DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effects of Cu-substitution and high-pressure synthesis on phase transitions in Ni2MnGa Heusler alloys

Abstract

The magnetic, structural, and thermal behaviors of the Cu-doped Heusler alloy Ni2Mn1-xCuxGa (0 ≤ x ≤ 0.4) were studied as a function of concentration x. As the Cu concentration increased, the structural transition temperatures increased, whereas the chemical order-disorder transitions and melting points decreased. The experimental results from temperature dependent X-ray diffraction reveal different crystal structures of the martensite phase at low temperatures for samples with different x, but all the samples ultimately crystallized in the L21 cubic crystal structure upon heating above their respective structural transitions. The experimental data were used to construct a comprehensive magnetic and structural phase diagram as a function of x from below their respective structural transition temperatures to their melting temperatures. The XRD analysis shows that the observed volume reduction is associated with the increasing structural transition temperature. Therefore, one of the samples was annealed under high pressure to permanently reduce its volume, and the correlation between the increasing structural transition temperatures and volumes was confirmed.

Authors:
 [1];  [1];  [1];  [2];  [1];  [3];  [3];  [1]
  1. Louisiana State Univ., Baton Rouge, LA (United States)
  2. National Synchrotron Radiation Research Center, Hsinchu (Taiwan)
  3. Southern Illinois Univ., Carbondale, IL (United States)
Publication Date:
Research Org.:
Louisiana State Univ., Baton Rouge, LA (United States); Southern Illinois Univ., Carbondale, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1867882
Alternate Identifier(s):
OSTI ID: 1862576; OSTI ID: 1872442
Grant/Contract Number:  
SC0010521; FG02-13ER46946; FG02-06ER46291; AC02–06CH11357; DMR-1904636; 06ER46291; 13ER46946; FG02; FG02–06ER46291; FG02–13ER46946
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Alloys and Compounds
Additional Journal Information:
Journal Volume: 900; Journal ID: ISSN 0925-8388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; magnetocaloric effect; phase transitions; Heusler alloys

Citation Formats

Chen, Jing-Han, Poudel Chhetri, Tej, Grant, Anthony T., Chang, Chung-Kai, Young, David P., Dubenko, Igor, Ali, Naushad, and Stadler, Shane. The effects of Cu-substitution and high-pressure synthesis on phase transitions in Ni2MnGa Heusler alloys. United States: N. p., 2021. Web. doi:10.1016/j.jallcom.2021.163480.
Chen, Jing-Han, Poudel Chhetri, Tej, Grant, Anthony T., Chang, Chung-Kai, Young, David P., Dubenko, Igor, Ali, Naushad, & Stadler, Shane. The effects of Cu-substitution and high-pressure synthesis on phase transitions in Ni2MnGa Heusler alloys. United States. https://doi.org/10.1016/j.jallcom.2021.163480
Chen, Jing-Han, Poudel Chhetri, Tej, Grant, Anthony T., Chang, Chung-Kai, Young, David P., Dubenko, Igor, Ali, Naushad, and Stadler, Shane. Mon . "The effects of Cu-substitution and high-pressure synthesis on phase transitions in Ni2MnGa Heusler alloys". United States. https://doi.org/10.1016/j.jallcom.2021.163480. https://www.osti.gov/servlets/purl/1867882.
@article{osti_1867882,
title = {The effects of Cu-substitution and high-pressure synthesis on phase transitions in Ni2MnGa Heusler alloys},
author = {Chen, Jing-Han and Poudel Chhetri, Tej and Grant, Anthony T. and Chang, Chung-Kai and Young, David P. and Dubenko, Igor and Ali, Naushad and Stadler, Shane},
abstractNote = {The magnetic, structural, and thermal behaviors of the Cu-doped Heusler alloy Ni2Mn1-xCuxGa (0 ≤ x ≤ 0.4) were studied as a function of concentration x. As the Cu concentration increased, the structural transition temperatures increased, whereas the chemical order-disorder transitions and melting points decreased. The experimental results from temperature dependent X-ray diffraction reveal different crystal structures of the martensite phase at low temperatures for samples with different x, but all the samples ultimately crystallized in the L21 cubic crystal structure upon heating above their respective structural transitions. The experimental data were used to construct a comprehensive magnetic and structural phase diagram as a function of x from below their respective structural transition temperatures to their melting temperatures. The XRD analysis shows that the observed volume reduction is associated with the increasing structural transition temperature. Therefore, one of the samples was annealed under high pressure to permanently reduce its volume, and the correlation between the increasing structural transition temperatures and volumes was confirmed.},
doi = {10.1016/j.jallcom.2021.163480},
journal = {Journal of Alloys and Compounds},
number = ,
volume = 900,
place = {United States},
year = {Mon Dec 20 00:00:00 EST 2021},
month = {Mon Dec 20 00:00:00 EST 2021}
}

Works referenced in this record:

Giant magnetocaloric effect of MnAs1−xSbx
journal, November 2001

  • Wada, H.; Tanabe, Y.
  • Applied Physics Letters, Vol. 79, Issue 20
  • DOI: 10.1063/1.1419048

Relative cooling power enhancement by tuning magneto-structural stability in Ni-Mn-In Heusler alloys
journal, May 2018


Magnetic Moment of Cu-Modified Ni2MnGa Magnetic Shape Memory Alloys
journal, February 2013

  • Kanomata, Takeshi; Endo, Keita; Kudo, Naoto
  • Metals, Vol. 3, Issue 1
  • DOI: 10.3390/met3010114

Transition-metal-based magnetic refrigerants for room-temperature applications
journal, January 2002

  • Tegus, O.; Brück, E.; Buschow, K. H. J.
  • Nature, Vol. 415, Issue 6868
  • DOI: 10.1038/415150a

Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa
journal, November 2002

  • Liu, Z. H.; Zhang, M.; Wang, W. Q.
  • Journal of Applied Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.1511293

Adiabatic measurement of the giant magnetocaloric effect in MnAs
journal, April 2006

  • Tocado, Leticia; Palacios, E.; Burriel, R.
  • Journal of Thermal Analysis and Calorimetry, Vol. 84, Issue 1
  • DOI: 10.1007/s10973-005-7180-z

Atomic ordering and magnetic properties in Ni2Mn(GaxAl1−x) Heusler alloys
journal, October 2008


Magnetocaloric effect in melt-spun MnCoGe ribbons
journal, August 2013


Magnetic Phase Diagram of Heusler Alloy System Ni2Mn1-Cr Ga
journal, January 2015


Giant magnetocaloric effect of MnAs1−xSbx in the vicinity of first-order magnetic transition
journal, April 2003


Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys
journal, March 2007

  • Khan, Mahmud; Ali, Naushad; Stadler, Shane
  • Journal of Applied Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.2710779

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85−xCuxGa (x=0.05,0.07) alloys
journal, March 2008

  • Duan, J. F.; Long, Y.; Bao, B.
  • Journal of Applied Physics, Vol. 103, Issue 6
  • DOI: 10.1063/1.2899041

Magnetic and crystallographic properties of ternary manganese silicides with ordered Co2P structure
journal, November 1973


The influence of hydrostatic pressure and annealing conditions on the magnetostructural transitions in MnCoGe
journal, June 2021

  • Chen, Jing-Han; Poudel Chhetri, Tej; Chang, Chung-Kai
  • Journal of Applied Physics, Vol. 129, Issue 21
  • DOI: 10.1063/5.0053671

Calorimetric and magnetic study for Ni 50 Mn 36 In 14 and relative cooling power in paramagnetic inverse magnetocaloric systems
journal, November 2014

  • Chen, Jing-Han; Bruno, Nickolaus M.; Karaman, Ibrahim
  • Journal of Applied Physics, Vol. 116, Issue 20
  • DOI: 10.1063/1.4902527

Optimizing the Caloric Properties of Cu-Doped Ni–Mn–Ga Alloys
journal, January 2020

  • Seguí, Concepcio; Torrens-Serra, Joan; Cesari, Eduard
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020419

A structural survey of the binary transition metal phosphides and arsenides of the d-block elements
journal, January 2018


Twin relationships of 5M modulated martensite in Ni–Mn–Ga alloy
journal, May 2011


Magnetostriction of Ni2Mn1−xCrxGa Heusler Alloys
journal, October 2017

  • Sakon, Takuo; Fujimoto, Naoki; Kanomata, Takeshi
  • Metals, Vol. 7, Issue 10
  • DOI: 10.3390/met7100410

A Mössbauer study of Fe2P1−xSix (x ≤ 0.35)
journal, July 1984


Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy
journal, March 2006

  • Oikawa, K.; Ito, W.; Imano, Y.
  • Applied Physics Letters, Vol. 88, Issue 12
  • DOI: 10.1063/1.2187414

On the crystal structure and magnetic properties of MnNiGe
journal, July 1985


Intermartensitic transformations in Ni2Mn1−xCoxGa Heusler alloys
journal, April 2006

  • Khan, Mahmud; Stadler, Shane; Ali, Naushad
  • Journal of Applied Physics, Vol. 99, Issue 8
  • DOI: 10.1063/1.2176054

Magnetic properties of ferromagnetic shape memory alloys Ni2Mn1 − Fe Ga
journal, November 2004


Giant magnetocaloric effect near room temperature in the off-stoichiometric Mn–Co–Ge alloy
journal, November 2016


Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys
journal, May 2005

  • Krenke, Thorsten; Duman, Eyüp; Acet, Mehmet
  • Nature Materials, Vol. 4, Issue 6
  • DOI: 10.1038/nmat1395

Crystal and magnetic structure of NiMnGe
journal, December 1976

  • Bazela, W.; Szytuła, A.; Todorović, J.
  • Physica Status Solidi (a), Vol. 38, Issue 2
  • DOI: 10.1002/pssa.2210380235

Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys
journal, January 2004

  • Sutou, Y.; Imano, Y.; Koeda, N.
  • Applied Physics Letters, Vol. 85, Issue 19
  • DOI: 10.1063/1.1808879

Incommensurate modulated structure of the ferromagnetic shape-memory Ni2MnGa martensite
journal, November 2006

  • Righi, Lara; Albertini, Franca; Calestani, Gianluca
  • Journal of Solid State Chemistry, Vol. 179, Issue 11
  • DOI: 10.1016/j.jssc.2006.07.005

Magnetic Properties of Fe 2 P Single Crystal
journal, July 1977

  • Fujii, Hironobu; Hōkabe, Tsuneo; Kamigaichi, Takahiko
  • Journal of the Physical Society of Japan, Vol. 43, Issue 1
  • DOI: 10.1143/JPSJ.43.41

Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron
journal, June 2004

  • Provenzano, Virgil; Shapiro, Alexander J.; Shull, Robert D.
  • Nature, Vol. 429, Issue 6994
  • DOI: 10.1038/nature02657

Anomalous transport properties of N i 2 M n 1 x C r x Ga Heusler alloys at the martensite-austenite phase transition
journal, February 2016


Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase
journal, September 2008


Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys
journal, July 2009

  • Jiang, Chengbao; Wang, Jingmin; Li, Panpan
  • Applied Physics Letters, Vol. 95, Issue 1
  • DOI: 10.1063/1.3155199

Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


The structural and magnetic properties of Ni2Mn1−xMxGa (M=Co, Cu)
journal, May 2005

  • Khan, Mahmud; Dubenko, Igor; Stadler, Shane
  • Journal of Applied Physics, Vol. 97, Issue 10
  • DOI: 10.1063/1.1847131

Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In
journal, March 2007


Effect of heating/cooling rate on martensitic transformation of NiMnGa-Co high temperature ferromagnetic shape memory alloys
journal, January 2017


Coupled nature of magnetic and structural transition in MnNiGe under pressure
journal, September 1978


Magnetocaloric properties of Ni2Mn1−xCuxGa
journal, May 2006

  • Stadler, Shane; Khan, Mahmud; Mitchell, Joseph
  • Applied Physics Letters, Vol. 88, Issue 19
  • DOI: 10.1063/1.2202751

Magnetocaloric effect in high Ni content Ni52Mn48−xInx alloys under low field change
journal, February 2012

  • Liu, F. S.; Wang, Q. B.; Ao, W. Q.
  • Journal of Magnetism and Magnetic Materials, Vol. 324, Issue 4
  • DOI: 10.1016/j.jmmm.2011.08.031

Magnetocaloric properties of the Ni2Mn1−x(Cu,Co)xGa Heusler alloys
journal, April 2006

  • Gomes, A. M.; Khan, M.; Stadler, S.
  • Journal of Applied Physics, Vol. 99, Issue 8
  • DOI: 10.1063/1.2164415

Direct measure of giant magnetocaloric entropy contributions in Ni–Mn–In
journal, February 2016


Martensitic transition, ferromagnetic transition, and their interplay in the shape memory alloys Ni 2 Mn 1 x Cu x Ga
journal, December 2010


Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy
journal, June 2012


Phase transition processes and magnetocaloric effect in Ni2.15Mn0.85−xCoxGa alloys
journal, April 2008

  • Bao, B.; Long, Y.; Duan, J. F.
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2838769

Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases
journal, September 2007


The magnetocaloric performance in pure and mixed magnetic phase CoMnSi
journal, April 2010


Effect of Fe on thermal and electrical properties in Ni2Mn1-xFexGa Heusler alloys
journal, April 2019


Magnetic order and phase transformation in Ni 2 MnGa
journal, March 1984


Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides
journal, May 1975


Enhanced magnetic refrigeration performance in metamagnetic MnCoSi alloy by high-pressure annealing
journal, April 2017