DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Free-Tropospheric Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy Simulations of Precipitating Stratocumulus

Abstract

A new Aitken mode aerosol microphysics scheme is developed for a large eddy simulation model in order to better investigate cloud-aerosol interactions in the marine boundary layer and to study the Aitken buffering hypothesis of McCoy et al. (2021), https://doi.org/10.1029/2020jd033529. This scheme extends the single-mode two-moment prognostic aerosol scheme of Berner et al. (2013), https://doi.org/10.5194/acp-13-12549-2013. Seven prognostic variables represent accumulation and Aitken log-normal aerosol modes in air and droplets as well as 3 gas species. Scavenging of interstitial and other unactivated aerosol by cloud and rain drops are treated using the scheme described in Berner et al. (2013), https://doi.org/10.5194/acp-13-12549-2013. The scheme includes coagulation of unactivated aerosol and a simple chemistry model with gas phase H2SO4, SO2, and DMS as prognostic variables to capture basic influences of sulfur chemistry on the model aerosols. Nucleation of H2SO4 aerosol particles from gas-phase H2SO4 is neglected. A deep, precipitating stratocumulus case (VAMOS Ocean Cloud Atmosphere Land Study RF06) is used to test the new scheme. The presence of the Aitken mode aerosol increases the cloud droplet concentration through activation of the larger Aitken particles and delays the creation of an ultraclean, strongly precipitating cumulus state. Scavenging of unactivated accumulation and Aitken particles by cloudmore » and precipitation droplets accelerates the collapse. Increasing either the above-inversion Aitken concentration or the surface Aitken flux increases the Aitken population in the boundary layer and prevents the transition to an ultraclean state.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]
  1. Univ. of Washington, Seattle, WA (United States)
  2. Univ. of Washington, Seattle, WA (United States); Allen Institute for Artificial Intelligence, Seattle, WA (United States)
  3. University Corporation for Atmospheric Research Boulder, CO (United States); Univ. of Miami, FL (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1874211
Grant/Contract Number:  
SC0020134
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Wyant, Matthew C., Bretherton, Christopher S., Wood, Robert, Blossey, Peter N., and McCoy, Isabel L. High Free-Tropospheric Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy Simulations of Precipitating Stratocumulus. United States: N. p., 2022. Web. doi:10.1029/2021ms002930.
Wyant, Matthew C., Bretherton, Christopher S., Wood, Robert, Blossey, Peter N., & McCoy, Isabel L. High Free-Tropospheric Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy Simulations of Precipitating Stratocumulus. United States. https://doi.org/10.1029/2021ms002930
Wyant, Matthew C., Bretherton, Christopher S., Wood, Robert, Blossey, Peter N., and McCoy, Isabel L. Fri . "High Free-Tropospheric Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy Simulations of Precipitating Stratocumulus". United States. https://doi.org/10.1029/2021ms002930. https://www.osti.gov/servlets/purl/1874211.
@article{osti_1874211,
title = {High Free-Tropospheric Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy Simulations of Precipitating Stratocumulus},
author = {Wyant, Matthew C. and Bretherton, Christopher S. and Wood, Robert and Blossey, Peter N. and McCoy, Isabel L.},
abstractNote = {A new Aitken mode aerosol microphysics scheme is developed for a large eddy simulation model in order to better investigate cloud-aerosol interactions in the marine boundary layer and to study the Aitken buffering hypothesis of McCoy et al. (2021), https://doi.org/10.1029/2020jd033529. This scheme extends the single-mode two-moment prognostic aerosol scheme of Berner et al. (2013), https://doi.org/10.5194/acp-13-12549-2013. Seven prognostic variables represent accumulation and Aitken log-normal aerosol modes in air and droplets as well as 3 gas species. Scavenging of interstitial and other unactivated aerosol by cloud and rain drops are treated using the scheme described in Berner et al. (2013), https://doi.org/10.5194/acp-13-12549-2013. The scheme includes coagulation of unactivated aerosol and a simple chemistry model with gas phase H2SO4, SO2, and DMS as prognostic variables to capture basic influences of sulfur chemistry on the model aerosols. Nucleation of H2SO4 aerosol particles from gas-phase H2SO4 is neglected. A deep, precipitating stratocumulus case (VAMOS Ocean Cloud Atmosphere Land Study RF06) is used to test the new scheme. The presence of the Aitken mode aerosol increases the cloud droplet concentration through activation of the larger Aitken particles and delays the creation of an ultraclean, strongly precipitating cumulus state. Scavenging of unactivated accumulation and Aitken particles by cloud and precipitation droplets accelerates the collapse. Increasing either the above-inversion Aitken concentration or the surface Aitken flux increases the Aitken population in the boundary layer and prevents the transition to an ultraclean state.},
doi = {10.1029/2021ms002930},
journal = {Journal of Advances in Modeling Earth Systems},
number = 6,
volume = 14,
place = {United States},
year = {Fri May 13 00:00:00 EDT 2022},
month = {Fri May 13 00:00:00 EDT 2022}
}

Works referenced in this record:

Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics
journal, March 2008

  • Morrison, Hugh; Grabowski, Wojciech W.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 3
  • DOI: 10.1175/2007JAS2374.1

Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes
journal, January 2018

  • Zheng, Guangjie; Wang, Yang; Aiken, Allison C.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 23
  • DOI: 10.5194/acp-18-17615-2018

Aerosol–Cloud Interactions in a Mesoscale Model. Part I: Sensitivity to Activation and Collision–Coalescence
journal, February 2008

  • Ivanova, Irena T.; Leighton, Henry G.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 2
  • DOI: 10.1175/2007JAS2207.1

Revising the hygroscopicity of inorganic sea salt particles
journal, July 2017

  • Zieger, P.; Väisänen, O.; Corbin, J. C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15883

South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx
journal, January 2011


Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean
journal, January 1990

  • Hoppel, W. A.; Fitzgerald, J. W.; Frick, G. M.
  • Journal of Geophysical Research, Vol. 95, Issue D4
  • DOI: 10.1029/JD095iD04p03659

Physical and chemical properties of the aerosol within the southeastern Pacific marine boundary layer
journal, January 2007

  • Tomlinson, Jason M.; Li, Runjun; Collins, Don R.
  • Journal of Geophysical Research, Vol. 112, Issue D12
  • DOI: 10.1029/2006JD007771

Modeling aerosol growth by aqueous chemistry in a nonprecipitating stratiform cloud
journal, January 2010

  • Ovchinnikov, Mikhail; Easter, Richard C.
  • Journal of Geophysical Research, Vol. 115, Issue D14
  • DOI: 10.1029/2009JD012816

Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties
journal, April 2021

  • McCoy, Isabel L.; Bretherton, Christopher S.; Wood, Robert
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 8
  • DOI: 10.1029/2020JD033529

UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation
journal, January 2017

  • Tonttila, Juha; Maalick, Zubair; Raatikainen, Tomi
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-169-2017

The hemispheric contrast in cloud microphysical properties constrains aerosol forcing
journal, July 2020

  • McCoy, Isabel L.; McCoy, Daniel T.; Wood, Robert
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 32
  • DOI: 10.1073/pnas.1922502117

Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)
journal, February 2022

  • Wang, Jian; Wood, Rob; Jensen, Michael P.
  • Bulletin of the American Meteorological Society, Vol. 103, Issue 2
  • DOI: 10.1175/BAMS-D-19-0220.1

Open cellular structure in marine stratocumulus sheets
journal, January 2008

  • Wood, R.; Comstock, K. K.; Bretherton, C. S.
  • Journal of Geophysical Research, Vol. 113, Issue D12
  • DOI: 10.1029/2007JD009371

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
journal, January 2008

  • Zaveri, Rahul A.; Easter, Richard C.; Fast, Jerome D.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD008782

Effects of aerosols on tropospheric oxidants: A global model study
journal, October 2001

  • Tie, Xuexi; Brasseur, Guy; Emmons, Louisa
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D19
  • DOI: 10.1029/2001jd900206

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
journal, July 1997

  • Mlawer, Eli J.; Taubman, Steven J.; Brown, Patrick D.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D14
  • DOI: 10.1029/97JD00237

Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx
journal, January 2011


Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport
journal, March 1996

  • Covert, D. S.; Kapustin, V. N.; Bates, T. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D3
  • DOI: 10.1029/95JD03068

An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the Southeast Pacific
journal, January 2011

  • Wood, R.; Bretherton, C. S.; Leon, D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 5
  • DOI: 10.5194/acp-11-2341-2011

Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei
journal, February 2018


Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme
journal, January 2013

  • Berner, A. H.; Bretherton, C. S.; Wood, R.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 24
  • DOI: 10.5194/acp-13-12549-2013

Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere
journal, February 2006

  • Ekman, Annica M. L.; Wang, Chien; Ström, Johan
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3645.1

Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison
journal, January 2015

  • Wyant, M. C.; Bretherton, C. S.; Wood, R.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-153-2015

Predicting global aerosol size distributions in general circulation models
journal, January 2002


Small fraction of marine cloud condensation nuclei made up of sea spray aerosol
journal, August 2017

  • Quinn, P. K.; Coffman, D. J.; Johnson, J. E.
  • Nature Geoscience, Vol. 10, Issue 9
  • DOI: 10.1038/ngeo3003

Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data
journal, January 2018

  • McCoy, Daniel T.; Bender, Frida A. -M.; Grosvenor, Daniel P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-2035-2018