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Abstract 

To quantitatively analyze the inconsistencies commonly observed between experimental 

and simulated adsorption isotherms, parameter estimation of adsorption isotherm models 

was conducted by hierarchical Bayesian estimation with parameter uncertainties being 

quantified as probability distributions. The estimation method was implemented using 

Markov Chain Monte Carlo (MCMC) to analyze multiple data sets obtained from 

different sources, including a publicly available database. To describe the discrepancies 

of experimental and simulated adsorption data, the simulation data was set as the 

reference to which experimental measurements were compared. We applied the proposed 

approach to analyze CO2 adsorption isotherms that are measured and simulated on zeolite 

13X and MIL-101(Cr). For both systems, a multiplicative factor and standard deviation 

of the measurement error in each data set were quantified along with a single set of the 

isotherm model parameters. In these case studies, the discrepancy of CO2 adsorption 

isotherm was successfully quantified between experimental measurements and 

predictions given by molecular simulations using Grand Canonical Monte Carlo (GCMC). 

This approach can be a powerful tool in resolving variations among adsorption data sets 

obtained from different resources, as well as in providing insights into the deviations 

between experimental data and molecular simulations.  
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1. Introduction 

Emission of carbon dioxide (CO2) from fossil fuel combustion is the underlying cause 

of global warming. To mitigate these emissions, CO2 capture, utilization, and storage 

(CCUS) is expected to be a key technology. For the practical application of CCUS, 

however, cost reduction especially in the CO2 capture step is a critical challenge. Some 

techniques already implemented at a large scale, such as liquid amine scrubbing, have 

remaining challenges, including high regeneration energy, solvent evaporation, amine 

degradation, and equipment corrosion[1-3]. To this end, the development of alternative 

techniques overcoming these drawbacks, especially the high energy cost, is desired. In 

the past several decades, a large number of CO2 capture techniques including advanced 

solvents, adsorption, and membrane separation have been studied[4]. Among them, 

adsorptive separation is considered one of the promising methods to recover CO2 in flue 

gas from various sources[5].  

 For designing adsorption processes, both equilibrium and kinetic data are required, 

and especially obtaining reliable adsorption equilibrium data is vital[6-7]. To date, many 

researchers have conducted laboratory experiments and molecular simulations of CO2 

adsorption on various adsorbents, including zeolites, porous carbons, amine-modified 

silicas, and metal-organic-frameworks (MOFs) to identify promising materials. These 

efforts have generated a large amount of data on CO2 adsorption equilibria of various 

materials. 

To use those data effectively, open database projects such as the one by the National 

Institute of Standards and Technology (NIST) are ongoing, which can be useful resources 

for material screening and process design[8]. However, there are still some remaining 

challenges for practical application of these databases for material and process 

development. One of them is the reliability of data, namely, how to select the appropriate 

data from multiple data sources. Park et al.[9] reported that CO2 adsorption measurements 

in MOFs obtained by different researchers show substantial variations even at well-

defined adsorption conditions. Similar studies also highlighted the need for experimental 

reproducibility for a range of adsorbates and porous adsorbent materials [10-11]. Such 

variations arise for different reasons including the measurement methods (i.e., equipment, 

procedures, and sample conditions) as well as adsorbent degradation that may occur 

during material synthesis and/or post-synthesis (e.g., defects in the crystals, trace 

components, insufficient deactivation, and pore blockage/collapse) [12-16].  

In addition to analyzing experimental data, molecular simulation is a powerful 

approach to predict adsorption equilibrium for adsorbents where a systematic 

experimental investigation can be challenging[17-19]. Nevertheless, it is unlikely the 
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simulated adsorption properties will exactly match those from experiments, because not 

all computational approximations can fully address the structural nature of adsorbents[20-

21] and the molecular interactions of adsorbing species within adsorbents[22-23]. As a 

result, researchers face the problem of trusting simulated data over experimental data 

and/or vice versa, in recognition of fundamental assumptions of molecular simulation and 

uncertainties in experimental measurement[24].  

Recently, Shih et al.[24] introduced a hierarchical Bayesian estimation method to 

quantify the discrepancy among experimental data sets using a Markov Chain Monte 

Carlo (MCMC) method. This approach can generate probability distributions for the 

parameters in a given adsorption isotherm model[25]. The method also gives information 

on multiple data sets obtained by different researchers, and hence allows the quantitative 

analysis of discrepancy among multiple experimental data sets.  

In this study, the discrepancies of experimental data sets from a reference Grand 

Canonical Monte Carlo (GCMC) data are quantified by hierarchical Bayesian estimation, 

and parameters in isotherm models were estimated for porous adsorbents that are obtained 

from various sources. Among these data sets, simulated data by GCMC, which assumes 

adsorption occurs in defect-free crystals with interaction parameters specified by a force 

field, was chosen as the reference[26-28]. This choice is not intended to imply that the 

simulation data is the “correct” answer, but rather to note that it is typically easier to 

obtain high resolution data with small uncertainties using molecular simulations. Our 

approach is demonstrated for two case studies: zeolite 13XNa, one of the traditional and 

notable materials for CO2 capture [29-37], and MIL-101(Cr), a promising MOF widely 

known for CO2 adsorption[38-41].  
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2. Methods 

 

2.1 Case studies: CO2 adsorption on zeolite 13XNa and MIL-101(Cr) 

 

2.1.1 Data collection from NIST adsorption database for zeolite 13XNa 

For zeolite 13XNa, experimental CO2 isotherm data from five different reports 

(hereafter labeled Exp. 1-5) were collected from the NIST adsorption database [42-46]. 

For computational results, GCMC simulation data from Purdue et al.[47] was used. All 

CO2 isotherms used are shown in Figures S1 and S2.  

The experimental conditions for each isotherm data set and zeolite sources for Exp. 

1-5 as well as the simulation condition for GCMC predictions are summarized in Table 

S3. It is worthwhile to note that the zeolite implemented in each experiment was obtained 

from different supplier, and the measurement methods (i.e., apparatus and pretreatment) 

were also different. In each experimental data set, the measurement protocols as well as 

the crystal properties of 13X samples (e.g., Si/Al ratio, presence and/or absence of binders) 

are different, which may have led to the laboratory uncertainties in the adsorption 

equilibrium experiments. 

It is also important to note that the GCMC simulation data used here cannot account 

for all possible contributions to adsorption in real samples. For example, these simulations 

cannot capture adsorption in non-crystalline mesopores that have been shown to make 

small contributions to high pressure CO2 adsorption in reference zeolites[48].   

 

2.1.2 Molecular simulation and isotherm measurement for MIL-101(Cr) 

CO2 adsorption data on MIL-101(Cr) are obtained by in-house GCMC prediction and 

experiments (Figures S3 and S4, respectively). To support the design of a post-

combustion CO2 capture process at sub-ambient conditions within a narrow CO2 partial 

pressure range for this promising MOF [41,49] adsorption isotherms are simulated and 

measured at a sub-ambient temperature window from 223 to 273 K at an interval of 10 K 

in a pressure regime up to 1.0 bar. 

GCMC simulation was conducted using the RASPA package [50-51]. The standard 

force fields of UFF[52] and TraPPE[53] are employed for Lennard-Jones parameters on 

MOF atoms and on quadrupolar CO2 molecule, respectively, to determine van der Waals 

interactions that is defined by Lorentz-Bethelot mixing rules[54]. A long-range Ewald 

Coulombic interactions[55] are modeled with atomic point charges on MOF atoms and 

on CO2 molecules assigned by DDEC[56-58] and TraPPE[53], respectively. To represent 

the crystal structure of MIL-101(Cr), as-distributed .cif file from the RASPA was adopted. 
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The structure of the adsorbent was assumed to be rigid in all calculations.  

Two samples of MIL-101(Cr), A and B, were synthesized separately, following the 

general procedure outlined by Darunte et al[59]. The modulators used for Sample A and 

B were different; in the synthesis of Sample A, 7.5 ml of glacial acetic acid was used, 

while for Sample B, 7.5 ml of a 36% (v/v) solution of acetic acid in deionized water was 

added. The BET surface area of A was measured to be 2760 m2/g. More details of material 

synthesis, isotherm and surface area measurements are given in the supplementary 

material.  

 

2.2 Adsorption equilibrium models 

 

There are various mathematical models to represent adsorption isotherms such as 

Langmuir, Freundlich, Henry, BET, Sips, and Toth models [60-61]. To select an 

appropriate isotherm model for accurate prediction, various model selection criteria based 

on error evaluation including square of correlation coefficient (R2), adjusted R2 (adj- R2), 

sum of the squares of errors (SSE), root mean square deviation (RMSD), and hybrid 

fractional error function (HYBRID) are frequently used [62]. However, these criteria, 

with the exception of adj-R2
, do not take into account the number of parameters in the 

functional forms. Recently, information-based criteria such as Akaike information 

criterion (AIC), Bayesian information criterion (BIC), and their extensions have been 

applied for selecting the best isotherm model among the candidates having the different 

number of parameters[63-65]. Below, AIC and BIC were employed for selecting the most 

suitable adsorption isotherm model, where lower values of AIC and BIC indicate a better 

model. 

It is known that CO2 adsorption isotherms on zeolite 13X can be described well either 

by the Toth model [66-67] or the dual-site Langmuir model [68-70]. Several candidate 

models with different number of parameters were investigated for the GCMC data (see 

Table S1 in the supplementary material). By comparing the values of AIC and BIC, the 

Toth model with the temperature dependence of the parameter t given in Eqs. 1-3 (model 

3 in Table S1)[71] was eventually employed for the equilibrium model of CO2 adsorption 

on zeolite 13X: 

 

𝑞∗ = 𝑞𝑠
𝑏𝑇𝑝

(1+(𝑏𝑇𝑝)𝑡)1/𝑡
                                                 (1) 

𝑏𝑇 = 𝑏𝑇0 𝑒𝑥𝑝 (
−𝛥𝐻

𝑅𝑇
)                                                 (2) 
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𝑡 = 𝐴𝑡 +
𝐵𝑡

𝑇
                                                        (3) 

 

where q* is the equilibrium amount of CO2 adsorbed; qs is the saturated amount of CO2 

adsorbed at a given temperature T; bT is the affinity constant; t is the Toth constant 

representing the heterogeneity of adsorption system; p is the partial pressure of CO2; bT0 

is the preexponential factor for the affinity constant; ΔH is the isosteric heat of adsorption; 

R is the ideal gas constant; At and Bt are temperature dependence constant of parameter t. 

For MIL-101(Cr), on the other hand, the Sips model as given in Eqs. 4-5 (model 7 in 

Table S2), was chosen over the Langmuir and Toth models: 

 

𝑞∗ = 𝑞𝑠
(𝑏𝑆𝑝)

1/𝑛

1+(𝑏𝑆𝑝)1/𝑛
                                                   (4) 

𝑏𝑆 = 𝑏𝑆0 𝑒𝑥𝑝 (
−𝛥𝐻

𝑅𝑇
)                                                 (5) 

 

where bS is the affinity constant; n is the Sips constant; and bS0 is the preexponential factor 

for affinity constant. Using the two model selection criteria, AIC and BIC, the Sips model 

shows the minimum values as summarized in Table S2.  

 

2.3 Hierarchical Bayesian model 

 

The Bayesian approach to describe parameter uncertainty is a method for estimating 

parameter values with probability distributions following the Bayes' theorem [25]. The 

principle of Bayesian estimation is given by: 

 

𝑝(𝚯|𝒚) =
𝑝(𝒚|𝚯)𝑝(𝚯)

𝑝(𝒚)
∝ 𝑝(𝒚|𝚯)𝑝(𝚯)                                       (6) 

 

where 𝚯  is the parameter vector to be estimated; y is the vector of data such as 

experimental or simulated data; p(𝚯) is the prior probability distribution of 𝚯; p(y|𝚯) is 

the likelihood representing the probability of data y at a given parameter 𝚯; and p(y) is 

called the marginal likelihood that normalizes p(y|𝚯)p(𝚯). The above equation shows that 

normalization by p(y) is needed to obtain the posterior distribution of the parameters. 

In Bayesian estimation, the posterior probability distribution can be obtained by 

updating the prior probability distribution using MCMC sampling. Hence a large enough 
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number of samples are required for obtaining the posterior distributions of the parameters. 

Estimating parameters as a probability distribution, in comparison to the point estimation 

such as the least squares method, gives us the information on the parameter uncertainty. 

In addition, correlations among parameters can be found by analyzing the samples 

obtained by MCMC [72].  

Generally, it is difficult to determine a parameter 𝚯 by a conventional Bayesian 

estimation approach when data sets y are obtained under different conditions; that is, a 

single set of probability distributions for 𝚯 cannot be easily obtained for a variety of 

CO2 adsorption data that are measured at different experimental conditions and/or 

obtained by distinct methods (either experiment or simulation). Ignoring the differences 

in the condition of each data set would lead to overdispersion of the parameter 𝚯, where 

the variation of 𝚯 is estimated to be large. To overcome this problem of finding a single 

parameter set from different data sources, hierarchical Bayesian inference is an well-

known approach in Bayesian statistics[73] which can be applied to analyze adsorption 

isotherms as demonstrated earlier by Shih et al.[24]. Below, we employ this approach for 

the first time to quantify the discrepancy of isotherm data measured in laboratory from 

those predicted by molecular simulation.  

The principle of hierarchical Bayesian estimation is given by the following joint prior 

distribution [25]:  

 

𝑝(𝜽,𝝎,𝝋) = 𝑝(𝜽)𝑝(𝝎|𝝋) 𝑝(𝝋)                                       (7) 

 

where 𝜽 is a vector of common parameters in the model, ω is an individual parameter 

for each data set, and φ is a hyperparameter. This equation expresses p(θ, ω, φ) using a 

conditional probability distribution p(ω|φ) and the probability p(φ), assuming θ is 

independent of ω. In this model, the heterogeneity in each data set is considered by 

introducing an additional individual parameter ω for each data set to describe unique 

properties in each data set such as experimental conditions. The dispersion of parameter 

ω is represented by hyperparameter φ which is an unknown variable having its own prior 

distribution. Redefining 𝚯 in Eq. 6 as 𝚯 = (θ, ω, φ) followed by combining Eqs. 6 and 

7 gives the framework of the hierarchical Bayes estimation as: 

 

𝑝(𝜽,𝝎,𝝋|𝒚) ∝ 𝑝(𝒚|𝜽,𝝎,𝝋)𝑝(𝜽,𝝎, 𝝋) = 𝑝(𝒚|𝜽,𝝎)𝑝(𝜽,𝝎,𝝋) =

𝑝(𝒚|𝜽,𝝎)𝑝(𝜽)𝑝(𝝎|𝝋)𝑝(𝝋)                               (8) 

 

where p(θ, ω, φ| y) is the posterior distribution; p(y|θ, ω) is the likelihood calculated from 



8 

 

the isotherm model; p(φ) is the hyperprior distribution to quantify prior knowledge about 

the prior distribution p(φ|ω). In the above equation, we assume 𝑝(𝒚|𝜽,𝝎,𝝋) = 

𝑝(𝒚|𝜽,𝝎); i.e. 𝒚 is conditionally independent of 𝝋 given 𝜽 and 𝝎.  

 

2.4 Parameter estimation by hierarchical Bayesian model 

 

Based on the hierarchical Bayesian framework, we attempt to obtain a single set of 

parameters in the isotherm model and quantify the uncertainties of adsorption equilibrium 

data which are measured and predicted by different group of researchers. To do so, the 

discrepancy must be modeled carefully to account for possible contributors to the 

variations or errors in data sets from different research groups. For experimentally 

measured data, the pre- and post-synthesis procedures such as activation, degradation or 

aging, and the presence of non-adsorbing defect sites in the adsorbents among many 

others [9,74] can be the contributors. For data from molecular simulations, the absence 

of defects and/or deformations in the simulated material and the imprecision of the force 

fields used to define adsorbate/adsorbent interactions will contribute to variations with 

respect to experimental data.  

In general, the relationship between the data 𝑦𝑖, where i is the index of each data set, 

and the model y* is linked with the additive error 𝜀𝑖 as follows:  

 

𝑦𝑖 = 𝑦∗ + 𝜀𝑖 ,   𝜀𝑖 ~N(0, 𝜎𝑖
2)                                      (9) 

 

In this equation, the additive error 𝜀𝑖  of each data is modeled using an individual 

parameter σi. This parameter σi is the standard deviation (SD) of vector yi representing the 

unique model error of each data set such as measurement noise. However, 𝜀𝑖  alone 

would not fully address the uncertainty contributors in the measured amounts of 

adsorption discussed above. Some uncertainty contributors, such as defects and impurities 

in the crystals, would not be modeled only by additive errors. 

In addition to 𝜀𝑖, a multiplicative factor Ri is introduced to complementarily lump 

potential uncertainty contributors. This parameter Ri represents the multiplicative error in 

the adsorption amounts between each data set yi (= qi
eq) and model y* (= q*). The equation 

that takes into account both the multiplicative and additive errors can now be written as: 

 

𝑞𝑖
𝑒𝑞 = 𝑞∗ ∙ 𝑅𝑖 + 𝜀𝑖 , 𝜀𝑖 ~N(0, 𝜎𝑖

2)                                      (10) 

 

where q* is amount of CO2 adsorbed at equilibrium defined by Eqs. 1-3 or Eqs. 4-5.  
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Despite the fundamental limitations that exist in molecular modeling of gas 

adsorption, such as assigning the atomic point charges and choosing the force fields [17-

19], GCMC data can serve as a reference in uncertainty quantification as they assume an 

ideal condition that minimizes the external variation contributors on adsorption data as 

discussed above for experiments. We therefore set RGCMC = 1, while allowing the additive 

error 𝜀𝐺𝐶𝑀𝐶  to take non-zero values. The concept of the parameter Ri is illustrated in 

Figure 1, showing this parameter plays a vital role in addressing deviations between 

measurements and GCMC predictions. 

 

 

Figure 1 Illustration of the hierarchical Bayesian estimation for adsorption isotherm data using 

multiplicative factor Ri. 

 

Using Eq. (10), the individual parameters ωi = (Ri, σi) in Eq. (8) were estimated for 

each data set applying the common parameter vector θ on the chosen adsorption isotherm 

models. The prior distributions of the hyperparameter φ are uniform with the upper and 

lower bounds parameterized as φ = ({Rlower, Rupper}, {σlower, σupper}). The structure of the 

hierarchical Bayesian model used in this study is illustrated in Figure 2. 
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Figure 2 Structure of the hierarchical Bayesian model applied in this study. 

 

2.5 Prior distributions and conditions for MCMC analysis  

 

It is difficult to solve p(y) in Eq. 8 analytically. In this study, the MCMC method was 

used to solve this equation approximately. The analysis conditions for the MCMC are 

listed in Table 1. The posterior distribution of the parameters was determined from the 

last 5,000 MCMC sampling points with a thinning interval of 50 and burn-in of 1,000,000. 

As a confirmation of the convergence of the obtained posterior distributions, the 

autocorrelation and trace plots were checked. 

In Bayesian estimation, it is necessary to provide an appropriate prior distribution for 

each parameter and hyperparameter. Prior knowledge about parameters and 

hyperparameters (e.g., experts’ knowledge, previous studies, etc.) should be incorporated 

into the prior distribution. Some trial-and-error attempts to find reasonable prior 

distributions are often performed to assure convergence. A typical choice of prior 

distributions is uniform distributions over a sufficiently wide range (non-informative 

prior). For example, the prior distribution for the parameter σi, which represents the 

measurement error for each data set i, was determined to be sufficiently wide. We checked 

the sensitivity of the width to the posterior distributions to assure robustness of the 

estimation. On the other hand, if there is a strong belief that a parameter must be within a 

specified range, narrow prior distributions can be chosen. For instance, the parameter Ri, 

which represents the multiplicative factor, is expected to be around 1. This is our belief 

that experimental and simulated data should match reasonably well.  

𝒚    

Hyperparameter : 𝝋                                        

Common isotherm
parameter : 𝜽

  ,     ,   …   ,   

Data set : 𝒚 

Individual parameter :    

𝒚 𝒚 … 𝒚 

     =   ,     

Experimental Experimental Molecular simulationExperimental
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The estimation conditions for the prior distribution of parameters in adsorption 

isotherm models and the hyperparameters on zeolite 13X and MIL-101(Cr) are listed in 

Table 2(a) and 2(b), respectively. As discussed later, the isotherm parameter vector is 

given by θ = (b0, -ΔH, qs, At, Bt) for zeolite 13X, and θ = (b0, -ΔH, qs, n) for MIL-101(Cr). 

Uniform distributions with upper and lower bounds that are sufficiently wide were 

employed for all parameters and hyperparameters in both systems, except for the heat of 

adsorption -ΔH and saturated capacity qs for zeolite 13X. For -ΔH for zeolite 13X, a 

normal distribution was used as the prior distribution based on the experimentally 

measured value of 38.63 kJ/mol from the literature [75]. This value was taken as the mean, 

and SD of 5.10 kJ/mol was employed which includes the range of -ΔH between 28.63 and 

48.63 kJ/mol at the probability of 95%. The prior distribution of the parameter qs was 

found by visual inspection (see Figure S2(b)). 

 

Table 1 Analysis conditions for MCMC method. 

Programming language Python3.6 

MCMC method library PyMC2 

Burn-in 1,000,000 

Thinning interval 50 

 

Table 2 Prior distributions for parameters in isotherm models and hyperparameters.  

(a) zeolite 13X. 

Parameters  Mean SD 

–ΔH [kJ/mol]  38.63 5.10 

Parameters  Lower bound Upper bound 

b0 [bar-1]  0.001 × 10-3 1.0 × 10-3 

qs [mol/kg]  0.001 20.0 

At [-]  0.001 0.5 

Bt [-]  0.001 35 

Hyperparameters  Lower bound Upper bound 

Ri [-] 
Rlower 0.001 1.000 

Rupper 1.000 2.000 

σi [mol/kg] σlower 0.001 0.500 

σupper 0.500 1.000 
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(b) MIL-101(Cr). 

Parameters  Lower bound Upper bound 

b0 [bar-1]  0.001 × 10-3 1.0 × 10-3 

–ΔH [kJ/mol]  0.001 50.0 

qs [mol/kg]  40.0 80.0 

n [-]  0.001 3.00 

Hyperparameters  Lower bound Upper bound 

Ri [-] 
Rlower 0.001 1.000 

Rupper 1.000 2.000 

σi [mol/kg] 
σlower 0.001 0.500 

σupper 0.500 1.000 

 

3. Results and discussion 

 

3.1 CO2 adsorption on zeolite 13X 

 

In our preliminary model selection, the Toth model (model 3 in Table S1) was chosen 

for the GCMC data (Figure S1). However, we note that the model deviates from the 

GCMC data to some extent, especially within the low pressure region. A similar issue of 

mismatch at low pressure regions is reported in literature[75]. It was also found that fitting 

the model becomes more challenging when multiple experimental data sets were included 

in addition to the GCMC data.  

The CO2 isotherms fit to zeolite 13X adsorption data were analyzed by the 

hierarchical Bayesian method. The parameter estimation results are shown in Figures 3 

and 4. The 95% highest posterior density (HPD) and mean values of each adsorption 

isotherm equation parameter and hyperparameter are listed in Table S4.  

As shown in Figure 3, the posterior distributions of all parameters in the isotherm 

equation are all nearly unimodal, despite unform distributions set as prior distributions 

for b0, qs, At, and Bt. This suggests the data provide sufficient information to transform 

the uniform prior distributions into the unimodal posterior distributions by Bayesian 

principle in Eq. (8). The posterior distribution of the heat of adsorption –ΔH converged 

to around 28.0 kJ/mol, which is smaller than the mean of the prior distribution that we set 

(38.63 kJ/mol) according to literature[75]. For the equilibrium adsorption capacity qS, the 

mean value of the posterior distribution (16.04 mol/kg) is much larger than the 

experimental adsorption capacities in the range of measured pressures. The posterior 

distributions of At and Bt also resulted in unimodal distributions that converge to non-zero 
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values. This confirms the importance of incorporating the temperature dependence of the 

Toth parameter t into the Toth model (see Eq. 3) for modeling CO2 adsorption on zeolite 

13X.  

 

 

(a)                         (b)                     (c) 

 

 
(d)                         (e) 

Figure 3 Posterior distributions of the adsorption isotherm equation parameter θ = (b0 (a), 

-ΔH (b), qs (c), At (d), Bt (e)) for zeolite 13X. Vertical lines represent the mean of each 

posterior distribution. 

 

The hyperparameter Ri that is used to describe the discrepancy of measurement data 

from GCMC resulted in posterior distributions which are unimodal and almost symmetric. 

It can be seen clearly in Figure 4(a) that the posterior distributions of R3 and R5 converged 

near to RGCMC, indicating that Exp. 3 and 5 are in close agreement with the ideal CO2 

adsorption assumed in the GCMC simulation. For Exp. 2, on the other hand, the mean 

value of R2, 0.238, was significantly smaller than other Ri as well as than RGCMC. 

Considering that the measurement in Exp. 2 was taken at the pressure and temperature 

ranges similar to those performed in the GCMC simulation, such data may be labeled as 
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outliers that deviate significantly from other data sets[9].  

While the inconsistencies across each isotherm data set were quantified successfully 

by Ri, we should note that the underlying causes for the deviations between the GCMC 

simulation and experimental data cannot be identified relying only on this approach. 

Information on synthesis, preparation and measurement of the material used in each data 

set was limited (Table S3 in supplementary material) to conduct further analysis. To 

identify the reasons for the deviations, a larger amount of data sets and more information 

on the synthesis and measurement protocols would be needed. 

Figure 4(b) shows the posterior distribution for σi that represents the variance of the 

measurements in each data set. A small value of σi implies narrow scatter of data from the 

true value, which is assumed to follow the isotherm model (Eq. 10). We find σ3 for Exp. 

3 is the smallest, and σ4 for Exp. 4 is the largest. Our findings revisit the hurdles of high-

pressure gas adsorption measurements[76-77] that lead to a larger deviation of adsorption 

capacities; that is, Exp. 4 was conducted for the widest pressure window whereas Exp. 3 

was carried out in a narrow pressure window (Figure S2), which provide a simple 

implication for the values of σ4 and σ3 discussed above. As an aside, σGCMC is found to be 

large owing to a relatively poor fit to isotherm model (Figure S1). 
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(a) 

 

 

(b) 

 

Figure 4 Posterior distributions for parameters Ri (a) and σi (b) for zeolite 13X.  

 

In Figure 5, the model fitting lines are drawn by sampling isotherm parameters θ from 

the posterior distributions, plotted along with each experimental or simulated data set. As 

expected from above analysis on hyperparameters, Exp. 3 (Figure 5(c)) shows very 

narrow bounds of the lines (small variance of R3) and good agreement with the model 

(small value of σ3). It is noteworthy that Ri effectively quantifies the discrepancy between 

measured and simulated data regardless of the disparate temperature ranges that cannot 

be simply compared to each other[9,24]. Analysis of this kind could facilitate better 

measurement protocols and computational methods for gas adsorption applications [78]. 

In Figure 5(f), some deviation of the model from the GCMC data can be seen; while the 

fitting is not “perfect”, the GCMC data was utilized as a reference for the experimental 

data in Figures 5 (a)-(e) to identify an isotherm model with a common set of parameters, 
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as shown in Figure 3. 

Parameter accuracy and precision can be worsened by strong correlation among 

parameters. To analyze parameter correlations, Figure 6 shows pair plots of the 

parameters sampled via the MCMC algorithm. There, a sample distribution forming a 

circle-like shape means a weak correlation, whereas a thin ellipse-like shape indicates a 

strong correlation between two parameters. The parameter qs is not likely to be correlated 

with any other parameters. On the other hand, we observe strong correlations between 

other pairs of parameters. For example, there are positive correlations for –ΔH vs. At and 

b0 vs. Bt. Negative correlations can also be found for b0 vs. –ΔH, b0 vs. At, –ΔH vs. Bt, 

and At vs. Bt. All of these correlated parameters are for describing the temperature 

dependence of adsorbed amounts (Eqs. 2 and 3). This suggests that more data measured 

or simulated at a wider range of temperatures may improve the accuracy and precision of 

the parameter estimation. 
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(a)                               (b) 

   

(c)                               (d) 

   

(e)                               (f) 

 Figure 5 Data sets and the model plots using estimated isotherm parameters for zeolite 

13X: (a) Exp. 1, (b) Exp. 2, (c) Exp. 3, (d) Exp. 4, (e) Exp. 5, and (f) GCMC. The model 

plots are shown as lines using 5,000 points sampled from parameter posterior 

distributions. 
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Figure 6 Parameter pair plots of adsorption isotherm model for zeolite 13X. In each pair 

plot, 5,000 points are sampled from parameter posterior distributions. 

 

3.2 CO2 adsorption on MIL-101(Cr) 

 

Using the same hierarchical Bayesian framework, the discrepancy between 

experimental and simulated CO2 isotherms was analyzed in another case study of MIL-

101(Cr). The Sips model, which gives the lowest values of AIC and BIC, was employed 

for this system (Figure S3 in supplementary material). The isotherm parameter and 

hyperparameter estimation results are shown through Figures 7-9 with their mean and 95% 

HPD interval information given in Table S5.  

Figure 7 shows the parameter estimation for the Sips isotherm model. Three of the 

four parameters, b0, –ΔH, and n, exhibit unimodal posterior distributions which are nearly 

symmetric. On the other hand, qs shows an asymmetric distribution with the mode 

reaching the upper limit of the prior distribution, which may indicate the true mean lies 

above the upper limit of the prior distribution and could not be found in the range of the 
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prior distribution; the prior distribution of this parameter was set to a uniform distribution 

ranging from 40 to 80 mol/kg, determined by visually examining the saturation CO2 

uptake in MIL-101(Cr) at corresponding sub-ambient temperatures (Figure S3(a)). We 

attempted setting the prior distribution to those with larger means, but such attempts lead 

to similar distributions.  

The ill-shaped posterior distribution of qs may be due to inadequacy of the isotherm 

model. Approximate saturation capacity of adsorbing molecules depends on the density 

of adsorbed phase of species within the pores. The density of CO2 (and hence its 

adsorption capacity) increases as lowering temperature, where such trend becomes drastic 

as the temperature decreases to sub-ambient conditions [49,79]. This effect, which is not 

represented by the isotherm model we employed (model 7 in Table S2), may be even 

more significant in our sub-ambient temperature window resulting in biased qs towards 

large values. Unfortunately, the relatively small amount of the data in this study did not 

allow us to find a better isotherm model, since employing a more complex model with a 

larger number of parameters (e.g. model 8 in Table S2), even with fully using the GCMC 

data up to higher pressure, did not lead to better posterior distribution of qs. Obtaining 

additional experimental or computational data sets that cover a wider range of 

temperatures, for example at room-temperature, may help to overcome this challenge.  
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(a)                           (b)  

  

(c)                              (d) 

Figure 7 Posterior distributions of the adsorption isotherm equation parameter θ = (b0 (a), 

-ΔH (b), qs (c), n (d)) for MIL-101(Cr). Vertical lines represent the mean of each posterior 

distribution. 

 

Figure 8 shows the posterior distributions of the hyperparameters Ri and σi. The modes 

are around RA = 0.86 and RB = 0.82 for Exp. A and Exp. B, respectively. Figure 8(a) 

statistically quantifies the difference of the two experiments, where the overlapped area 

between p(RA) and p(RB) is only approximately 6%, owing to the sharp distributions. This 

small percentage of the overlapped area indicates that the two experiments, A and B, can 

be distinguished statistically. The values of RA and RB are both slightly smaller than 1, 

indicating the adsorbed amounts in experiments are smaller than that predicted by GCMC. 

These relatively minor discrepancies between experiments and GCMC can be partly 

explained by the difference in the surface area; the BET surface area measured 

experimentally for A was about 2760 m2/g, which is approximately 0.88 times the 

computed surface area, 3134.3 m2/g. The difference of the surface area implies non-

adsorbing sites such as defects in the synthesized crystals, while GCMC assumes defect-

free crystal structures which provide an ideal surface area accessible by gas molecules. 

In some past studies, the ratio of the measured surface area to the computed one is used 
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as a scaling factor [80-82]. Our approach of using Ri takes into account the difference not 

only in the surface area, but also other nonidealities such as measurement errors. For the 

posterior distribution of σi shown in Figure 8(b), narrow probability distributions are 

found for σA and σB compared to σGCMC. The relatively large value of σGCMC is due to the 

slight mismatch of the Sips isotherm model. Nonetheless, as examined in the previous 

case study of zeolite, we note σGCMC is in an acceptable range that has a marginal impact 

on reliable prediction of another hyperparameter Ri. 

The model fit lines over actual data set are shown in Figure 9. The estimated model 

fits well with Exp. A and B within a narrow bound around the experimental data. On the 

other hand, for GCMC, slight mismatch to the simulated data can be found due to the 

minor disagreement between experimental and GCMC data. Such disagreement, 

especially in low-pressure regimes, could be resolved by tuning the GCMC details such 

as imposing different interatomic force fields [83-85] and adopting different atomic point 

charge assignment methods and determining trial move types for adsorbates with distinct 

probabilities. The relatively poor fit of the Sips model to GCMC may also be resolved by 

employing a more complex isotherm model that includes a larger number of parameters 

than models 1, 6, 7, or 8 in Table S2 in the supplementary material, which would require 

a larger amount of data. 
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(a) 

 

(b) 

 

Figure 8 Posterior distributions of hyperparameters Ri (a) and σi (b) for MIL-101(Cr). 
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(a)                            (b)                          

 

     

(c)                            

  

Figure 9 Data sets and the model plots using estimated isotherm parameters for MIL-

101(Cr): (a) GCMC, (b) Exp. A, (c) Exp. B. The model plots are shown as lines using 

5,000 points sampled from parameter posterior distributions. 

 

Lastly, correlations for isotherm parameter pairs are evaluated for MIL-101(Cr) by 

pair plots shown in Figure 10. We find a weak correlation for n vs. -ΔH whereas relatively 

strong correlations can be found for for b0 vs. -ΔH and b0 vs. n. Since the mean of the 

posterior distribution of qs reached the upper bound of the prior distribution, correlations 

of this parameter with other parameters cannot be analyzed.  
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Figure 10 Parameter pair plots of adsorption isotherm model for MIL-101(Cr). In each 

pair plot, 5,000 points are sampled from parameter posterior distributions. 

 

4. Conclusions 

 

In this study, a hierarchical Bayesian estimation framework using the MCMC method 

was demonstrated to quantify the discrepancy between data sets of experimental 

measurements and GCMC simulation. As a case study, CO2 adsorption isotherms in 

nanoporous adsorbents were considered. Multiple data sets for CO2 adsorption isotherms 

onto zeolite 13X and MIL-101(Cr) at different conditions were used. The proposed 

framework estimated the parameters of adsorption isotherm models as probability 

distributions. At the same time, the discrepancy between the simulated and experimental 

data was quantified through probability distributions of the multiplicative coefficient Ri 

and variance of measurement errors σi.  

The proposed approach was demonstrated successfully for the first case study of 

zeolite 13X. It was found that the posterior distributions of isotherm equation parameters 
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and hyperparameters were obtained as unimodal and symmetric distributions. Particularly, 

the identification of data sets that closely match with the GCMC data, as well as outlier 

data sets which deviate significantly from the reference GCMC data, enabled by the 

proposed Ri factor was achieved. We showed that introducing the coefficient Ri was 

effective to deal with disparate temperature ranges in the measurements. These results 

imply that our proposed approach can be a useful technique to analyze the quality of data. 

Although the underlying contributors for given data quality may not necessarily be 

identified, the proposed framework provides insights into analyzing inconsistencies that 

exist between a set of experimental data and molecular simulation.  

The proposed framework was also demonstrated for another case study of MIL-

101(Cr), identifying some remaining challenges due to the relatively limited adsorption 

data in this study. The prior distribution for one of the parameters in the Sips isotherm 

model chosen in this study always reached the upper bound of the prior distribution, 

which may be due to model inadequacy. Modification of the model and obtaining 

additional data sets over a wider temperature range may resolve this problem. Also Ri of 

our experimental attempts indicated the underestimation of the adsorbed amount 

measured experimentally compared to the reference GCMC data, which may be partly 

explained by the difference of computed and measured surface areas.  

The proposed framework is an effective approach to quantify the discrepancies 

between adsorption isotherms measured experimentally and simulated, which is noted 

frequently in literature. Thorough understanding on these inconsistencies and, more 

importantly, providing the most probable isotherm parameters will be a vital input for 

process modeling not only in CO2 capture but also in other application areas of adsorptive 

separation.  
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Nomenclature 

At : temperature dependence constant of parameter t 

bS : affinity constant in Sips model 

bS0 : affinity constant in Sips model 

bT : Toth constant 

Bt : temperature dependence constant of parameter t 

bT0 : affinity constant 

i : index of data set 

n : Sips constant 

p : partial pressure of CO2 

p(y) : marginal likelihood 

p(θ, φ| y) : posterior distribution 

p(y|θ) : likelihood representing the probability of data y at a given parameter θ 

p(yi|σi) : posterior distribution 

p(φ) : hyperprior distribution 

p(θ) : prior probability distribution of θ 

p(θ|y) : posterior distribution of the parameters 

q* : equilibrium amount of CO2 adsorbed 

qs : saturated amount of CO2 adsorbed 

R : ideal gas constant 

Ri : measurement error for each data yi 

T : temperature 

t : Toth constant representing heterogeneity of adsorption system 

y : vector of data such as experimental results 

θ : parameter vector to be estimated 

ω: parameter vector of each data set representing individual unique properties 

φ : hyperparameter 

ΔH : isosteric heat of adsorption 

σi : standard deviation (SD) of vector yi 

 

Abbreviations 

AIC: Akaike information criterion 

BIC: Bayesian information criterion 

CCUS: carbon capture, utilization, and storage 

GCMC: grand canonical Monte Carlo 

HPD: highest posterior density 
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HYBRID: hybrid fractional error function 

MCMC: Markov chain Monte Carlo 

MOF: metal organic framework 

NIST: National Institute of Standards and Technology 

RMSD: root mean square deviation 

SD: standard deviation 

SSE: sum of squares of errors 
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