DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models

Abstract

Extended Lagrangian Born–Oppenheimer molecular dynamics (XL-BOMD) [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for orbital-free Hohenberg–Kohn density-functional theory and for charge equilibration and polarizable force-field models that can be derived from the same orbital-free framework. The purpose is to introduce the most recent features of orbital-based XL-BOMD to molecular dynamics simulations based on charge equilibration and polarizable force-field models. These features include a metric tensor generalization of the extended harmonic potential, preconditioners, and the ability to use only a single Coulomb summation to determine the fully equilibrated charges and the interatomic forces in each time step for the shadow Born–Oppenheimer potential energy surface. The orbital-free formulation has a charge-dependent, short-range energy term that is separate from long-range Coulomb interactions. This enables local parameterizations of the short-range energy term, while the long-range electrostatic interactions can be treated separately. The theory is illustrated for molecular dynamics simulations of an atomistic system described by a charge equilibration model with periodic boundary conditions. The system of linear equations that determines the equilibrated charges and the forces is diagonal, and only a single Ewald summation is needed in each time step. The simulations exhibit the same features in accuracy, convergence,more » and stability as are expected from orbital-based XL-BOMD.« less

Authors:
ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES); USDOE
OSTI Identifier:
1887138
Alternate Identifier(s):
OSTI ID: 1970659
Report Number(s):
LA-UR-20-28245
Journal ID: ISSN 0021-9606; TRN: US2310040
Grant/Contract Number:  
89233218CNA000001; LANLE8AN
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 154; Journal Issue: 5; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; mathematics; molecular dynamics, density functional theory, charge equilibrium models, machine learning

Citation Formats

Niklasson, Anders M. Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models. United States: N. p., 2021. Web. doi:10.1063/5.0038190.
Niklasson, Anders M. Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models. United States. https://doi.org/10.1063/5.0038190
Niklasson, Anders M. Mon . "Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models". United States. https://doi.org/10.1063/5.0038190. https://www.osti.gov/servlets/purl/1887138.
@article{osti_1887138,
title = {Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models},
author = {Niklasson, Anders M.},
abstractNote = {Extended Lagrangian Born–Oppenheimer molecular dynamics (XL-BOMD) [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for orbital-free Hohenberg–Kohn density-functional theory and for charge equilibration and polarizable force-field models that can be derived from the same orbital-free framework. The purpose is to introduce the most recent features of orbital-based XL-BOMD to molecular dynamics simulations based on charge equilibration and polarizable force-field models. These features include a metric tensor generalization of the extended harmonic potential, preconditioners, and the ability to use only a single Coulomb summation to determine the fully equilibrated charges and the interatomic forces in each time step for the shadow Born–Oppenheimer potential energy surface. The orbital-free formulation has a charge-dependent, short-range energy term that is separate from long-range Coulomb interactions. This enables local parameterizations of the short-range energy term, while the long-range electrostatic interactions can be treated separately. The theory is illustrated for molecular dynamics simulations of an atomistic system described by a charge equilibration model with periodic boundary conditions. The system of linear equations that determines the equilibrated charges and the forces is diagonal, and only a single Ewald summation is needed in each time step. The simulations exhibit the same features in accuracy, convergence, and stability as are expected from orbital-based XL-BOMD.},
doi = {10.1063/5.0038190},
journal = {Journal of Chemical Physics},
number = 5,
volume = 154,
place = {United States},
year = {Mon Feb 01 00:00:00 EST 2021},
month = {Mon Feb 01 00:00:00 EST 2021}
}

Works referenced in this record:

Energy conserving, linear scaling Born-Oppenheimer molecular dynamics
journal, October 2012

  • Cawkwell, M. J.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4755991

Polarization effects in molecular mechanical force fields
journal, July 2009


Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Efficient and Accurate Born–Oppenheimer Molecular Dynamics for Large Molecular Systems
journal, October 2017

  • Peters, Laurens D. M.; Kussmann, Jörg; Ochsenfeld, Christian
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00937

Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry
journal, January 2004

  • Kaminski, George A.; Stern, Harry A.; Berne, B. J.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 4
  • DOI: 10.1021/jp0301103

Next generation extended Lagrangian first principles molecular dynamics
journal, August 2017

  • Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 147, Issue 5
  • DOI: 10.1063/1.4985893

Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics
journal, August 1997


Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids
journal, March 2017

  • Naserifar, Saber; Brooks, Daniel J.; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 146, Issue 12
  • DOI: 10.1063/1.4978891

Extended Lagrangian Excited State Molecular Dynamics
journal, January 2018

  • Bjorgaard, J. A.; Sheppard, D.; Tretiak, S.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 2
  • DOI: 10.1021/acs.jctc.7b00857

Inertial extended-Lagrangian scheme for solving charge equilibration models
journal, January 2019

  • Leven, Itai; Head-Gordon, Teresa
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 34
  • DOI: 10.1039/c9cp02979f

Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals
journal, June 2001

  • Schlegel, H. Bernhard; Millam, John M.; Iyengar, Srinivasan S.
  • The Journal of Chemical Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.1372182

Hybrid Extended Lagrangian, Post-Hartree–Fock Born–Oppenheimer ab Initio Molecular Dynamics Using Fragment-Based Electronic Structure
journal, May 2016

  • Li, Junjie; Haycraft, Cody; Iyengar, Srinivasan S.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00001

Fock matrix dynamics
journal, March 2004


Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
journal, October 2014

  • Niklasson, Anders M. N.; Cawkwell, Marc J.
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898803

Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization
journal, December 2013

  • Souvatzis, Petros; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 139, Issue 21
  • DOI: 10.1063/1.4834015

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+ Atoms
journal, November 2014

  • Arita, Michiaki; Bowler, David R.; Miyazaki, Tsuyoshi
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct500847y

Car-Parrinello molecular dynamics: Car-Parrinello molecular dynamics
journal, September 2011

  • Hutter, Jürg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 4
  • DOI: 10.1002/wcms.90

Accurate Classical Polarization Solution with No Self-Consistent Field Iterations
journal, April 2017

  • Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 8
  • DOI: 10.1021/acs.jpclett.7b00450

N-particle dynamics of polarizable Stockmayer-type molecules
journal, August 1977


Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics
journal, December 2013

  • Lin, Lin; Lu, Jianfeng; Shao, Sihong
  • Entropy, Vol. 16, Issue 1
  • DOI: 10.3390/e16010110

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction
journal, November 2015

  • Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa
  • The Journal of Chemical Physics, Vol. 143, Issue 17
  • DOI: 10.1063/1.4933375

Electronegativity-equalization method for the calculation of atomic charges in molecules
journal, July 1986

  • Mortier, Wilfried J.; Ghosh, Swapan K.; Shankar, S.
  • Journal of the American Chemical Society, Vol. 108, Issue 15
  • DOI: 10.1021/ja00275a013

Theory of ab initio molecular-dynamics calculations
journal, November 1991


Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
journal, March 2017

  • Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex
  • The Journal of Chemical Physics, Vol. 146, Issue 12
  • DOI: 10.1063/1.4978684

Spin eigenstate-dependent Hartree—Fock molecular dynamics
journal, February 1992


Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm
journal, August 2003

  • Lamoureux, Guillaume; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 6
  • DOI: 10.1063/1.1589749

Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Density-Matrix Based Extended Lagrangian Born–Oppenheimer Molecular Dynamics
journal, May 2020


Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models
journal, January 2018

  • Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 2
  • DOI: 10.1021/acs.jctc.7b01041

Ab initio molecular dynamics: basic concepts, current trends and novel applications
journal, December 2002


Computer simulation of the dynamics of induced polarization fluctuations in water
journal, March 1991


Linear-scaling first-principles molecular dynamics of complex biological systems with the Conquest code
journal, September 2016

  • Otsuka, Takao; Taiji, Makoto; Bowler, David R.
  • Japanese Journal of Applied Physics, Vol. 55, Issue 11
  • DOI: 10.7567/jjap.55.1102b1

Molecular dynamics without effective potentials via the Car-Parrinello approach
journal, August 1990


Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
journal, July 2019


Molecular dynamics simulation of polarizable water by an extended Lagrangian method
journal, October 1992


Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications
journal, May 2019


Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation
journal, June 2009

  • Niklasson, Anders M. N.; Steneteg, Peter; Odell, Anders
  • The Journal of Chemical Physics, Vol. 130, Issue 21
  • DOI: 10.1063/1.3148075

Polarizable force fields
journal, April 2001


A New Method for Treating Drude Polarization in Classical Molecular Simulation
journal, October 2017

  • Albaugh, Alex; Head-Gordon, Teresa
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00838

Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications
journal, August 2009

  • Lopes, Pedro E. M.; Roux, Benoit; MacKerell, Alexander D.
  • Theoretical Chemistry Accounts, Vol. 124, Issue 1-2
  • DOI: 10.1007/s00214-009-0617-x

A mathematical investigation of the Car-Parrinello method
journal, January 1998

  • Bornemann, Folkmar A.; Schütte, Christof
  • Numerische Mathematik, Vol. 78, Issue 3
  • DOI: 10.1007/s002110050316

Molecular Dynamics Simulation of Ionic Liquids:  The Effect of Electronic Polarizability
journal, August 2004

  • Yan, Tianying; Burnham, Christian J.; Del Pópolo, Mario G.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 32
  • DOI: 10.1021/jp047619y

Canonical-ensemble extended Lagrangian Born–Oppenheimer molecular dynamics for the linear scaling density functional theory
journal, September 2017

  • Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 40
  • DOI: 10.1088/1361-648x/aa810d

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Extended Lagrangian Born–Oppenheimer molecular dynamics using a Krylov subspace approximation
journal, March 2020

  • Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 152, Issue 10
  • DOI: 10.1063/1.5143270

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
journal, July 2011

  • Zheng, Guishan; Niklasson, Anders M. N.; Karplus, Martin
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3605303

DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
journal, March 2020

  • Hourahine, B.; Aradi, B.; Blum, V.
  • The Journal of Chemical Physics, Vol. 152, Issue 12
  • DOI: 10.1063/1.5143190

DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB)
journal, March 2011

  • Gaus, Michael; Cui, Qiang; Elstner, Marcus
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 4
  • DOI: 10.1021/ct100684s

Fast evaluation of polarizable forces
journal, October 2005

  • Wang, Wei; Skeel, Robert D.
  • The Journal of Chemical Physics, Vol. 123, Issue 16
  • DOI: 10.1063/1.2056544

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Extended Lagrangian free energy molecular dynamics
journal, October 2011

  • Niklasson, Anders M. N.; Steneteg, Peter; Bock, Nicolas
  • The Journal of Chemical Physics, Vol. 135, Issue 16
  • DOI: 10.1063/1.3656977

Dynamical fluctuating charge force fields: Application to liquid water
journal, October 1994

  • Rick, Steven W.; Stuart, Steven J.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468398

Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
journal, June 2015

  • Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00324

First principles molecular dynamics without self-consistent field optimization
journal, January 2014

  • Souvatzis, Petros; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 140, Issue 4
  • DOI: 10.1063/1.4862907

Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations
journal, June 2016

  • Negre, Christian F. A.; Mniszewski, Susan M.; Cawkwell, Marc J.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 7
  • DOI: 10.1021/acs.jctc.6b00154

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Real-World Predictions from Ab Initio Molecular Dynamics Simulations
book, January 2011

  • Kirchner, Barbara; di Dio, Philipp J.; Hutter, Jürg
  • Multiscale Molecular Methods in Applied Chemistry
  • DOI: 10.1007/128_2011_195

Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions
journal, January 2001

  • Iyengar, Srinivasan S.; Schlegel, H. Bernhard; Millam, John M.
  • The Journal of Chemical Physics, Vol. 115, Issue 22
  • DOI: 10.1063/1.1416876

An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations
journal, July 2015

  • Nomura, Ken-ichi; Small, Patrick E.; Kalia, Rajiv K.
  • Computer Physics Communications, Vol. 192
  • DOI: 10.1016/j.cpc.2015.02.023

Ab Initio Molecular Dynamics
book, January 2009


Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch
journal, July 2020

  • Zhou, Guoqing; Nebgen, Ben; Lubbers, Nicholas
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 8
  • DOI: 10.1021/acs.jctc.0c00243

Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics
journal, September 2006