DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomistic level aqueous dissolution dynamics of NASICON-Type Li1+xAlxTi2–x(PO4)3 (LATP)

Abstract

Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. Here, we combined ReaxFF and experiments to investigate the dissolution at the Li1+xAlxTi2–x(PO4)3-water interface. We demonstrate that surface dissolution is a sequentially dynamic process. The phosphate dissolution destabilizes the NASICON structure, which triggers a titanium-rich secondary phase formation.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Pennsylvania State Univ., University Park, PA (United States); Kumoh National Institute of Technology, Gumi-si, Gyeongbuk (Republic of Korea)
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF)
OSTI Identifier:
1866097
Alternate Identifier(s):
OSTI ID: 1843518
Grant/Contract Number:  
SC0019285; FA9550-16-1-0429; DMR-1842922; AR0000766; Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Volume: 24; Journal Issue: 7; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Sengul, Mert Y., Ndayishimiye, Arnaud, Lee, Wonho, Seo, Joo-Hwan, Fan, Zhongming, Shin, Yun Kyung, Gomez, Enrique D., Randall, Clive A., and van Duin, Adri T. Atomistic level aqueous dissolution dynamics of NASICON-Type Li1+xAlxTi2–x(PO4)3 (LATP). United States: N. p., 2022. Web. doi:10.1039/d1cp05360d.
Sengul, Mert Y., Ndayishimiye, Arnaud, Lee, Wonho, Seo, Joo-Hwan, Fan, Zhongming, Shin, Yun Kyung, Gomez, Enrique D., Randall, Clive A., & van Duin, Adri T. Atomistic level aqueous dissolution dynamics of NASICON-Type Li1+xAlxTi2–x(PO4)3 (LATP). United States. https://doi.org/10.1039/d1cp05360d
Sengul, Mert Y., Ndayishimiye, Arnaud, Lee, Wonho, Seo, Joo-Hwan, Fan, Zhongming, Shin, Yun Kyung, Gomez, Enrique D., Randall, Clive A., and van Duin, Adri T. Thu . "Atomistic level aqueous dissolution dynamics of NASICON-Type Li1+xAlxTi2–x(PO4)3 (LATP)". United States. https://doi.org/10.1039/d1cp05360d. https://www.osti.gov/servlets/purl/1866097.
@article{osti_1866097,
title = {Atomistic level aqueous dissolution dynamics of NASICON-Type Li1+xAlxTi2–x(PO4)3 (LATP)},
author = {Sengul, Mert Y. and Ndayishimiye, Arnaud and Lee, Wonho and Seo, Joo-Hwan and Fan, Zhongming and Shin, Yun Kyung and Gomez, Enrique D. and Randall, Clive A. and van Duin, Adri T.},
abstractNote = {Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. Here, we combined ReaxFF and experiments to investigate the dissolution at the Li1+xAlxTi2–x(PO4)3-water interface. We demonstrate that surface dissolution is a sequentially dynamic process. The phosphate dissolution destabilizes the NASICON structure, which triggers a titanium-rich secondary phase formation.},
doi = {10.1039/d1cp05360d},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 7,
volume = 24,
place = {United States},
year = {Thu Jan 20 00:00:00 EST 2022},
month = {Thu Jan 20 00:00:00 EST 2022}
}

Works referenced in this record:

Origin of fast ion diffusion in super-ionic conductors
journal, June 2017

  • He, Xingfeng; Zhu, Yizhou; Mo, Yifei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15893

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries
journal, June 2018

  • Li, Yutao; Xu, Henghui; Chien, Po-Hsiu
  • Angewandte Chemie International Edition, Vol. 57, Issue 28
  • DOI: 10.1002/anie.201804114

Interphase Engineering Enabled All-Ceramic Lithium Battery
journal, March 2018


Cold sintering process of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 solid electrolyte
journal, March 2017

  • Berbano, Seth S.; Guo, Jing; Guo, Hanzheng
  • Journal of the American Ceramic Society, Vol. 100, Issue 5
  • DOI: 10.1111/jace.14727

Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
journal, May 2014

  • Kunshina, G. B.; Gromov, O. G.; Lokshin, E. P.
  • Russian Journal of Inorganic Chemistry, Vol. 59, Issue 5
  • DOI: 10.1134/S0036023614050118

Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources
journal, May 2013


Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+Al Ti2-(PO4)3 solid electrolytes
journal, September 2015


Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
journal, October 2015


Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics
journal, August 2016

  • Guo, Jing; Guo, Hanzheng; Baker, Amanda L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201605443

Water-Mediated Surface Diffusion Mechanism Enables the Cold Sintering Process: A Combined Computational and Experimental Study
journal, July 2019

  • Sengul, Mert Y.; Guo, Jing; Randall, Clive A.
  • Angewandte Chemie International Edition, Vol. 58, Issue 36
  • DOI: 10.1002/anie.201904738

Ceramic–Salt Composite Electrolytes from Cold Sintering
journal, April 2019

  • Lee, Wonho; Lyon, Christopher K.; Seo, Joo‐Hwan
  • Advanced Functional Materials, Vol. 29, Issue 20
  • DOI: 10.1002/adfm.201807872

Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity
journal, December 2017


Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials
journal, August 2016

  • Guo, Jing; Berbano, Seth S.; Guo, Hanzheng
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602489

Cold Sintered Ceramic Nanocomposites of 2D MXene and Zinc Oxide
journal, June 2018

  • Guo, Jing; Legum, Benjamin; Anasori, Babak
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201801846

Reaction of NASICON with water
journal, February 2001


Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution
journal, January 2012

  • Rustad, James R.; Casey, William H.
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3203

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

A ReaxFF Investigation of Hydride Formation in Palladium Nanoclusters via Monte Carlo and Molecular Dynamics Simulations
journal, February 2014

  • Senftle, Thomas P.; Janik, Michael J.; van Duin, Adri C. T.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 9
  • DOI: 10.1021/jp411015a

Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP)
journal, January 2018

  • Shin, Yun Kyung; Sengul, Mert Y.; Jonayat, A. S. M.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 34
  • DOI: 10.1039/C8CP03586E

ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures
journal, April 2018

  • Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.
  • The Journal of Chemical Physics, Vol. 148, Issue 16
  • DOI: 10.1063/1.5025932

Benchmark of ReaxFF force field for subcritical and supercritical water
journal, June 2018

  • Manzano, Hegoi; Zhang, Weiwei; Raju, Muralikrishna
  • The Journal of Chemical Physics, Vol. 148, Issue 23
  • DOI: 10.1063/1.5031489

ReaxFF Molecular Dynamics Study on the Influence of Temperature on Adsorption, Desorption, and Decomposition at the Acetic Acid/Water/ZnO(101̅0) Interface Enabling Cold Sintering
journal, October 2018

  • Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 43
  • DOI: 10.1021/acsami.8b13630

Dynamics of the Chemically Driven Densification of Barium Titanate Using Molten Hydroxides
journal, April 2021


Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry
journal, April 2020


Dissolution nature of the lithium hydroxide by water molecules
journal, August 2005

  • Veerman, Anupriya; Lee, Han Myoung; Kim, Kwang S.
  • The Journal of Chemical Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.2010470

Chemistry and properties of solids with the [NZP] skeleton
journal, September 1993


Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
journal, July 2019


Influence of the secondary phase LiTiOPO 4 on the properties of Li 1+x Al x Ti 2−x (PO 4 ) 3 (x = 0; 0.3)
journal, April 2017