DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber

Abstract

The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. Here, we follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC.

Authors:
ORCiD logo [1];  [2];  [1];  [1]; ORCiD logo [3];  [3];  [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5];  [3];  [4];  [1];  [3];  [2];  [3];  [6];  [7] more »;  [1];  [3];  [7];  [7];  [1];  [8]; ORCiD logo [7];  [3];  [7]; ORCiD logo [7]; ORCiD logo [5];  [9]; ORCiD logo [1];  [1];  [2];  [3];  [7];  [10];  [3]; ORCiD logo [1];  [11];  [4];  [3];  [7]; ORCiD logo [12];  [1];  [1];  [7]; « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
  2. Univ. of Wisconsin, Madison, WI (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Imperial College, London (United Kingdom)
  5. Univ. of Michigan, Ann Arbor, MI (United States)
  6. State Univ. of New York (SUNY), Albany, NY (United States); South Dakota School of Mines and Technology, Rapid City, SD (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Univ. of London, Egham (United Kingdom); STFC Rutherford Appleton Lab. (RAL), Didcot (United Kingdom)
  9. STFC Rutherford Appleton Lab. (RAL), Didcot (United Kingdom)
  10. Univ. of London, Egham (United Kingdom)
  11. Univ. of Albany (SUNY), NY (United States)
  12. Texas A & M Univ., College Station, TX (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); U.K. Science & Technology Facilities Council
OSTI Identifier:
1872110
Alternate Identifier(s):
OSTI ID: 1798801; OSTI ID: 1855185; OSTI ID: 1972281
Grant/Contract Number:  
AC02-05CH11231; SC0020216; SC0019193; SC0015535; AC02-76SF00515; UW PRJ82AJ; ST/M003655/1; ST/S000739/1; ST/K502042/1
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 1031; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; xenon; TPC; HV; electrode; noble liquid

Citation Formats

Linehan, R., Mannino, R. L., Fan, A., Ignarra, C. M., Luitz, S., Skarpaas, K., Shutt, T. A., Akerib, D. S., Alsum, S. K., Anderson, T. J., Araújo, H. M., Arthurs, M., Auyeung, H., Bailey, A. J., Biesiadzinski, T. P., Breidenbach, M., Cherwinka, J. J., Conley, R. A., Genovesi, J., Gilchriese, M. G.D., Glaenzer, A., Gonda, T. G., Hanzel, K., Hoff, M. D., Ji, W., Kaboth, A. C., Kravitz, S., Kurita, N. R., Lambert, A. R., Lesko, K. T., Lorenzon, W., Majewski, P. A., Miller, E. H., Monzani, M. E., Palladino, K. J., Ratcliff, B. N., Saba, J. S., Santone, D., Shutt, G. W., Stifter, K., Szydagis, M., Tomás, A., Va’vra, J., Waldron, W. L., Webb, R. C., White, R. G., Whitis, T. J., Wilson, K., and Wisniewski, W. J. Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber. United States: N. p., 2021. Web. doi:10.1016/j.nima.2021.165955.
Linehan, R., Mannino, R. L., Fan, A., Ignarra, C. M., Luitz, S., Skarpaas, K., Shutt, T. A., Akerib, D. S., Alsum, S. K., Anderson, T. J., Araújo, H. M., Arthurs, M., Auyeung, H., Bailey, A. J., Biesiadzinski, T. P., Breidenbach, M., Cherwinka, J. J., Conley, R. A., Genovesi, J., Gilchriese, M. G.D., Glaenzer, A., Gonda, T. G., Hanzel, K., Hoff, M. D., Ji, W., Kaboth, A. C., Kravitz, S., Kurita, N. R., Lambert, A. R., Lesko, K. T., Lorenzon, W., Majewski, P. A., Miller, E. H., Monzani, M. E., Palladino, K. J., Ratcliff, B. N., Saba, J. S., Santone, D., Shutt, G. W., Stifter, K., Szydagis, M., Tomás, A., Va’vra, J., Waldron, W. L., Webb, R. C., White, R. G., Whitis, T. J., Wilson, K., & Wisniewski, W. J. Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber. United States. https://doi.org/10.1016/j.nima.2021.165955
Linehan, R., Mannino, R. L., Fan, A., Ignarra, C. M., Luitz, S., Skarpaas, K., Shutt, T. A., Akerib, D. S., Alsum, S. K., Anderson, T. J., Araújo, H. M., Arthurs, M., Auyeung, H., Bailey, A. J., Biesiadzinski, T. P., Breidenbach, M., Cherwinka, J. J., Conley, R. A., Genovesi, J., Gilchriese, M. G.D., Glaenzer, A., Gonda, T. G., Hanzel, K., Hoff, M. D., Ji, W., Kaboth, A. C., Kravitz, S., Kurita, N. R., Lambert, A. R., Lesko, K. T., Lorenzon, W., Majewski, P. A., Miller, E. H., Monzani, M. E., Palladino, K. J., Ratcliff, B. N., Saba, J. S., Santone, D., Shutt, G. W., Stifter, K., Szydagis, M., Tomás, A., Va’vra, J., Waldron, W. L., Webb, R. C., White, R. G., Whitis, T. J., Wilson, K., and Wisniewski, W. J. Tue . "Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber". United States. https://doi.org/10.1016/j.nima.2021.165955. https://www.osti.gov/servlets/purl/1872110.
@article{osti_1872110,
title = {Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber},
author = {Linehan, R. and Mannino, R. L. and Fan, A. and Ignarra, C. M. and Luitz, S. and Skarpaas, K. and Shutt, T. A. and Akerib, D. S. and Alsum, S. K. and Anderson, T. J. and Araújo, H. M. and Arthurs, M. and Auyeung, H. and Bailey, A. J. and Biesiadzinski, T. P. and Breidenbach, M. and Cherwinka, J. J. and Conley, R. A. and Genovesi, J. and Gilchriese, M. G.D. and Glaenzer, A. and Gonda, T. G. and Hanzel, K. and Hoff, M. D. and Ji, W. and Kaboth, A. C. and Kravitz, S. and Kurita, N. R. and Lambert, A. R. and Lesko, K. T. and Lorenzon, W. and Majewski, P. A. and Miller, E. H. and Monzani, M. E. and Palladino, K. J. and Ratcliff, B. N. and Saba, J. S. and Santone, D. and Shutt, G. W. and Stifter, K. and Szydagis, M. and Tomás, A. and Va’vra, J. and Waldron, W. L. and Webb, R. C. and White, R. G. and Whitis, T. J. and Wilson, K. and Wisniewski, W. J.},
abstractNote = {The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. Here, we follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC.},
doi = {10.1016/j.nima.2021.165955},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 1031,
place = {United States},
year = {Tue Nov 16 00:00:00 EST 2021},
month = {Tue Nov 16 00:00:00 EST 2021}
}

Works referenced in this record:

The LUX-ZEPLIN (LZ) experiment
journal, February 2020

  • Akerib, D. S.; Akerlof, C. W.; Akimov, D. Yu.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 953
  • DOI: 10.1016/j.nima.2019.163047

Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers
journal, December 2018


Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers
journal, December 2020


Energy resolution and linearity of XENON1T in the MeV energy range
journal, August 2020


Liquid noble gas detectors for low energy particle physics
journal, April 2013


Measurement of the drift velocity and transverse diffusion of electrons in liquid xenon with the EXO-200 detector
journal, February 2017


The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning
journal, February 2007


The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
journal, November 2020


Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
journal, February 2021


Electron field emission through a very thin oxide layer
journal, January 1991

  • Yang, G.; Chin, K. K.; Marcus, R. B.
  • IEEE Transactions on Electron Devices, Vol. 38, Issue 10
  • DOI: 10.1109/16.88528

The XENON100 dark matter experiment
journal, April 2012


Protected and enhanced aluminum mirrors for the VUV
journal, December 2013

  • Wilbrandt, S.; Stenzel, O.; Nakamura, H.
  • Applied Optics, Vol. 53, Issue 4
  • DOI: 10.1364/AO.53.00A125

Ab initio electron scattering cross-sections and transport in liquid xenon
journal, August 2016


Noble-gas liquid detectors: measurement of light diffusion and reflectivity on commonly adopted inner surface materials
journal, October 2007


Electron field emission from broad-area electrodes
journal, May 1982

  • Noer, R. J.
  • Applied Physics A Solids and Surfaces, Vol. 28, Issue 1
  • DOI: 10.1007/BF00617778

Removal of long-lived [sup 222]Rn daughters by electropolishing thin layers of stainless steel
conference, January 2013

  • Schnee, R. W.; Bowles, M. A.; Bunker, R.
  • LOW RADIOACTIVITY TECHNIQUES 2013 (LRT 2013): Proceedings of the IV International Workshop in Low Radioactivity Techniques, AIP Conference Proceedings
  • DOI: 10.1063/1.4818092

Projected sensitivity of the LUX-ZEPLIN experiment to the 0 ν β β decay of Xe 136
journal, July 2020


Investigation of background electron emission in the LUX detector
journal, November 2020


Prebreakdown and breakdown characteristics of stainless steel electrodes in vacuum
journal, May 1974


Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils
journal, May 2018


Influence of binding layer on the reflective performance of a Au film in vacuum ultraviolet wavelength region
journal, January 2007

  • Shuyi, Gan; Yilin, Hong; Xiangdong, Xu
  • Applied Optics, Vol. 46, Issue 36
  • DOI: 10.1364/AO.46.008641

Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
journal, March 2020


Electron extraction efficiency study for dual-phase xenon dark matter experiments
journal, May 2019


The Reflecting Power of Metals in the Ultra-Violet Region of the Spectrum
journal, September 1915

  • Hulburt, E. O.
  • The Astrophysical Journal, Vol. 42
  • DOI: 10.1086/142202

High voltage in noble liquids for high energy physics
journal, August 2014