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Abstract 

Polymers are incredibly versatile materials and have become ubiquitous. Increasingly, researchers are 

using data science and polymer informatics to design new materials and understand their structure-

property relationships. Polymer informatics is an emerging field. While there are many useful tools and 

databases available, many are not widely utilized. Herein, we introduce the field of polymer informatics 

and discuss some of the available databases and 

tools. We cover how to share polymer data, 

approaches to prepare a data set for machine 

learning, and recent applications of machine 

learning to polymer property prediction and 

polymer synthesis. 
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Introduction 

Polymers are a critical material class due to 

their wide availability, range of properties and 

high tuneability. However, rational design of 

polymers is challenging due to the variety of 

aspects that influence their properties and 

performance.1 For example, the monomer(s) 

structure, synthesis method, and processing 

control the chemical structure, morphology, 

and hence properties of the final polymer.2 

Additionally, researchers are increasingly 

considering sustainability of monomer sourcing, 

interactions between the polymer with its 

environment, polymer aging behavior, and end 

of life (whether as waste, or recyclable).3,4 

These relationships are schematically shown in 

Figure 1. These considerations – and more - 

mean any given monomer leads to a variety of 

properties, and desired properties may be 

Figure 1: Designing for multigenerational lifecycles 

requires consideration of all three lifecycle stages 

(manufacturing, in-service, and end-of-life) and all 

the factors that contribute to each stage. 

Environmental interactions play a role in all 

aspects of the materials lifecycle. 



accessed through a variety of monomers. For example, low density 

polyethylene and high-density polyethylene have the same monomer 

but very different mechanical properties, and polyethylene, 

polypropylene, and polyvinyl chloride are all used to make similar 

plastic bottles. As a result, traditional research methods using trial 

and error based on chemical intuition are often insufficient to fully 

design solutions to polymer innovation and discovery.5 Data and 

informatics-based approaches are needed to move the field forward 

faster.6   

Recent advances in drug development, and the successes of the 

Materials Genome Initiative7–10 are examples illustrating the benefits 

of an informatics-based approach.11 Data-driven research can 

dramatically accelerate discovery, and lead to improved 

performance.12 Understanding which structures lead to specific 

properties (informatics) offers insights about underlying structure-

function relationships.13 Data-driven approaches also allow inverse 

design, where a desired property (or properties) is identified, and 

data is used to determine what structure(s) corresponds to that 

property.9,14 Done properly, data-driven research allows researchers 

to move beyond their own intuition, experience, and biases to 

discover connections that were previously unimagined.  

Polymer informatics is a relatively new field, but one with rapidly 

growing importance. Polymer informatics have been applied to 

essentially every aspect of the polymer lifecycle. It has been used to 

design new monomers for various applications;12,15,16 engineer 

reactions;17 model processing conditions and parameters;18–20 identify 

and predict polymer conformations and phases;21–26 predict materials 

properties;27–35 and finally, offer insight into wear and end of life.4,36–39 

Most polymer informatics literature focuses on property prediction, 

but recently, other aspects of polymer synthesis, processing, and 

lifetime are gaining attention.14,17,40 There are still many areas ripe for 

an informatics approach, such as designing for longer term stability or circular economies.  

In this mini review we discuss necessary tools for polymer informatics. We aim to provide a starting 

point for the non-specialist to understand the tools and methods that currently exist in this rapidly 

evolving field. The data and databases section focuses on useful collections of information and specific 

tools to use for sharing data in the most accessible ways. Often, the best way to understand a dataset is 

through machine learning (i.e., regression and classification). To do this machine learning (ML) we need 

accurate representations, so the polymer representation and featurization section focuses on popular 

approaches of developing machine learning input. This includes fingerprinting techniques for monomers 

and whole polymers, as well as alternative approaches such as graph-based methods. In the final 

section, machine learning approaches, we discuss commonly used methods, along with examples of 

each approach.  

Glossary 

A Curated collection is one 

that is carefully managed 

and presented. 

Features are the input for a 

machine learning model. 

Featurization is the process 

of generating features. 

Inverse Design is a process 

of determining the desired 

end properties then 

identifying the molecular 

structure needed to produce 

those properties. 

Neural Nets consist of 

densely linked processing 

nodes, modeled loosely on 

the neurons in a brain. 

A Stochastic feature is one 

that is best described by a 

random variable. For 

example, the distribution of 

each monomer in a 

copolymer. 

Validated data has been 

checked and confirmed by a 

researcher uninvolved in 

generating the data. 

 



Data and Databases  

Informatics is all about data, and as such, high quality data is of paramount importance. Machine 

learning is particularly sensitive to data quality, as it is very sensitive to artifacts,41–43 and is poor at 

extrapolation.44 Therefore, it is important to identify and account for any biases in the data set, and 

gather large data sets.45 Despite a wide array of available materials databases, it is often challenging to 

find a complete data set relevant to a specific research question. In contrast to synthetic 

macromolecules, there are many small-molecule databases with millions of entries (ZINC,46 

ChemSpider,47 PubChem,48 ChEMBL,49,50 and many more), with extensive property data for each entry. 

The number of high-quality materials databases is growing, but most databases only have hundreds or 

thousands of entries, representing a much smaller chemical space than the small molecule databases. 

Additionally, initiatives to expand and create materials databases10,51 are divided between inorganic 

materials and soft materials. For polymers, databases of interest are PolyInfo,52 the extension of 

PolyInfo PI1M,53 and the Khazana54 databases. We note that to accelerate polymer informatics the 

community needs a validated and curated database and repository where researchers can deposit new 

polymer data, similar to the Cambridge Structural Database,55 but containing property data as well as 

characterization data. An additional source of polymer data is handbooks. Polymer Data Handbooks 

have a broad array of data, and while most would require some effort to make the data computer 

accessible,56,57 some are fully accessible online.58 

The imprecision of polymer naming conventions is a hurdle to wide-spread polymer data sharing. 

Traditionally, polymer names indicate what repeat unit(s) are incorporated, and, if relevant, the 

relationship between comonomers (i.e., random or block) and tacticity. However, given the stochastic 

Figure 2: a) The PolyDAT schema is a data sharing layout that includes information on the polymer, 

characterization, synthesis, processing, and any other measurements or relevant information. b) 

BigSMILES is a text-based description of polymer structure using a variant of SMILES strings. 

a b 



nature of polymers more precise information on structure is omitted. If a database of polymer 

information is going to be useful to a researcher who did not generate it, the new researcher must be 

able to understand the precise identity and nature of the entries in the database. This is especially 

important if multiple sources of data are being combined to develop a sufficiently large database for a 

specific problem. The polymer informatics community needs to settle on a standard method of detailing 

polymer structures and data. One approach to developing a standard schema for polymer data sharing is 

PolyDat.59 PolyDat is designed to include all relevant data for a polymer, including characterization data, 

synthesis procedures, and information on all relevant species and post-functionalization. An overview of 

the PolyDat schema is shown in Figure 2a. There are three key parts of the PolyDat schema: preamble, 

species, and transformations. The preamble contains all the metadata, reaction network information, 

and data provenance. It gives all the information need to understand the other sections. The species 

section contains all the characterization data on all the species in the reaction network. This 

characterization data can be of any type. The transformations section includes information on all the 

reactions (both synthesis and any post-synthetic modifications), including the reaction procedures. Use 

of a standard data schema will greatly increase the ability of researchers to extract published results. 

Polymer Representation and Featurization  

An accurate machine learning model requires inputs (features) that describes the system of interest. An 

accurate useful model depends on properly chosen and designed features.60,61 Features are a wide range 

of items, from properties of atoms (e.g., partial charge, atomic number) in the molecule of interest, to 

calculated electronic properties (HOMO, LUMO, etc.) , to measured experimental values (e.g., glass 

transition temperature, heat capacity), to reaction or processing conditions24,62 (temp, pH, etc.). The 

critical requirement for a feature set is that it accurately and uniquely describe each data point in a 

machine-readable format. Often, the lengthiest stage in a machine learning project is identifying which 

features are needed, which are superfluous, and what is the best method to generate those features. 

Some ML models for the prediction of polymer properties may achieve high accuracy solely using 

features based on monomers.63 Monomer based features range in complexity from constitutional 

descriptors (number of rings, number of heavy atoms, etc.), to 2D representations (atomic connectivity, 

topological descriptors, molecular graphs, etc.), to 3D geometric descriptors (computationally generated 

or crystallography based), to 4D conformational ensemble descriptors.64 Two common approaches to 

developing monomer-based features are fingerprint62,64,65 and graph-based methods. Fingerprinting is 

converting the geometric and chemical information to a numerical representation.66 Most often, the 

numerical representation is a vector of fixed length, where each component in the vector represents a 

different characteristic of the monomer. A properly designed fingerprinting technique gives a unique 

fingerprint for each unique monomer. Fingerprints can be based on purely atomic neighborhoods,65 or 

on the molecule as a whole.62,64 Graph based methods require large number of datapoints and typically 

use neural nets to predict or classify polymers using a descriptor-free approach. Examples of this 

approach are reported recently.67,68 The selection of appropriate methods depends on the size of the 

available data set and the chemical information available about each monomer.   

A polymeric fingerprint54 is appropriate when the behavior or properties being modeled is dependent on 

the bulk structure of the polymer. Polymer fingerprints are created with a wide variety of details. The 

simplest method is to encode the identity of the building block, and the count of each type of building 

block. Additional complexity is added by including information about the relationships between types of 



building blocks, clearly identifying the difference between a random copolymer and an alternating or 

block copolymer.54 However, a different approach is needed to include atomic and molecular properties. 

The Ramprasad group has developed a highly successful fingerprinting technique for polymers that 

includes information about every level of the molecule, from chain specific values to atomic properties. 

This method starts with atomic-triple fingerprints,69 adds molecular descriptors from RDKit,70 then 

identifies commonly occurring substructures or blocks, and finally adds polymer-chain specific 

descriptors such as side chain length.71 This multi-level approach to fingerprinting performs well in 

predicting polymer properties.54,71,72 However, most fingerprint approaches do not completely capture 

the stochastic nature of polymers,73,74 especially for copolymers.75 These compositions are complex 

mixtures and mixtures are fundamentally different than pure substances.  Simple average values, while 

easy to measure, may not fully capture the richer complexity in the underlying distributions. For 

example, molecular weight, comonomer composition, and comonomer sequence will differ from one 

chain to the next.  How do the distributions of these structural characteristics corelate to properties?76 

Properly representing the dispersity and sequence variations inherent to polymers is an open 

question.77,78 

In small molecule research fingerprinting and feature generation often use SMILES79 (Simplified 

Molecular Input Line Entry System) strings as input. The SMILES notation system is widely used for small 

molecules as it is machine readable and well suited for informatics purposes. However, the stochastic 

nature of polymers and their size make using SMILES for polymers inefficient and awkward. BigSMILES74 

adds the ability to define repeat units, copolymers, and polymer structures (such as branched, star, etc.) 

clearly and easily to the SMILES system. Figure 2b shows a schematic representation of a few of the 

ways BigSMILES represents polymers. While there are other ongoing efforts to improve SMILES (i.e., 

SELFIES,80 a self-referencing approach that is more robust than traditional SMILES), the BigSMILES 

approach is sufficiently flexible to still be one of the clearest and easiest methods of providing a polymer 

structural definition. Wide adoption of BigSMILES notation, especially within databases, will aid in 

making data fully accessible to all researchers.  

 



Machine Learning (ML) Approaches  

Two types of ML commonly used in 

polymer informatics are supervised and 

unsupervised learning (Figure 3).44,81 

Supervised learning uses data where 

the label is known. For example, 

performing a regression fit for 

predicting glass transition temperature, 

where all the training data has a known 

glass transition temperature.82 

Unsupervised learning uses unlabeled 

data. It is most commonly used to 

identify clusters or groups within data, 

such as auto-identifying nano-cluster 

shapes in a molecular dynamics 

dataset.83 Unsupervised learning can 

also be used for autoencoding. 

Autoencoders are a deep learning 

technique that independently learns 

the how to encode or represent the 

training data.80,84 Supervised and 

unsupervised learning are combined in semi-supervised and active learning. These techniques use a 

small subset of labeled data to assign labels85 or predict outcomes for a larger, unlabeled, dataset.86 

Semi-supervised learning is very effective for labeling clusters and classification. Active learning 

iteratively identifies the unlabeled data that will most improve the model if the label was added, guiding 

experimental data collection. There are a wide variety of tools and packages available for polymer 

informatics. Some of the most commonly used tools include RDKit,87,88 Pybel,89 SciKit Learn,44 and 

Pymatgen.90 

Supervised learning is the most common type of ML used in polymer informatics. Structure to property 

predictions are usually generated using supervised learning. The general process for this approach is to 

gather data (either from experimental/simulation data or from a database). Verify that all data is 

comparable and has accurate labels. Build an ML model to predict the property, before finally using the 

model on a new data point to predict the outcome. There are many examples in literature using this 

approach. Supervised learning with a deep neural network has been used to predict solvents and non-

solvents for a polymer91 and polymer phase transitions.25 Regression models can predict refractive 

indices of linear polymers92 and erosion behavior of silicon carbide reinforced polymer composites.4 

Supervised learning is most effective and useful when there is a large accurate dataset available for 

training, and directly measuring the predicted property is an intensive process. Ideally, all models of this 

type would be shared in a format that makes them useable to researchers without having to recreate 

the training process. One excellent example of sharing predictive models widely is the Polymer 

Genome,54,72,93 which predicts a large number of properties from either the polymer name, the SMILES 

string for the repeat unit, or from a drawing of the repeat unit. 

Figure 3: Unsupervised learning groups and interprets 

data based only on the input (i.e., x values). Supervised 

learning develops predictive models using both input 

and output (i.e., x and y values). 



Unsupervised learning has been used very effectively to solve inverse design problems in materials or 

polymer science.15,22,25,63,94–96 In an inverse design problem, the desired properties are known, but the 

suitable molecule/polymer to achieve those properties is unknown.77,97–99 In these problems a 

combination of autoencoders (unsupervised learning) and supervised learning often deliver accurate 

predictions. This approach is especially useful in situations where multiple properties must be 

optimized. Autoencoders in tandem with regression models have been used to predict polymers that 

are robust under high temperatures and high electric fields,15 find polymers suited for solar cells,61,63 and 

predict polymer phases and phase transitions.25,26 Unsupervised learning has also been applied to 

identify defects94 and conformation states.22,95 In these applications, self-organizing mapping96 and 

clustering are used to identify subsets of data and determine which characteristics separate sub-classes. 

For small datasets, semi-supervised or active learning combine supervised and unsupervised learning to 

leverage a small starting dataset for large learning gains. While there are only a few examples in 

literature of semi-supervised learning,85,100 it is likely to grow in popularity. Active learning is relatively 

new, it is based around iterative data acquisition guided by Bayesian optimization.101 Active learning is 

especially notable in how it utilizes a very small starting data set (initial data can be as small as ten 

samples), and guides data acquisition to obtain a desired outcome much faster than random 

sampling.102 Active learning has been applied to discover redoxmers with a specific desired reduction 

potential,86 high glass transition polymers,82,103 ring polymer molecular dynamics,104 and epoxy adhesive 

strength,105 among others. Active learning will become increasingly important and valuable, especially as 

high throughput and robotic synthesis approaches are developed. 

Conclusion 

Moving forward, polymer informatics will be central to the genesis of new materials. As we design 

materials to solve increasingly difficult problems, we need data-driven design to make the most use of 

available knowledge. One of the greatest challenges in polymer design is developing polymers that need 

multiple properties optimized. Multi-property design (Figure 1), especially when one of the properties is 

degradation behavior or recyclability, is increasingly necessary, and very difficult to do well, as 

maximizing one property often requires tradeoffs in other properties. Additional key challenges for 

polymer informatics include the need for polymer representations that capture stochasticity, larger data 

sets, and more research into retrosynthetic design approaches.76,77,98 An informatics-driven approach 

allows quantification of tradeoffs and expands the pool of possible materials, working from an inverse 

design approach. Whether it is designing a polymer that includes triggered deconstruction, one that 

responds to changing conditions, or is suitable for an extreme environment, data-driven approaches can 

shorten design cycles and open new avenues of research. 
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