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Abstract

Polymers are incredibly versatile materials and have become ubiquitous. Increasingly, researchers are
using data science and polymer informatics to design new materials and understand their structure-
property relationships. Polymer informatics is an emerging field. While there are many useful tools and
databases available, many are not widely utilized. Herein, we introduce the field of polymer informatics
and discuss some of the available databases and Environmental Interactions

tools. We cover how to share polymer data,
approaches to prepare a data set for machine I |
learning, and recent applications of machine
learning to polymer property prediction and
polymer synthesis.
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Figure 1: Designing for multigenerational lifecycles
requires consideration of all three lifecycle stages
(manufacturing, in-service, and end-of-life) and all
the factors that contribute to each stage.
Environmental interactions play a role in all
aspects of the materials lifecycle.
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Introduction

Polymers are a critical material class due to
their wide availability, range of properties and
high tuneability. However, rational design of
polymers is challenging due to the variety of
aspects that influence their properties and
performance.! For example, the monomer(s)
structure, synthesis method, and processing
control the chemical structure, morphology,
and hence properties of the final polymer.2
Additionally, researchers are increasingly
considering sustainability of monomer sourcing,
interactions between the polymer with its
environment, polymer aging behavior, and end
of life (whether as waste, or recyclable).>*
These relationships are schematically shown in
Figure 1. These considerations —and more -
mean any given monomer leads to a variety of
properties, and desired properties may be

In-service

End-of-life



Glossary

A Curated collection is one
that is carefully managed
and presented.

Features are the input for a
machine learning model.
Featurization is the process
of generating features.

Inverse Design is a process
of determining the desired
end properties then
identifying the molecular
structure needed to produce
those properties.

Neural Nets consist of
densely linked processing
nodes, modeled loosely on
the neurons in a brain.

A Stochastic feature is one
that is best described by a
random variable. For
example, the distribution of
each monomerin a
copolymer.

Validated data has been
checked and confirmed by a
researcher uninvolved in
generating the data.

accessed through a variety of monomers. For example, low density
polyethylene and high-density polyethylene have the same monomer
but very different mechanical properties, and polyethylene,
polypropylene, and polyvinyl chloride are all used to make similar
plastic bottles. As a result, traditional research methods using trial
and error based on chemical intuition are often insufficient to fully
design solutions to polymer innovation and discovery.® Data and
informatics-based approaches are needed to move the field forward
faster.®

Recent advances in drug development, and the successes of the
Materials Genome Initiative”*° are examples illustrating the benefits
of an informatics-based approach.! Data-driven research can
dramatically accelerate discovery, and lead to improved
performance.’? Understanding which structures lead to specific
properties (informatics) offers insights about underlying structure-
function relationships.'® Data-driven approaches also allow inverse
design, where a desired property (or properties) is identified, and
data is used to determine what structure(s) corresponds to that
property.®>!* Done properly, data-driven research allows researchers
to move beyond their own intuition, experience, and biases to
discover connections that were previously unimagined.

Polymer informatics is a relatively new field, but one with rapidly
growing importance. Polymer informatics have been applied to
essentially every aspect of the polymer lifecycle. It has been used to
design new monomers for various applications;'?'>¢ engineer
reactions;'” model processing conditions and parameters;'®2° identify
and predict polymer conformations and phases;*~%® predict materials
properties;?’=3> and finally, offer insight into wear and end of life.*36-39
Most polymer informatics literature focuses on property prediction,
but recently, other aspects of polymer synthesis, processing, and

lifetime are gaining attention.'*'% There are still many areas ripe for

an informatics approach, such as designing for longer term stability or circular economies.

In this mini review we discuss necessary tools for polymer informatics. We aim to provide a starting
point for the non-specialist to understand the tools and methods that currently exist in this rapidly
evolving field. The data and databases section focuses on useful collections of information and specific
tools to use for sharing data in the most accessible ways. Often, the best way to understand a dataset is
through machine learning (i.e., regression and classification). To do this machine learning (ML) we need
accurate representations, so the polymer representation and featurization section focuses on popular
approaches of developing machine learning input. This includes fingerprinting techniques for monomers
and whole polymers, as well as alternative approaches such as graph-based methods. In the final
section, machine learning approaches, we discuss commonly used methods, along with examples of
each approach.



Data and Databases

Informatics is all about data, and as such, high quality data is of paramount importance. Machine
learning is particularly sensitive to data quality, as it is very sensitive to artifacts,**™* and is poor at
extrapolation.* Therefore, it is important to identify and account for any biases in the data set, and
gather large data sets.* Despite a wide array of available materials databases, it is often challenging to
find a complete data set relevant to a specific research question. In contrast to synthetic
macromolecules, there are many small-molecule databases with millions of entries (ZINC,*
ChemSpider,*” PubChem,* ChEMBL,*>*° and many more), with extensive property data for each entry.
The number of high-quality materials databases is growing, but most databases only have hundreds or
thousands of entries, representing a much smaller chemical space than the small molecule databases.
Additionally, initiatives to expand and create materials databases'®>! are divided between inorganic
materials and soft materials. For polymers, databases of interest are Polylnfo,*? the extension of
PolyInfo PI1M,>? and the Khazana>* databases. We note that to accelerate polymer informatics the
community needs a validated and curated database and repository where researchers can deposit new
polymer data, similar to the Cambridge Structural Database,® but containing property data as well as
characterization data. An additional source of polymer data is handbooks. Polymer Data Handbooks
have a broad array of data, and while most would require some effort to make the data computer
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accessible, some are fully accessible online.>®

The imprecision of polymer naming conventions is a hurdle to wide-spread polymer data sharing.
Traditionally, polymer names indicate what repeat unit(s) are incorporated, and, if relevant, the
relationship between comonomers (i.e., random or block) and tacticity. However, given the stochastic
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Figure 2: a) The PolyDAT schema is a data sharing layout that includes information on the polymer,
characterization, synthesis, processing, and any other measurements or relevant information. b)
BigSMILES is a text-based description of polymer structure using a variant of SMILES strings.



nature of polymers more precise information on structure is omitted. If a database of polymer
information is going to be useful to a researcher who did not generate it, the new researcher must be
able to understand the precise identity and nature of the entries in the database. This is especially
important if multiple sources of data are being combined to develop a sufficiently large database for a
specific problem. The polymer informatics community needs to settle on a standard method of detailing
polymer structures and data. One approach to developing a standard schema for polymer data sharing is
PolyDat.>® PolyDat is designed to include all relevant data for a polymer, including characterization data,
synthesis procedures, and information on all relevant species and post-functionalization. An overview of
the PolyDat schema is shown in Figure 2a. There are three key parts of the PolyDat schema: preamble,
species, and transformations. The preamble contains all the metadata, reaction network information,
and data provenance. It gives all the information need to understand the other sections. The species
section contains all the characterization data on all the species in the reaction network. This
characterization data can be of any type. The transformations section includes information on all the
reactions (both synthesis and any post-synthetic modifications), including the reaction procedures. Use
of a standard data schema will greatly increase the ability of researchers to extract published results.

Polymer Representation and Featurization

An accurate machine learning model requires inputs (features) that describes the system of interest. An
accurate useful model depends on properly chosen and designed features.®%®! Features are a wide range
of items, from properties of atoms (e.g., partial charge, atomic number) in the molecule of interest, to
calculated electronic properties (HOMO, LUMO, etc.) , to measured experimental values (e.g., glass
transition temperature, heat capacity), to reaction or processing conditions?*®2 (temp, pH, etc.). The
critical requirement for a feature set is that it accurately and uniquely describe each data pointin a
machine-readable format. Often, the lengthiest stage in a machine learning project is identifying which
features are needed, which are superfluous, and what is the best method to generate those features.

Some ML models for the prediction of polymer properties may achieve high accuracy solely using
features based on monomers.®* Monomer based features range in complexity from constitutional
descriptors (number of rings, number of heavy atoms, etc.), to 2D representations (atomic connectivity,
topological descriptors, molecular graphs, etc.), to 3D geometric descriptors (computationally generated
or crystallography based), to 4D conformational ensemble descriptors.®* Two common approaches to
developing monomer-based features are fingerprint®*%4®®> and graph-based methods. Fingerprinting is
converting the geometric and chemical information to a numerical representation.®® Most often, the
numerical representation is a vector of fixed length, where each component in the vector represents a
different characteristic of the monomer. A properly designed fingerprinting technique gives a unique
fingerprint for each unique monomer. Fingerprints can be based on purely atomic neighborhoods,® or
on the molecule as a whole.®*5* Graph based methods require large number of datapoints and typically
use neural nets to predict or classify polymers using a descriptor-free approach. Examples of this
approach are reported recently.®”®8 The selection of appropriate methods depends on the size of the
available data set and the chemical information available about each monomer.

A polymeric fingerprint>* is appropriate when the behavior or properties being modeled is dependent on
the bulk structure of the polymer. Polymer fingerprints are created with a wide variety of details. The
simplest method is to encode the identity of the building block, and the count of each type of building
block. Additional complexity is added by including information about the relationships between types of



building blocks, clearly identifying the difference between a random copolymer and an alternating or
block copolymer.>* However, a different approach is needed to include atomic and molecular properties.
The Ramprasad group has developed a highly successful fingerprinting technique for polymers that
includes information about every level of the molecule, from chain specific values to atomic properties.
This method starts with atomic-triple fingerprints,% adds molecular descriptors from RDKit,”® then
identifies commonly occurring substructures or blocks, and finally adds polymer-chain specific
descriptors such as side chain length.” This multi-level approach to fingerprinting performs well in
predicting polymer properties.>*’*’2 However, most fingerprint approaches do not completely capture
the stochastic nature of polymers,”>’* especially for copolymers.” These compositions are complex
mixtures and mixtures are fundamentally different than pure substances. Simple average values, while
easy to measure, may not fully capture the richer complexity in the underlying distributions. For
example, molecular weight, comonomer composition, and comonomer sequence will differ from one
chain to the next. How do the distributions of these structural characteristics corelate to properties?’®
Properly representing the dispersity and sequence variations inherent to polymers is an open
question.””’8

In small molecule research fingerprinting and feature generation often use SMILES™ (Simplified
Molecular Input Line Entry System) strings as input. The SMILES notation system is widely used for small
molecules as it is machine readable and well suited for informatics purposes. However, the stochastic
nature of polymers and their size make using SMILES for polymers inefficient and awkward. BigSMILES™
adds the ability to define repeat units, copolymers, and polymer structures (such as branched, star, etc.)
clearly and easily to the SMILES system. Figure 2b shows a schematic representation of a few of the
ways BigSMILES represents polymers. While there are other ongoing efforts to improve SMILES (i.e.,
SELFIES,® a self-referencing approach that is more robust than traditional SMILES), the BigSMILES
approach is sufficiently flexible to still be one of the clearest and easiest methods of providing a polymer
structural definition. Wide adoption of BigSMILES notation, especially within databases, will aid in
making data fully accessible to all researchers.



Machine Learning (ML) Approaches
Machine Learning

Two types of ML commonly used in

polymer informatics are supervised and g

unsupervised learning (Figure 3).481

Supervised learning uses data where l l
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dataset.®® Unsupervised learning can

also be used for autoencoding. Figure 3: Unsupervised learning groups and interprets
Autoencoders are a deep learning data based only on the input (i.e., x values). Supervised
technique that independently learns learning develops predictive models using both input
the how to encode or represent the and output (i.e., x and y values).

training data.®®* Supervised and

unsupervised learning are combined in semi-supervised and active learning. These techniques use a
small subset of labeled data to assign labels® or predict outcomes for a larger, unlabeled, dataset.?®
Semi-supervised learning is very effective for labeling clusters and classification. Active learning
iteratively identifies the unlabeled data that will most improve the model if the label was added, guiding
experimental data collection. There are a wide variety of tools and packages available for polymer
informatics. Some of the most commonly used tools include RDKit,®”8 Pybel,® SciKit Learn,* and
Pymatgen.®

Supervised learning is the most common type of ML used in polymer informatics. Structure to property
predictions are usually generated using supervised learning. The general process for this approach is to
gather data (either from experimental/simulation data or from a database). Verify that all data is
comparable and has accurate labels. Build an ML model to predict the property, before finally using the
model on a new data point to predict the outcome. There are many examples in literature using this
approach. Supervised learning with a deep neural network has been used to predict solvents and non-
solvents for a polymer®! and polymer phase transitions.? Regression models can predict refractive
indices of linear polymers® and erosion behavior of silicon carbide reinforced polymer composites.*
Supervised learning is most effective and useful when there is a large accurate dataset available for
training, and directly measuring the predicted property is an intensive process. Ideally, all models of this
type would be shared in a format that makes them useable to researchers without having to recreate
the training process. One excellent example of sharing predictive models widely is the Polymer
Genome,>*7%% which predicts a large number of properties from either the polymer name, the SMILES
string for the repeat unit, or from a drawing of the repeat unit.



Unsupervised learning has been used very effectively to solve inverse design problems in materials or
polymer science.1>222563.94% | an jnverse design problem, the desired properties are known, but the
suitable molecule/polymer to achieve those properties is unknown.””?’~%° In these problems a
combination of autoencoders (unsupervised learning) and supervised learning often deliver accurate
predictions. This approach is especially useful in situations where multiple properties must be
optimized. Autoencoders in tandem with regression models have been used to predict polymers that
are robust under high temperatures and high electric fields,* find polymers suited for solar cells,?"% and
predict polymer phases and phase transitions.?>?® Unsupervised learning has also been applied to
identify defects® and conformation states.?>% In these applications, self-organizing mapping®® and
clustering are used to identify subsets of data and determine which characteristics separate sub-classes.

For small datasets, semi-supervised or active learning combine supervised and unsupervised learning to
leverage a small starting dataset for large learning gains. While there are only a few examples in
literature of semi-supervised learning,®% it is likely to grow in popularity. Active learning is relatively
new, it is based around iterative data acquisition guided by Bayesian optimization.!°? Active learning is
especially notable in how it utilizes a very small starting data set (initial data can be as small as ten
samples), and guides data acquisition to obtain a desired outcome much faster than random
sampling.%? Active learning has been applied to discover redoxmers with a specific desired reduction
potential,® high glass transition polymers,®%1% ring polymer molecular dynamics,'®* and epoxy adhesive
strength,’® among others. Active learning will become increasingly important and valuable, especially as
high throughput and robotic synthesis approaches are developed.

Conclusion

Moving forward, polymer informatics will be central to the genesis of new materials. As we design
materials to solve increasingly difficult problems, we need data-driven design to make the most use of
available knowledge. One of the greatest challenges in polymer design is developing polymers that need
multiple properties optimized. Multi-property design (Figure 1), especially when one of the properties is
degradation behavior or recyclability, is increasingly necessary, and very difficult to do well, as
maximizing one property often requires tradeoffs in other properties. Additional key challenges for
polymer informatics include the need for polymer representations that capture stochasticity, larger data
sets, and more research into retrosynthetic design approaches.”®’”%¢ An informatics-driven approach
allows quantification of tradeoffs and expands the pool of possible materials, working from an inverse
design approach. Whether it is designing a polymer that includes triggered deconstruction, one that
responds to changing conditions, or is suitable for an extreme environment, data-driven approaches can
shorten design cycles and open new avenues of research.
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