). The optical excitation of   electrons in double-bonds of 
cinnamoyl moieties is polarization dependent (Schadt 2017). Thus, under linear photo-polymerization (LPP) the 
prepolymer undergoes [2+2] cycloaddition of cinnamic acid side chains that belong to different main chains, where 
parallel double bonds, one from each molecule, are broken and reform as single bonds between molecules (Figure 8, 
Figure 9) (Schadt et al. 1992; Ogawa and Kanemitsu 1995). LPP leads to a preferred depletion of cinnamic acid side 
chain along linearly polarized UV light  320 nm  . Consecutively, LPP causes anisotropic distribution of 
cyclobutane molecules with their long axis perpendicular to the polarization direction of the incident polarized UV 
light (Schadt et al. 1992; Chigrinov et al. 2008). When in contact with PVMC films, LCs align along the long axis of 
cyclobutane molecules due to van der Waals forces. LPP-photoalignment technology allows generation of pre-tilt 
angles ranging from 0 90 and simultaneously fixation of the alignment (Schadt et al. 1992). The major drawback 
of this technique is the low thermal stability. 

 

 
Figure 8. [2+2] cycloaddition; a model for polymerization. 

 

 
Figure 9. Two poly(vinyl 4-methoxycinnamate) side chains undergo intermolecular photo-induced [2+2] cycloaddition. Adapted 
from (Schadt et al. 1992). 



 
There are other light-driven techniques that achieve LC alignment without involving any dyes. Scanning wave 

photopolymerization (SWaP) is a dye-free alignment method that does not require polarized light (Hisano et al. 2016; 
Hisano et al. 2017). SWaP allows to achieve arbitrary, complex 2D alignment patterns over large areas without any 
prior surface treatments with resolution down to 2 μm:  (Hisano et al. 2017). SWaP uses spatiotemporal scanning of 
focused guided light and is triggered by mass flow in the film arising from molecular diffusion in the light intensity 
gradient as the polymerization reaction propagates (Hisano et al. 2017; Aizawa et al. 2018). This single step process 
results in LC alignment parallel to the incident light patterns. The limiting factor of SWaP is that it is currently 
applicable to aligning photopolymerizable LCs with thicknesses below tens of micrometers (Hisano et al. 2017). 

Tilted alignment 

Generally, buffed polymer main chains described in the earlier section result in small pretilt angles (see Table 1). 
The alkyl branches in a PI layer affect the magnitude of the pretilt angle. For example, in the absence of the alkyl 
branches, the pretilt is very small: 2 : , whereas low and high density of alkyl chains results in an increase of the 
tilt angle  5 20 :  (Pasechnik et al. 2009). Control of the tilt angle is crucial in applications in which there is a pre-
requisite of molecular realignment along a single predetermined direction (Cognard 1982). In order to achieve 
relatively high pretilt  30: , generally, an oblique evaporation of silicon oxides (SiOx) is used (Janning 1972; 
Meyerhofer 1976). Depending on the angle between the substrate plane and the direction of the incident beam (Figure 
10), tilt angles ranging from 0 90   may be obtained (Cognard 1982). The incident angle of evaporation    causes 
the film to “grow” in the preferred direction forming micro-columnar structures on the surface of the substrate via 
self-shadowing mechanism (Janning 1972; Skarp et al. 1988; Takatoh 2005; Lakhtakia and Messier 2005; Liou et al. 
2006; Pelliccione and Lu 2008). When in contact with such a surface, LCs orient in the direction of the film growth 
(defined by the azimuthal angle of the evaporation direction) (Janning 1972). The features of the surface structures of 
the oblique evaporated film change with   (Takatoh 2005; Liou et al. 2006; Oton et al. 2014). 

In order to achieve high in-plane uniformity of the film as well as high accuracy of the evaporation angle, the source 
must be placed at a large distance from the target substrate. The drawback of this technique is the cost of the vacuum 
equipment. Another considerable disadvantage is the need of large chambers to accommodate bigger substrates, which 
may pose a problem for high volume production. 

 
Figure 10. Schematic representation of oblique evaporation system, where z-axis represents the surface normal,   is 
an angle between the surface normal and the evaporation direction. 



Alternatively, another approach to control the pretilt is to mix planar and homeotropic polyimides. The mixing 
ratio, baking temperature and rubbing strength influence the pretilt angle (Yeung et al. 2006a; Yeung et al. 2006b; Ho 
et al. 2007; Vaughn et al. 2007; Kim et al. 2007; Wu et al. 2008). This technique allows achieving pretilt angles 
ranging from 0 90  , where the pretilt angle increases monotonically with the increasing concentration of 
homeotropic PI (Figure 11a) (Yeung et al. 2006a; Ho et al. 2007; Wu et al. 2008). The pretilt drops with the lower 
concentration of homeotropic PI due to the decline in the concentration of alkyl side chains associated with 
homeotropic PI (Vaughn et al. 2007). Increasing the baking temperature also results in monotonous decline of pretilt 
angle (Figure 11b). This observation is expected, since over-baking polyamic acids has two consequences: 1) it 
initiates imidization of the backbones of homeotropic PI promoting planar alignment, 2) cleaves away a fraction of 
the side chain of the homeotropic PI component which weakens the vertical alignment (Vaughn et al. 2007; Wu et al. 
2008). Lastly, the pretilt may also be affected by the strength of rubbing the homeotropic PI (Figure 11c). When 
mixture of horizontal and vertical PIs is used, the tendency to align horizontally increases with increasing strength of 
rubbing, thus reducing the pretilt angle (Wu et al. 2008). 

 

 
Figure 11. Variation of pretilt angle as a function of a) concentration of homeotropic PI in the mixture, b) baking temperature, c) 
rubbing strength. Adapted with permission from Wu WY, Wang CC, Fuh AYG (2008) Controlling pre-tilt angles of liquid 
crystal using mixed polyimide alignment layer. Opt Express 16 (21):17131-17137. © The Optical Society.  

 
Vertical alignment 

Vertical, or homeotropic, alignment generally refers to LC molecular orientation such that 0   , although for 
some applications (such as electro-optical switching of LCs) a pre-tilt angle  80 90    might be essential. There 
is no single method of homeotropic alignment that would work for all LCs. Nevertheless, surfactants and homeotropic 
PIs are typically successful in aligning conventional rod-like molecules. Homeotropic alignment for nontrivial shape 
of LCs, however, is rather challenging. Realizing a durable homeotropic alignment is of great importance, since tilting 
of the uniaxial director due to anchoring transition in some cases might be misinterpreted as a biaxial nematic phase 
(Senyuk et al. 2010; Kim et al. 2014a; Kim et al. 2014b; Kim et al. 2015). Thus, we will introduce two alignment 
layers techniques which were successful in aligning rigid bent-core as well as flexible bent-core molecules.  

Deposition of surfactant 

 Surfactants are amphiphilic surface-active agents that are comprised of two parts: hydrophilic head group and 
hydrophobic hydrocarbon chain. The head and the tail of an amphiphile interact very differently with a polar or 
nonpolar media. Examples of popular surfactants that are generally used in LC alignment are lecithin (derived from 
eggs), hexadecyl-trimethylammonium bromide (HMAB), stearic acid, cetyl trimethylammonium bromide (CTAB) or 
dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride  (DMOAP) (Figure 12). Note here that the quality 
of the homeotropic alignment via surfactants is highly dependent on the substrate and LC composition. Generally, 
(especially when using DMOAP) the cleanliness of the substrate is extremely important, since any organic residuals 
may hinder the desired alignment. Cleaning the glass substrates with piranha solution is very effective in removing 
organic residuals (Zhou et al. 2017). 

It is also worth mentioning that the longevity of the alignment layers using surfactants is less stable than hard-
baked PI coatings, since the absorbed layer slowly dissolves in the LC, which may also affect the composition and 
properties of the system (Cognard 1982). Thus, checking the isotropic – LC phase transition may be a convenient way 
to detect contamination due to an alignment layer, as doping LCs with small amounts of non-mesogenic compounds 



significantly alters the clearing points (by a few Kelvins) (Dierking 2003). Humidity and heat may also damage the 
alignment (Cognard 1990; Yoon et al. 2011). 

 

 

Figure 12. Conventional surfactants used for homeotropic alignment of LCs: a) lecithin, b) stearic acid, c) cetyl 
trimethylammonium bromide, d)  dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride. 

To set the homeotropic alignment using derivatives of lecithin, for example, clean glass substrates are typically 
treated with a weak solution of lecithin (0.1 - 2 wt%) in hexane by dipping or spin-coating methods. Dilution is 
important to avoid formation of unwanted spots (Cognard 1982). The excess amounts of lecithin may be washed out 
with the solvent, after which the substrates are dried for 30 min at 80 ˚C (Cognard 1982). The hydrophilic head groups 
attach to the substrate, extending their long hydrophobic alkyl chains perpendicular to the surface, forming brush-like 
structure (Hiltrop and Stegemeyer 1978). 

The alignment properties of LCs on lecithin monolayers depend on the packing density (PD), where, generally, the 
orienting power of amphiphiles decreases with PD (Hiltrop and Stegemeyer 1978).  One may precisely control PD by 
transferring a monomolecular layer of surfactants at the air-water interface onto a solid glass using Langmuir-Blodgett 
method (Roberts 1990). At proper concentrations, the alkyl brushes form elongated holes of molecular dimensions 
which can accommodate rod-like LC molecules (Hiltrop and Stegemeyer 1978). At low and high densities of alkyl 
chains, the steric interactions are not sufficient to induce homeotropic alignment, which results in random alignment. 
The model of steric interaction between surfactant layer and LC molecules that promotes vertical alignment proposed 
by Hiltrop et al is shown in Figure 13.  

 



 

 
Figure 13. Schematic representation of the model of interaction between nematic LCs and lecithin monolayer: a) homeotropic 
alignment at low packing density, b) lack of anchoring at high packing density resulting in distorted alignment. Adapted from 
Hiltrop K, Stegemeyer H (1978) Alignment of Liquid Crystals by Amphiphilic Monolayers. Berichte der Bunsengesellschaft für 
physikalische Chemie 82 (9):884-889. Copyright (1978) Wiley-VCH and Bunsengesellschaft. 

 

Homeotropic polyimide layers 

Polyimides are generally mixed with a solvent, and the mixture is spin-coated onto a clean glass substrate to form 
a nano-layer coating (Armitage et al. 2006). The soft film then follows soft- and hard-baking procedures to generate 
a hard alignment layer. Each PI aligning agent has a unique curing temperature, though, generally the operational 
temperatures are very high to induce thermal imidization reaction (for example curingT  of the widely used SE-1211 and 
SE-7511L is 180 °C) (Armitage et al. 2006). The chemical structure of the homeotropic PIs is generally of side chain 
type, since the conventional rod-like LCs tend to align parallel to the side chain of the polymer (Hwang et al. 2003; 
Oh-e et al. 2004; Takatoh 2005; Park et al. 2007; Lee et al. 2007; Fang et al. 2010). Typically, rubbing homeotropic 
PIs is also employed to generate a pre-tilt angle as the side chain tends to align towards the rubbing direction. Rubbing 
has to be extremely delicate, since a single rubbing-induced scratch in a projection display may be easily observed 
when the image is magnified by 50 100 :  (Armitage et al. 2006). 

 
Table 2. Commercially available polyimide alignment materials that usually yield homeotropic alignment (Takatoh 

2005). 

 
 
 
 
 
 

 

 
 

Name Pretilt angle Manufacturer 
SE-1211 90˚ Nissan Chemicals Corp. 
SE-5661 90 ˚ Nissan Chemicals Corp. 

SE-7511L 90˚ Nissan Chemicals Corp. 
JALS-682-R6 88˚ JSR 
JALS-2021-R2 89˚ JSR 
JALS-2022-R2 82˚ JSR 

JALS-204 89˚ JSR 



Rigid bent-core LCs 

Note that the polyimide materials listed in Table 2 fail to produce homeotropic alignment of nematics formed by 
molecules of nontrivial shape, where Schlieren texture is observed instead (Kim et al. 2014b; Kim et al. 2016b). To 
stabilize the vertical alignment, a small amount of UV-curable reactive mesogen (RM) may be mixed with the 
homeotropic polyimide alignment layer (Lee 2009; Senyuk et al. 2011; Kim et al. 2014b; Kim et al. 2016b). For 
instance, rigid oxadiazole bent-core mesogens, which could not be aligned via SE-1211, SE-7511, and SE-5661, were 
successfully aligned homeotropically using RM-doping technique following the procedure below (Kim et al. 2016b): 

The reactive mesogen RM-257 (Merck) was added to the polyimide SE5661 in a 1:50 weight proportion. A small 
amount (0.1 in weight proportion) of photoinitiator, Irgacure 651 (Ciba Chemicals), was then added. The mixture was 
spin coated on glass substrates and baked at 170 °CT   for one hour. Subsequently, RM-SE5661 coated substrates 
were exposed to UV irradiation using 6 W UV  365 nm   lamp for 90 min to polymerize the reactive mesogens 
(Kim et al. 2016b). Such aligning protocol was used to achieve stable homeotropic alignment and establish the uniaxial 
nematic nature of the oxadiazole bent-core mesogens on the macroscopic scale. Similar approaches employed different 
aligning layers mixed with RMs to achieve high-performance homeotropic alignment (Lee 2009; Lee et al. 2013; Son 
et al. 2017). 

Flexible bent-core LCs 

Recently, flexible bent-core molecules were demonstrated in transmission electron microscopy studies to form a 
new nematic phase, called twist-bend nematic (Borshch et al. 2013; Chen et al. 2013). The reports on unusual behavior 
of material properties found new applications in electro-optics (Cestari et al. 2011; Adlem et al. 2013; Xiang et al. 
2014a; Xiang et al. 2014b; Robles-Hernandez et al. 2015; Yun et al. 2015; Xiang et al. 2015; Lopez et al. 2016; 
Sebastian et al. 2016; Robles-Hernandez et al. 2016; Babakhanova et al. 2017; Cukrov et al. 2017; Sebastian et al. 
2017; Iadlovska et al. 2018). The characterization of material parameters such as dielectric anisotropy and elastic 
constants requires one to prepare both planar and homeotropic alignment. Planar alignment (Figure 14a) is easily 
achieved with conventional methods of PI deposition (such as PI2555 in Table 1). Thus far, the homeotropic 
alignment, however, was only achieved for fluorinated flexible dimeric mesogens with negative dielectric anisotropy 
(Borshch et al. 2013; Cukrov et al. 2017; Jakli et al. 2018). The deposition of conventional PIs or surfactants alone 
either results in characteristic misaligned Schlieren texture or weak homeotropic alignment stable for only few 
degrees, as upon cooling, LC experiences anchoring transition and homeotropic alignment is lost. A stable 
homeotropic alignment was achieved using DMOAP-SE5661 double-layer deposition method outlined below (Cukrov 
et al. 2017). 

To realize stable homeotropic alignment of fluorinated dimers (Figure 14b), first, the ITO-coated glass was cleaned 
in the ultrasonic bath, rinsed in deionized (DI) water and rinsed again with an Isopropyl Alcohol (IPA). To evaporate 
the solvent, the substrates were placed in an oven. After drying, the ITO glass was treated with UV ozone for 15 
minutes. Subsequently, the substrates were immersed and agitated in 1 wt% aqueous solution of Dimethyloctadecyl[3-
(trimethoxysilyl)propyl]ammonium chloride  (DMOAP) (Sigma-Aldrich) for 25 minutes. The substrates were than 
rinsed with DI water for three minutes, dried with Nitrogen gas and cured in an oven at 110 °CT  . Lastly, the second 
alignment layer, SE5661 mixed with a thinner, Solvent 79, with 1:1 ratio (Nissan Chemical Industries), was spin-
coated at 500 rpm (3 sec), 3000 rpm (30 sec), 50 rpm (1 sec) on ITO substrates. After the spin-coating procedure, the 
substrates were soft-baked at 80 °CT   for 10 minutes, and, finally, baked at 180 °CT   for 55 minutes  (Cukrov et 
al. 2017). This procedure, however, does not align widely-used cyanobiphenyl-based flexible dimers. Therefore, 
further investigations will need to expand on alignment of other families of flexible dimers. 

 



 
Figure 14. Polarizing optical microscopy texture of a) twist-bend nematic phase of 1,11-bis(2’,3’-difluoro-4”-pentyl-[1,1’:4’,1”-
terphenyl]-4-yl)undecane (DTC5C11) in a homogeneous planar cell treated by PI2555 polyimide layer with characteristic striped 
texture oriented along the rubbing direction at 45 degrees; b) conoscopy pattern characteristic of a homeotropic uniaxial nematic; 
the glass substrates of the homeotropic cell were treated with DMOAP-SE5661 dual alignment layer. Scale bar 50 μm . 

Electric/Magnetic fields 

Liquid crystals are highly susceptible to external fields. In this section, we will focus our discussion only on 
employing electric and magnetic fields as means to realign the director field. The reorientation of the director field 
occurs due to anisotropic LC electric polarization or magnetization. Under an applied external field and set boundary 
conditions at the boundaries that confine LCs, the equilibrium state of the director field will minimize the total free 
energy of the system  F  (Yang and Wu 2015). In case of an applied electric field, the mesogens with positive 

dielectric anisotropy  0   orient along the electric field  E  direction, while LCs with 0   align perpendicular 
to E . The reorientation from uniform configuration to deformed state of the director is called the Frederiks effect. 
The distortion of the director field occurs only above a certain threshold electric field  thE  which overcomes the 
surface anchoring and the elasticity of nematic bulk defined as  

ii
th

o

KE
d


 



, (7) 

where d  is the thickness of a LC cell, iiK  is the splay, twist or bend elastic constant of LC, o  is the permittivity of 
free space, and   is the dielectric anisotropy of LC (Blinov and Chigrinov 1994). When the field is removed, surface 
anchoring restores the system to its original state (Kleman and Lavrentovich 2003). Note that Equation 7 is applied to 
a system with an assumption that the anchoring is infinitely strong. However, if the anchoring is weak, the director at 
the surface has a certain freedom to turn under the action of the elastic torque from the bulk (Blinov 2010). 
Consequetly, one needs to substitute d  with  2d b , where s

ii /b K W  is the surface extrapolation length, where 
sW  is the surface anchoring energy (Blinov 2010). The schematic representation of cells filled with a LC with 0   

in three different geometries is presented in Figure 15, where Frederiks transition above thE  induces splay, twist and 
bend deformations of the director field. 
 



 
Figure 15. Schematic representation of three different geometries of Frederiks effect inducing a) splay, b) twist or c) bend 
deformations in a material with positive dielectric anisotropy which aligns parallel to the applied electric field. (Adapted by 
permission from Springer Nature: Soft Matter Physics. An Introduction by Kleman, M., Lavrentovich, O.D., Copyright (2003) 
Springer. 

 
An application of magnetic field  B is analogous, where LCs with positive diamagnetic anisotropy  0   align 

parallel to applied B , whereas LC with 0   align perpendicularly to B . The threshold magnetic field is given 
by (Blinov and Chigrinov 1994; Kleman and Lavrentovich 2003) 

o ii
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where 7 1
o 4 10  H m      is the magnetic permeability of vacuum. 

Electric or magnetic field may be employed to 1) aligned an initially unaligned director field, or 2) realign a well 
aligned director configuration as in Figure 15. The latter is the basis of many LC-based electro-optical applications. 
Commercial LC display companies exploit different switching modes (such as hybrid aligned nematic, vertical 
alignment,   cell) by controlling the alignment at the boundaries of an LC-cell. Various modes yield different 
switching times, dark states, viewing-angle or contrast ratio (Lee 2014). 

 
 

Aligned LCs as templates for guiding biological matter 

For decades LC alignment was primarily used for display applications. Yet, other fascinating interdisciplinary 
developments also emerge that use anisotropic nature of LC, molecular ordering and sensitivity to external factors to 
design sophisticated functional devices. For instance, it was demonstrated that LC-based constructs may be efficiently 
employed as an optical amplification medium, as well as chemical or biological sensors (Gupta et al. 1998; Brake et 
al. 2003; Fang et al. 2003; Shiyanovskii et al. 2005; Kim et al. 2005; McCamley et al. 2007; Hunter 2012; Carlton et 
al. 2013; Popov et al. 2018; Kim et al. 2018). In particular, macroscopic detection of the “adsorbate-induced anchoring 
transition” can be confirmed by observing the textural changes of the LC-based sensor (Brake et al. 2003). This 
phenomenon occurs when amphiphiles adsorb to and alter the orientation ordering of LCs at aqueous-LC interfaces 
which changes the LC anchoring energy, where a coverage of the interface by adsorbate of 0.1 to 1 Langmuir (for 
example at least 10 μg/ml:  solution concentrations of lipids) is usually required to change W  to induce ordering 



transition (Lin et al. 2011; Miller et al. 2014). Another example of an antibody-antigen binding detection/amplification 
in the bulk was demonstrated using water-based lyotropic chromonic LC (LCLC) medium, where the immune 
complexes larger than cR  are detected optically due to director distortions around them, while individual antibodies 
that are too small to perturb n̂ remain unseen (Shiyanovskii et al. 2005). The balance of two energies, KR  and 2W R  
dictate the behavior of the system, as the small inclusions that are not recognized by antibodies, of a size below 

c
KR

W

 ,  do not distort the director field, whereas the antigen-antibody biding that creates bigger aggregates of 

targeted microbes distorts LCLC and produces optical signal once c
KR

W

  condition is satisfied. 

There is a growing interest in LCLCs due to their biocompatibility (Mushenheim et al. 2014a; Zhou et al. 2014; 
Mushenheim et al. 2014b; Mushenheim et al. 2015; Peng et al. 2016b; Kumar and Pattanayek 2016; Zhou et al. 2017; 
Theis et al. 2018; Woolverton et al. 2005). Chromonic molecules self-assemble into ordered structures through weak, 
noncovalent interactions (   attraction), depending on factors such as ionic content, pH, temperature, 
concentration, and molecular structure (Park 2012). The approaches to align LCLCs include rubbing glass, 
PI/graphene/silicon oxide deposition, photopatterning, micro-channel confinement, application of magnetic field, 
nanopatterning polymer films or self-assembling monolayers (Rapp et al. 1999; Lavrentovich and Ishikawa 2002; 
Fujiwara and Ichimura 2002; Ichimura et al. 2002; Ruslim et al. 2004; Nastishin Yu. et al. 2008; Simon et al. 2010; 
Zhou et al. 2012; Yoon et al. 2012; McGinn et al. 2013; Yang et al. 2013; Yi and Clark 2013; Jeong et al. 2014; Oton 
et al. 2015; Kim et al. 2016a; van der Asdonk et al. 2016; Peng et al. 2017b; van der Asdonk et al. 2017). Recent 
development of a dual-layer alignment technique to orient LCLC antiasthmatic drug, disodium cromoglycate (DSCG) 
(Peng et al. 2017b) allows one to photopattern complex spatially-varying structures. Since Bacillus subtilis may be 
dispersed in non-toxic DSCG (Zhou 2017), such alignment layers were able to be control the distribution, geometry 
and polarity of bacteria trajectories (Figure 16) (Peng et al. 2016b). Because the alignment layer and the implemented 
LC are both water-based, the method involves coating a protective RM layer over a preprogrammed director pattern 
generated by the azo-dye molecule SD1 (Peng et al. 2017b). The drawback of this method is the difficulty to assemble 
(uniform in thickness) LCLC cells using two glass plates with identical prepatterned director field under a polarizing 
optical microscope. 

 

 
Figure 16. Unipolar circular flow of bacteria around a spiraling vortex. a) Prepatterned splay-bend deformations of the vortex, b) 
circular bacterial swarm enclosing the vortex center, c) map of bacterial velocities. Scale bar 25 μm . Peng CH, Turiv T, Guo YB, 
Wei QH, Lavrentovich OD (2016b) Command of active matter by topological defects and patterns. Science 354 (6314):882-885. 
Reprinted with permission from AAAS. 

Another growing trend is to use liquid crystal based biocompatible surfaces or scaffolds for tissue growth (Agrawal 
et al. 2015; Kocer et al. 2017; Prevot et al. 2017; Prevot et al. 2018b; Prevot et al. 2018a). Recently, Babakhanova and 
colleagues developed nanogrooved surfaces (Figure 17a) using commercially available 8OCB+RM82+photoinitiator 
Irgacure 651 materials (Babakhanova et al. 2019). The antagonistic boundary conditions at the air/homeotropic and 
unidirectional planar glass interfaces induce the formation of the ‘oily streak’ defects in the smectic A phase (inset of 
Figure 17a) (Zappone and Lacaze 2008; Gharbi et al. 2017). To satisfy the anchoring, smectic layers deform into a 
series of hemicylinders and result in a texture that exhibits periodic light and dark linear stripes perpendicular to the 
easy axis (Figure 17a) (Gharbi et al. 2017). The mixture of LC reactive mesogen RM82+photoinitiator was used to 



fix the molecular orientation of the defect structures in SmA phase via photopolymerization, after which the non-
reactive LC was washed out.  

The atomic force microscopy shows nanometer topography of the periodic ‘oily streak’ polymerized defect 
structures (Figure 17e) . When human dermal fibroblasts (hDFs) are plated on these polymerized LC nanogrooved 
surfaces (Figure 17d,e), the orientation of cells is guided by the topographical cues. Using the elongated nuclei of 
hDFs, the calculations of the orientational order parameter  0.75S :  show the ability to achieve highly oriented 
alignment of cells using LC defect structures (Figure 17b). Particularly, the cells orient their long axis predominantly 
parallel to the grooved direction (Figure 17d). Note that when the cells are plated onto a flat glass substrate instead, 
the final state of the long axis of the cells shows random orientational distribution (Figure 17b). Being able to guide 
cells in an orderly fashion is of extreme importance, since the cell migration plays a crucial role in chemotaxis, 
development, tumor invasion, immunity and tissue regeneration. 

 

 
Figure 17. a) Bright field microscopy image of polymerized linear periodic SmA oily streak structures. The inset shows the 
formation of the oily streaks due to antagonistic boundary conditions, b) orientational order parameter of the elongated nuclei 
(illustrated in red color in panels (c) and (d); fluorescence microscopy (Olympus IX-81) images of c) hDF cells oriented randomly 
on flat glass plate, d) hDF cells directed parallel to the SmA oily streak polymerized nanostructures. The arrow represents the 
direction of the nanogrooves, e) DHM image of polymerized nanogrooved surface morphology of the reactive mesogens. Scale 
bars 50 μm .  

 
Conclusion and outlook 

In this chapter we summarized some of the conventional methods of liquid crystal alignment. The mechanisms of 
planar, homeotropic and tilted alignments were briefly discussed. One of the most important aligning techniques is 
the photoalignment method. One may generate all three kinds of (reversible) alignment types by adjusting the 
conditions of the experiments. Importantly, this technique allows one to generate complex spatial patterns of the 
director with high accuracy. The major problem with this technique is the sensitivity of the alignment layer to 
environmental conditions at different stages of the preparation. Thus, there is a strong need to develop fast, inexpensive 



and stable alignment methods which are not too vulnerable to processing procedures for both thermotropic and 
lyotropic liquid crystals. We also address the importance of developing new alignment methods for non-trivially 
shaped LC molecules and introduce two methods of homeotropic alignment for rigid bent-core and flexible dimeric 
molecules.  

An important research endeavor is in the ability to generate stable alignment of LC phases (such as chiral nematic 
or columnar) formed by DNA/RNA molecules of different lengths/sequences, G-quartets, proteins and other 
biological macromolecules (Brandes and Kearns 1986; Strzelecka and Rill 1987; Strey et al. 1997; Ruckert and Otting 
2000; Pfohl et al. 2001; Annila and Permi 2004; Louhivuori et al. 2006; Davis and Spada 2007; Nakata et al. 2007; 
Zanchetta 2009; Zanchetta et al. 2010). The ability to tailor the surface properties and roughness of the polymerizable, 
responsive LCs (via photoalignment for example) may be useful in ordering variety of biological macromolecules. 

Another exciting and promising area of exploration involves ‘active liquid crystals’ composed of self-propelling 
units. Both, artificial and living self-propelling matter is being investigated. The ability to deterministically control 
the motion of particles using alignment techniques poses an interesting challenge. Lyotropic and polymerizable liquid 
crystal systems give rise to vast opportunities to direct biological matter (such as bacteria, cells, sperm). We presented 
examples of two such reports: bacteria and cell guidance. Such controllable elements may be employed as micro-
machines in biomedical engineering applications. The growing trend of using polymerizable LCs are promising not 
only in conventional LC applications, but also in developing intelligent biomaterials with pre-programmable abilities.  
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