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Abstract

To quantitatively analyze the inconsistencies commonly observed between experimental
and simulated adsorption isotherms, parameter estimation of adsorption isotherm models
was conducted by hierarchical Bayesian estimation with parameter uncertainties being
quantified as probability distributions. The estimation method was implemented using
Markov Chain Monte Carlo (MCMC) to analyze multiple data sets obtained from
different sources, including a publicly available database. To describe the discrepancies
of experimental and simulated adsorption data, the simulation data was set as the
reference to which experimental measurements were compared. We applied the proposed
approach to analyze CO; adsorption isotherms that are measured and simulated on zeolite
13X and MIL-101(Cr). For both systems, a multiplicative factor and standard deviation
of the measurement error in each data set were quantified along with a single set of the
isotherm model parameters. In these case studies, the discrepancy of CO; adsorption
isotherm was successfully quantified between experimental measurements and
predictions given by molecular simulations using Grand Canonical Monte Carlo (GCMC).
This approach can be a powerful tool in resolving variations among adsorption data sets
obtained from different resources, as well as in providing insights into the deviations
between experimental data and molecular simulations.
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1. Introduction

Emission of carbon dioxide (COz) from fossil fuel combustion is the underlying cause
of global warming. To mitigate these emissions, CO> capture, utilization, and storage
(CCUS) is expected to be a key technology. For the practical application of CCUS,
however, cost reduction especially in the CO> capture step is a critical challenge. Some
techniques already implemented at a large scale, such as liquid amine scrubbing, have
remaining challenges, including high regeneration energy, solvent evaporation, amine
degradation, and equipment corrosion[1-3]. To this end, the development of alternative
techniques overcoming these drawbacks, especially the high energy cost, is desired. In
the past several decades, a large number of CO> capture techniques including advanced
solvents, adsorption, and membrane separation have been studied[4]. Among them,
adsorptive separation is considered one of the promising methods to recover CO; in flue
gas from various sources[5].

For designing adsorption processes, both equilibrium and kinetic data are required,
and especially obtaining reliable adsorption equilibrium data is vital[6-7]. To date, many
researchers have conducted laboratory experiments and molecular simulations of CO>
adsorption on various adsorbents, including zeolites, porous carbons, amine-modified
silicas, and metal-organic-frameworks (MOFs) to identify promising materials. These
efforts have generated a large amount of data on CO> adsorption equilibria of various
materials.

To use those data effectively, open database projects such as the one by the National
Institute of Standards and Technology (NIST) are ongoing, which can be useful resources
for material screening and process design[8]. However, there are still some remaining
challenges for practical application of these databases for material and process
development. One of them is the reliability of data, namely, how to select the appropriate
data from multiple data sources. Park et al.[9] reported that CO; adsorption measurements
in MOFs obtained by different researchers show substantial variations even at well-
defined adsorption conditions. Similar studies also highlighted the need for experimental
reproducibility for a range of adsorbates and porous adsorbent materials [10-11]. Such
variations arise for different reasons including the measurement methods (i.e., equipment,
procedures, and sample conditions) as well as adsorbent degradation that may occur
during material synthesis and/or post-synthesis (e.g., defects in the crystals, trace
components, insufficient deactivation, and pore blockage/collapse) [12-16].

In addition to analyzing experimental data, molecular simulation is a powerful
approach to predict adsorption equilibrium for adsorbents where a systematic
experimental investigation can be challenging[17-19]. Nevertheless, it is unlikely the



simulated adsorption properties will exactly match those from experiments, because not
all computational approximations can fully address the structural nature of adsorbents[20-
21] and the molecular interactions of adsorbing species within adsorbents[22-23]. As a
result, researchers face the problem of trusting simulated data over experimental data
and/or vice versa, in recognition of fundamental assumptions of molecular simulation and
uncertainties in experimental measurement[24].

Recently, Shih et al.[24] introduced a hierarchical Bayesian estimation method to
quantify the discrepancy among experimental data sets using a Markov Chain Monte
Carlo (MCMC) method. This approach can generate probability distributions for the
parameters in a given adsorption isotherm model[25]. The method also gives information
on multiple data sets obtained by different researchers, and hence allows the quantitative
analysis of discrepancy among multiple experimental data sets.

In this study, the discrepancies of experimental data sets from a reference Grand
Canonical Monte Carlo (GCMC) data are quantified by hierarchical Bayesian estimation,
and parameters in isotherm models were estimated for porous adsorbents that are obtained
from various sources. Among these data sets, simulated data by GCMC, which assumes
adsorption occurs in defect-free crystals with interaction parameters specified by a force
field, was chosen as the reference[26-28]. This choice is not intended to imply that the
simulation data is the “correct” answer, but rather to note that it is typically easier to
obtain high resolution data with small uncertainties using molecular simulations. Our
approach is demonstrated for two case studies: zeolite 13XNa, one of the traditional and
notable materials for CO> capture [29-37], and MIL-101(Cr), a promising MOF widely
known for CO> adsorption[38-41].



2. Methods

2.1 Case studies: CO2 adsorption on zeolite 13XNa and MIL-101(Cr)

2.1.1 Data collection from NIST adsorption database for zeolite 13XNa

For zeolite 13XNa, experimental CO> isotherm data from five different reports
(hereafter labeled Exp. 1-5) were collected from the NIST adsorption database [42-46].
For computational results, GCMC simulation data from Purdue et al.[47] was used. All
CO. isotherms used are shown in Figures S1 and S2.

The experimental conditions for each isotherm data set and zeolite sources for Exp.
1-5 as well as the simulation condition for GCMC predictions are summarized in Table
S3. It is worthwhile to note that the zeolite implemented in each experiment was obtained
from different supplier, and the measurement methods (i.e., apparatus and pretreatment)
were also different. In each experimental data set, the measurement protocols as well as
the crystal properties of 13X samples (e.g., Si/Al ratio, presence and/or absence of binders)
are different, which may have led to the laboratory uncertainties in the adsorption
equilibrium experiments.

It is also important to note that the GCMC simulation data used here cannot account
for all possible contributions to adsorption in real samples. For example, these simulations
cannot capture adsorption in non-crystalline mesopores that have been shown to make
small contributions to high pressure CO2 adsorption in reference zeolites[48].

2.1.2 Molecular simulation and isotherm measurement for MIL-101(Cr)

CO- adsorption data on MIL-101(Cr) are obtained by in-house GCMC prediction and
experiments (Figures S3 and S4, respectively). To support the design of a post-
combustion CO; capture process at sub-ambient conditions within a narrow CO; partial
pressure range for this promising MOF [41,49] adsorption isotherms are simulated and
measured at a sub-ambient temperature window from 223 to 273 K at an interval of 10 K
in a pressure regime up to 1.0 bar.

GCMC simulation was conducted using the RASPA package [50-51]. The standard
force fields of UFF[52] and TraPPE[53] are employed for Lennard-Jones parameters on
MOF atoms and on quadrupolar CO2 molecule, respectively, to determine van der Waals
interactions that is defined by Lorentz-Bethelot mixing rules[54]. A long-range Ewald
Coulombic interactions[55] are modeled with atomic point charges on MOF atoms and
on CO2 molecules assigned by DDEC[56-58] and TraPPE[53], respectively. To represent
the crystal structure of MIL-101(Cr), as-distributed .cif file from the RASPA was adopted.



The structure of the adsorbent was assumed to be rigid in all calculations.

Two samples of MIL-101(Cr), A and B, were synthesized separately, following the
general procedure outlined by Darunte et al[59]. The modulators used for Sample A and
B were different; in the synthesis of Sample A, 7.5 ml of glacial acetic acid was used,
while for Sample B, 7.5 ml of a 36% (v/v) solution of acetic acid in deionized water was
added. The BET surface area of A was measured to be 2760 m?/g. More details of material
synthesis, isotherm and surface area measurements are given in the supplementary
material.

2.2 Adsorption equilibrium models

There are various mathematical models to represent adsorption isotherms such as
Langmuir, Freundlich, Henry, BET, Sips, and Toth models [60-61]. To select an
appropriate isotherm model for accurate prediction, various model selection criteria based
on error evaluation including square of correlation coefficient (R?), adjusted R? (adj- R?),
sum of the squares of errors (SSE), root mean square deviation (RMSD), and hybrid
fractional error function (HYBRID) are frequently used [62]. However, these criteria,
with the exception of adj-R? do not take into account the number of parameters in the
functional forms. Recently, information-based criteria such as Akaike information
criterion (AIC), Bayesian information criterion (BIC), and their extensions have been
applied for selecting the best isotherm model among the candidates having the different
number of parameters[63-65]. Below, AIC and BIC were employed for selecting the most
suitable adsorption isotherm model, where lower values of AIC and BIC indicate a better
model.

It is known that CO> adsorption isotherms on zeolite 13X can be described well either
by the Toth model [66-67] or the dual-site Langmuir model [68-70]. Several candidate
models with different number of parameters were investigated for the GCMC data (see
Table S1 in the supplementary material). By comparing the values of AIC and BIC, the
Toth model with the temperature dependence of the parameter t given in Egs. 1-3 (model
3 in Table S1)[71] was eventually employed for the equilibrium model of CO2 adsorption
on zeolite 13X:
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where q” is the equilibrium amount of CO; adsorbed; s is the saturated amount of CO-
adsorbed at a given temperature T; br is the affinity constant; t is the Toth constant
representing the heterogeneity of adsorption system; p is the partial pressure of CO2; bro
is the preexponential factor for the affinity constant; 4H is the isosteric heat of adsorption;
R is the ideal gas constant; A: and Bt are temperature dependence constant of parameter t.

For MIL-101(Cr), on the other hand, the Sips model as given in Egs. 4-5 (model 7 in
Table S2), was chosen over the Langmuir and Toth models:
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where bs is the affinity constant; n is the Sips constant; and bso is the preexponential factor
for affinity constant. Using the two model selection criteria, AIC and BIC, the Sips model
shows the minimum values as summarized in Table S2.

2.3 Hierarchical Bayesian model

The Bayesian approach to describe parameter uncertainty is a method for estimating
parameter values with probability distributions following the Bayes' theorem [25]. The
principle of Bayesian estimation is given by:

p(0ly) = X2 o p(y|@)p(0) ©)

where O is the parameter vector to be estimated; y is the vector of data such as
experimental or simulated data; p(®) is the prior probability distribution of @; p(y|®) is
the likelihood representing the probability of data y at a given parameter @; and p(y) is
called the marginal likelihood that normalizes p(y|®)p(®). The above equation shows that
normalization by p(y) is needed to obtain the posterior distribution of the parameters.

In Bayesian estimation, the posterior probability distribution can be obtained by
updating the prior probability distribution using MCMC sampling. Hence a large enough



number of samples are required for obtaining the posterior distributions of the parameters.
Estimating parameters as a probability distribution, in comparison to the point estimation
such as the least squares method, gives us the information on the parameter uncertainty.
In addition, correlations among parameters can be found by analyzing the samples
obtained by MCMC [72].

Generally, it is difficult to determine a parameter ® by a conventional Bayesian
estimation approach when data sets y are obtained under different conditions; that is, a
single set of probability distributions for ® cannot be easily obtained for a variety of
CO. adsorption data that are measured at different experimental conditions and/or
obtained by distinct methods (either experiment or simulation). Ignoring the differences
in the condition of each data set would lead to overdispersion of the parameter ©, where
the variation of @ is estimated to be large. To overcome this problem of finding a single
parameter set from different data sources, hierarchical Bayesian inference is an well-
known approach in Bayesian statistics[73] which can be applied to analyze adsorption
isotherms as demonstrated earlier by Shih et al.[24]. Below, we employ this approach for
the first time to quantify the discrepancy of isotherm data measured in laboratory from
those predicted by molecular simulation.

The principle of hierarchical Bayesian estimation is given by the following joint prior
distribution [25]:

p(0, w, ) = p(0)p(w|e) p(p) (7

where @ is a vector of common parameters in the model, o is an individual parameter
for each data set, and ¢ is a hyperparameter. This equation expresses p(#, w, ¢) using a
conditional probability distribution p(w|p) and the probability p(e), assuming @ is
independent of w. In this model, the heterogeneity in each data set is considered by
introducing an additional individual parameter @ for each data set to describe unique
properties in each data set such as experimental conditions. The dispersion of parameter
o is represented by hyperparameter ¢ which is an unknown variable having its own prior
distribution. Redefining ® inEq.6as ® = (0, w, ¢) followed by combining Egs. 6 and
7 gives the framework of the hierarchical Bayes estimation as:

p(0,w,@ly) x p(¥|6, w, )p(0, w, ) = p(y|0, w)p(6, w, p) =
p(¥10, w)p(0)p(w|e)p(p) (8)

where p(@, o, 9| y) is the posterior distribution; p(y|@, @) is the likelihood calculated from



the isotherm model; p(p) is the hyperprior distribution to quantify prior knowledge about
the prior distribution p(p|w). In the above equation, we assume p(y|0,w, ) =
p(y|6, w); i.e. y is conditionally independent of ¢ given 6 and w.

2.4 Parameter estimation by hierarchical Bayesian model

Based on the hierarchical Bayesian framework, we attempt to obtain a single set of
parameters in the isotherm model and quantify the uncertainties of adsorption equilibrium
data which are measured and predicted by different group of researchers. To do so, the
discrepancy must be modeled carefully to account for possible contributors to the
variations or errors in data sets from different research groups. For experimentally
measured data, the pre- and post-synthesis procedures such as activation, degradation or
aging, and the presence of non-adsorbing defect sites in the adsorbents among many
others [9,74] can be the contributors. For data from molecular simulations, the absence
of defects and/or deformations in the simulated material and the imprecision of the force
fields used to define adsorbate/adsorbent interactions will contribute to variations with
respect to experimental data.

In general, the relationship between the data y;, where i is the index of each data set,
and the model y* is linked with the additive error &; as follows:

yi=y*+¢, &~N(,0;%) 9)

In this equation, the additive error ¢; of each data is modeled using an individual
parameter oi. This parameter o; is the standard deviation (SD) of vector y; representing the
unique model error of each data set such as measurement noise. However, ¢; alone
would not fully address the uncertainty contributors in the measured amounts of
adsorption discussed above. Some uncertainty contributors, such as defects and impurities
in the crystals, would not be modeled only by additive errors.

In addition to ¢;, a multiplicative factor R; is introduced to complementarily lump
potential uncertainty contributors. This parameter R; represents the multiplicative error in
the adsorption amounts between each data set yi (= gi*®?) and model y* (= q°). The equation
that takes into account both the multiplicative and additive errors can now be written as:

q:°7=q" "R+ ¢, & ~N(0,0%) (10)

where q” is amount of CO; adsorbed at equilibrium defined by Egs. 1-3 or Egs. 4-5.



Despite the fundamental limitations that exist in molecular modeling of gas
adsorption, such as assigning the atomic point charges and choosing the force fields [17-
19], GCMC data can serve as a reference in uncertainty quantification as they assume an
ideal condition that minimizes the external variation contributors on adsorption data as
discussed above for experiments. We therefore set Recmc = 1, while allowing the additive
error g;cpmce to take non-zero values. The concept of the parameter R; is illustrated in
Figure 1, showing this parameter plays a vital role in addressing deviations between
measurements and GCMC predictions.

Experiment data 1

QExperiment data 1

Experiment data 2
qExperiment data2

The multiplicative error

__ 9Experiment data 1

Amount adsorbed
-~
[y
|

AExperiment data 2
RZ —

Pressure
Figure 1 Illustration of the hierarchical Bayesian estimation for adsorption isotherm data using
multiplicative factor Ri.

Using Eqg. (10), the individual parameters wi = (Ri, oi) in EQ. (8) were estimated for
each data set applying the common parameter vector & on the chosen adsorption isotherm
models. The prior distributions of the hyperparameter ¢ are uniform with the upper and
lower bounds parameterized as ¢ = ({R'OY", RWPPer}, {6'O¢", g"PPeY). The structure of the
hierarchical Bayesian model used in this study is illustrated in Figure 2.
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Figure 2 Structure of the hierarchical Bayesian model applied in this study.

2.5 Prior distributions and conditions for MCMC analysis

It is difficult to solve p(y) in Eq. 8 analytically. In this study, the MCMC method was
used to solve this equation approximately. The analysis conditions for the MCMC are
listed in Table 1. The posterior distribution of the parameters was determined from the
last 5,000 MCMC sampling points with a thinning interval of 50 and burn-in of 1,000,000.
As a confirmation of the convergence of the obtained posterior distributions, the
autocorrelation and trace plots were checked.

In Bayesian estimation, it is necessary to provide an appropriate prior distribution for
each parameter and hyperparameter. Prior knowledge about parameters and
hyperparameters (e.g., experts’ knowledge, previous studies, etc.) should be incorporated
into the prior distribution. Some trial-and-error attempts to find reasonable prior
distributions are often performed to assure convergence. A typical choice of prior
distributions is uniform distributions over a sufficiently wide range (non-informative
prior). For example, the prior distribution for the parameter ai, which represents the
measurement error for each data set i, was determined to be sufficiently wide. We checked
the sensitivity of the width to the posterior distributions to assure robustness of the
estimation. On the other hand, if there is a strong belief that a parameter must be within a
specified range, narrow prior distributions can be chosen. For instance, the parameter R;,
which represents the multiplicative factor, is expected to be around 1. This is our belief
that experimental and simulated data should match reasonably well.

10



The estimation conditions for the prior distribution of parameters in adsorption
isotherm models and the hyperparameters on zeolite 13X and MIL-101(Cr) are listed in
Table 2(a) and 2(b), respectively. As discussed later, the isotherm parameter vector is
given by @ = (bo, -4H, gs, Ay, By) for zeolite 13X, and @ = (bo, -4H, gs, n) for MIL-101(Cr).
Uniform distributions with upper and lower bounds that are sufficiently wide were
employed for all parameters and hyperparameters in both systems, except for the heat of
adsorption -4H and saturated capacity gs for zeolite 13X. For -4H for zeolite 13X, a
normal distribution was used as the prior distribution based on the experimentally
measured value of 38.63 kJ/mol from the literature [75]. This value was taken as the mean,
and SD of 5.10 kJ/mol was employed which includes the range of -4H between 28.63 and
48.63 kJ/mol at the probability of 95%. The prior distribution of the parameter gs was
found by visual inspection (see Figure S2(b)).

Table 1 Analysis conditions for MCMC method.
Programming language Python3.6
MCMC method library PyMC2
Burn-in 1,000,000
Thinning interval 50

Table 2 Prior distributions for parameters in isotherm models and hyperparameters.
(@) zeolite 13X.

Parameters Mean SD
—AH [kJ/mol] 38.63 5.10
Parameters Lower bound Upper bound
bo [bar?] 0.001 x 107 1.0 x 103
gs [mol/kg] 0.001 20.0
At [-] 0.001 0.5
Bt [-] 0.001 35
Hyperparameters Lower bound Upper bound
RiL] Rlower 0.001 1.000

RupPer 1.000 2.000
ai [mol/kg] glower 0.001 0.500

o"PPe! 0.500 1.000
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(b) MIL-101(Cr).

Parameters Lower bound Upper bound
bo [bar] 0.001 x 103 1.0 x 1073
—AH [kJ/mol] 0.001 50.0
gs [mol/kg] 40.0 80.0
n[-] 0.001 3.00
Hyperparameters Lower bound Upper bound
R[] Rlower 0.001 1.000

Rupper 1.000 2.000

glower 0.001 0.500
o1 [mol/k] PP 0.500 1.000

3. Results and discussion

3.1 CO2 adsorption on zeolite 13X

In our preliminary model selection, the Toth model (model 3 in Table S1) was chosen
for the GCMC data (Figure S1). However, we note that the model deviates from the
GCMC data to some extent, especially within the low pressure region. A similar issue of
mismatch at low pressure regions is reported in literature[75]. It was also found that fitting
the model becomes more challenging when multiple experimental data sets were included
in addition to the GCMC data.

The CO: isotherms fit to zeolite 13X adsorption data were analyzed by the
hierarchical Bayesian method. The parameter estimation results are shown in Figures 3
and 4. The 95% highest posterior density (HPD) and mean values of each adsorption
isotherm equation parameter and hyperparameter are listed in Table S4.

As shown in Figure 3, the posterior distributions of all parameters in the isotherm
equation are all nearly unimodal, despite unform distributions set as prior distributions
for bo, gs, At, and Bt. This suggests the data provide sufficient information to transform
the uniform prior distributions into the unimodal posterior distributions by Bayesian
principle in Eq. (8). The posterior distribution of the heat of adsorption —4H converged
to around 28.0 kJ/mol, which is smaller than the mean of the prior distribution that we set
(38.63 kJ/mol) according to literature[75]. For the equilibrium adsorption capacity s, the
mean value of the posterior distribution (16.04 mol/kg) is much larger than the
experimental adsorption capacities in the range of measured pressures. The posterior
distributions of A¢ and Bt also resulted in unimodal distributions that converge to non-zero
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values. This confirms the importance of incorporating the temperature dependence of the
Toth parameter t into the Toth model (see Eq. 3) for modeling CO2 adsorption on zeolite
13X.

0.100 o | 0.6 5— 1.2 -
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%0 05 D %o 6
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Figure 3 Posterior distributions of the adsorption isotherm equation parameter 8 = (bo (a),
-AH (b), gs (c), At (d), Bt (e)) for zeolite 13X. Vertical lines represent the mean of each
posterior distribution.

The hyperparameter R; that is used to describe the discrepancy of measurement data
from GCMC resulted in posterior distributions which are unimodal and almost symmetric.
It can be seen clearly in Figure 4(a) that the posterior distributions of Rz and Rs converged
near to Recmc, indicating that Exp. 3 and 5 are in close agreement with the ideal CO>
adsorption assumed in the GCMC simulation. For Exp. 2, on the other hand, the mean
value of Rz, 0.238, was significantly smaller than other R; as well as than Rscmc.
Considering that the measurement in Exp. 2 was taken at the pressure and temperature
ranges similar to those performed in the GCMC simulation, such data may be labeled as
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outliers that deviate significantly from other data sets[9].

While the inconsistencies across each isotherm data set were quantified successfully
by Ri, we should note that the underlying causes for the deviations between the GCMC
simulation and experimental data cannot be identified relying only on this approach.
Information on synthesis, preparation and measurement of the material used in each data
set was limited (Table S3 in supplementary material) to conduct further analysis. To
identify the reasons for the deviations, a larger amount of data sets and more information
on the synthesis and measurement protocols would be needed.

Figure 4(b) shows the posterior distribution for o that represents the variance of the
measurements in each data set. A small value of i implies narrow scatter of data from the
true value, which is assumed to follow the isotherm model (Eg. 10). We find a3 for Exp.
3 is the smallest, and o4 for Exp. 4 is the largest. Our findings revisit the hurdles of high-
pressure gas adsorption measurements[76-77] that lead to a larger deviation of adsorption
capacities; that is, Exp. 4 was conducted for the widest pressure window whereas Exp. 3
was carried out in a narrow pressure window (Figure S2), which provide a simple
implication for the values of 64 and o3 discussed above. As an aside, sccmc is found to be
large owing to a relatively poor fit to isotherm model (Figure S1).
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Figure 4 Posterior distributions for parameters R; (a) and ai (b) for zeolite 13X.

In Figure 5, the model fitting lines are drawn by sampling isotherm parameters & from
the posterior distributions, plotted along with each experimental or simulated data set. As
expected from above analysis on hyperparameters, Exp. 3 (Figure 5(c)) shows very
narrow bounds of the lines (small variance of R3) and good agreement with the model
(small value of a3). It is noteworthy that R; effectively quantifies the discrepancy between
measured and simulated data regardless of the disparate temperature ranges that cannot
be simply compared to each other[9,24]. Analysis of this kind could facilitate better
measurement protocols and computational methods for gas adsorption applications [78].
In Figure 5(f), some deviation of the model from the GCMC data can be seen; while the
fitting is not “perfect”, the GCMC data was utilized as a reference for the experimental
data in Figures 5 (a)-(e) to identify an isotherm model with a common set of parameters,
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as shown in Figure 3.

Parameter accuracy and precision can be worsened by strong correlation among
parameters. To analyze parameter correlations, Figure 6 shows pair plots of the
parameters sampled via the MCMC algorithm. There, a sample distribution forming a
circle-like shape means a weak correlation, whereas a thin ellipse-like shape indicates a
strong correlation between two parameters. The parameter gs is not likely to be correlated
with any other parameters. On the other hand, we observe strong correlations between
other pairs of parameters. For example, there are positive correlations for —4H vs. At and
bo vs. Bt. Negative correlations can also be found for bo vs. —4H, bo vs. At, —4H vs. By,
and A: vs. Bt All of these correlated parameters are for describing the temperature
dependence of adsorbed amounts (Egs. 2 and 3). This suggests that more data measured
or simulated at a wider range of temperatures may improve the accuracy and precision of
the parameter estimation.

16



12, 12;
Exp. 1 Exp. 2
10 10
_. 8 _ 8
g g
= 278K =
4‘ (] * b3 4
2i - = 298 K 318 K 2t 323K 348K 363K
P00 025 050 075 1.00 P00 025 050 0.75 1.00
P[bar] P[bar]
(a) (b)
12 12
Exp. 3 Exp. 4
10! 228 K 10
—_ 8 . 8 298 K
g 248 K gm
[ 273K |8 °
] . = 308 K 323K
4 4.
2 2‘
:
Poo 025 050 0.75 1.00 % 10 20 30 40
Plbar] Plbar]
(c) (d)
12 2
Exp. 5 GCMC
10 10
=, 18 . 8
o o
X 313K |X
g 6 g 6 298 K
S 43K |=
53 4 o al
2 73 K 2':.“ 348 K 323K
) 1 ;) 3 4 Poo 025 050 0.75 1.00
Plbar] Plbar]
(e) (f)

Figure 5 Data sets and the model plots using estimated isotherm parameters for zeolite
13X: (a) Exp. 1, (b) Exp. 2, (c) Exp. 3, (d) Exp. 4, (e) Exp. 5, and (f) GCMC. The model
plots are shown as lines using 5,000 points sampled from parameter posterior
distributions.
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Figure 6 Parameter pair plots of adsorption isotherm model for zeolite 13X. In each pair
plot, 5,000 points are sampled from parameter posterior distributions.

3.2 COz adsorption on MIL-101(Cr)

Using the same hierarchical Bayesian framework, the discrepancy between
experimental and simulated CO> isotherms was analyzed in another case study of MIL-
101(Cr). The Sips model, which gives the lowest values of AIC and BIC, was employed
for this system (Figure S3 in supplementary material). The isotherm parameter and
hyperparameter estimation results are shown through Figures 7-9 with their mean and 95%
HPD interval information given in Table S5.

Figure 7 shows the parameter estimation for the Sips isotherm model. Three of the
four parameters, bo, —4H, and n, exhibit unimodal posterior distributions which are nearly
symmetric. On the other hand, gs shows an asymmetric distribution with the mode
reaching the upper limit of the prior distribution, which may indicate the true mean lies
above the upper limit of the prior distribution and could not be found in the range of the
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prior distribution; the prior distribution of this parameter was set to a uniform distribution
ranging from 40 to 80 mol/kg, determined by visually examining the saturation CO>
uptake in MIL-101(Cr) at corresponding sub-ambient temperatures (Figure S3(a)). We
attempted setting the prior distribution to those with larger means, but such attempts lead
to similar distributions.

The ill-shaped posterior distribution of gs may be due to inadequacy of the isotherm
model. Approximate saturation capacity of adsorbing molecules depends on the density
of adsorbed phase of species within the pores. The density of CO. (and hence its
adsorption capacity) increases as lowering temperature, where such trend becomes drastic
as the temperature decreases to sub-ambient conditions [49,79]. This effect, which is not
represented by the isotherm model we employed (model 7 in Table S2), may be even
more significant in our sub-ambient temperature window resulting in biased gs towards
large values. Unfortunately, the relatively small amount of the data in this study did not
allow us to find a better isotherm model, since employing a more complex model with a
larger number of parameters (e.g. model 8 in Table S2), even with fully using the GCMC
data up to higher pressure, did not lead to better posterior distribution of gs. Obtaining
additional experimental or computational data sets that cover a wider range of
temperatures, for example at room-temperature, may help to overcome this challenge.
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Figure 7 Posterior distributions of the adsorption isotherm equation parameter 8 = (bo (a),
-4AH (b), gs (c), n (d)) for MIL-101(Cr). Vertical lines represent the mean of each posterior
distribution.

Figure 8 shows the posterior distributions of the hyperparameters R; and i. The modes
are around Ra = 0.86 and Rs = 0.82 for Exp. A and Exp. B, respectively. Figure 8(a)
statistically quantifies the difference of the two experiments, where the overlapped area
between p(Ra) and p(Rs) is only approximately 6%, owing to the sharp distributions. This
small percentage of the overlapped area indicates that the two experiments, A and B, can
be distinguished statistically. The values of Ra and Rg are both slightly smaller than 1,
indicating the adsorbed amounts in experiments are smaller than that predicted by GCMC.
These relatively minor discrepancies between experiments and GCMC can be partly
explained by the difference in the surface area; the BET surface area measured
experimentally for A was about 2760 m?/g, which is approximately 0.88 times the
computed surface area, 3134.3 m?/g. The difference of the surface area implies non-
adsorbing sites such as defects in the synthesized crystals, while GCMC assumes defect-
free crystal structures which provide an ideal surface area accessible by gas molecules.
In some past studies, the ratio of the measured surface area to the computed one is used
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as a scaling factor [80-82]. Our approach of using Ri takes into account the difference not
only in the surface area, but also other nonidealities such as measurement errors. For the
posterior distribution of oi shown in Figure 8(b), narrow probability distributions are
found for oa and o compared to accmc. The relatively large value of ocemc is due to the
slight mismatch of the Sips isotherm model. Nonetheless, as examined in the previous
case study of zeolite, we note occmc is in an acceptable range that has a marginal impact
on reliable prediction of another hyperparameter R;.

The model fit lines over actual data set are shown in Figure 9. The estimated model
fits well with Exp. A and B within a narrow bound around the experimental data. On the
other hand, for GCMC, slight mismatch to the simulated data can be found due to the
minor disagreement between experimental and GCMC data. Such disagreement,
especially in low-pressure regimes, could be resolved by tuning the GCMC details such
as imposing different interatomic force fields [83-85] and adopting different atomic point
charge assignment methods and determining trial move types for adsorbates with distinct
probabilities. The relatively poor fit of the Sips model to GCMC may also be resolved by
employing a more complex isotherm model that includes a larger number of parameters
than models 1, 6, 7, or 8 in Table S2 in the supplementary material, which would require
a larger amount of data.
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Lastly, correlations for isotherm parameter pairs are evaluated for MIL-101(Cr) by
pair plots shown in Figure 10. We find a weak correlation for n vs. -4H whereas relatively
strong correlations can be found for for bo vs. -4H and bo vs. n. Since the mean of the
posterior distribution of gs reached the upper bound of the prior distribution, correlations
of this parameter with other parameters cannot be analyzed.
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4. Conclusions

In this study, a hierarchical Bayesian estimation framework using the MCMC method
was demonstrated to quantify the discrepancy between data sets of experimental
measurements and GCMC simulation. As a case study, CO. adsorption isotherms in
nanoporous adsorbents were considered. Multiple data sets for CO, adsorption isotherms
onto zeolite 13X and MIL-101(Cr) at different conditions were used. The proposed
framework estimated the parameters of adsorption isotherm models as probability
distributions. At the same time, the discrepancy between the simulated and experimental
data was quantified through probability distributions of the multiplicative coefficient R;
and variance of measurement errors gi.

The proposed approach was demonstrated successfully for the first case study of
zeolite 13X. It was found that the posterior distributions of isotherm equation parameters
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and hyperparameters were obtained as unimodal and symmetric distributions. Particularly,
the identification of data sets that closely match with the GCMC data, as well as outlier
data sets which deviate significantly from the reference GCMC data, enabled by the
proposed R; factor was achieved. We showed that introducing the coefficient Ri was
effective to deal with disparate temperature ranges in the measurements. These results
imply that our proposed approach can be a useful technique to analyze the quality of data.
Although the underlying contributors for given data quality may not necessarily be
identified, the proposed framework provides insights into analyzing inconsistencies that
exist between a set of experimental data and molecular simulation.

The proposed framework was also demonstrated for another case study of MIL-
101(Cr), identifying some remaining challenges due to the relatively limited adsorption
data in this study. The prior distribution for one of the parameters in the Sips isotherm
model chosen in this study always reached the upper bound of the prior distribution,
which may be due to model inadequacy. Modification of the model and obtaining
additional data sets over a wider temperature range may resolve this problem. Also R; of
our experimental attempts indicated the underestimation of the adsorbed amount
measured experimentally compared to the reference GCMC data, which may be partly
explained by the difference of computed and measured surface areas.

The proposed framework is an effective approach to quantify the discrepancies
between adsorption isotherms measured experimentally and simulated, which is noted
frequently in literature. Thorough understanding on these inconsistencies and, more
importantly, providing the most probable isotherm parameters will be a vital input for
process modeling not only in CO> capture but also in other application areas of adsorptive
separation.
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Nomenclature

At : temperature dependence constant of parameter t

bs : affinity constant in Sips model

bso : affinity constant in Sips model

br: Toth constant

Bt : temperature dependence constant of parameter t

bro : affinity constant

i : index of data set

n : Sips constant

p : partial pressure of CO>

p(y) : marginal likelihood

p(0, 9| y) : posterior distribution

p(y|@) : likelihood representing the probability of data y at a given parameter
p(Yiloi) : posterior distribution

p(e) : hyperprior distribution

p(0) : prior probability distribution of

p(@ly) : posterior distribution of the parameters

q" : equilibrium amount of CO2 adsorbed

s : saturated amount of CO, adsorbed

R : ideal gas constant

Ri: measurement error for each data y;

T : temperature

t : Toth constant representing heterogeneity of adsorption system
y : vector of data such as experimental results

0 : parameter vector to be estimated

o parameter vector of each data set representing individual unique properties
¢ : hyperparameter

AH : isosteric heat of adsorption

oi . standard deviation (SD) of vector yi

Abbreviations

AIC: Akaike information criterion

BIC: Bayesian information criterion

CCUS: carbon capture, utilization, and storage
GCMC: grand canonical Monte Carlo

HPD: highest posterior density
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HYBRID: hybrid fractional error function

MCMC: Markov chain Monte Carlo

MOF: metal organic framework

NIST: National Institute of Standards and Technology
RMSD: root mean square deviation

SD: standard deviation

SSE: sum of squares of errors
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