DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optoelectronic property comparison for isostructural Cu2BaGeSe4 and Cu2BaSnS4 solar absorbers

Abstract

To target mitigation of anti-site defect formation in Cu2ZnSnS4–xSex, a new class of chalcogenides, for which Ba or Sr (group 2) replace Zn (group 12), has recently been introduced for prospective solar absorber application. Cu2BaGeSe4 (CBGSe) and Cu2BaSnS4 (CBTS) are two such compounds, which share a common trigonal crystal structure (P31 space group) and similar quasi-direct band gap (~2 eV). While CBTS-based films have already been studied, there are no reports yet on films and solar cells based on related CBGSe. To identify key differences and similarities in the electronic properties between these two materials, electronic characteristics (e.g., carrier concentration, mobility, electron affinity, defect levels, recombination, and charge carrier kinetics) of vacuum-deposited CBGSe and CBTS films are compared using a variety of characterization methods. Hall effect measurements reveal that CBGSe films have relatively higher hole carrier concentration and lower mobility (3 × 1015 cm–3, 0.6 cm2 V–1 s–1) compared to CBTS (5 × 1012 cm–3, 3.5 cm2 V–1 s–1). Photoelectron spectroscopy yields low electron affinity values for both CBGSe (3.7 eV) and CBTS (3.3 eV), pointing to the necessity of pursuing low electron affinity buffer materials for both types of absorbers. At low temperatures, CBGSe films show free-exciton photoluminescence, asmore » well as pronounced deep-level emission at ~1.4 eV, while CBTS films exhibit a strong bound-exciton signal with noticeably less intense deep-level emission than for CBGSe. Charge carrier kinetics, transport, and recombination properties of both types of films are also analyzed using optical-pump terahertz-probe spectroscopy and time-resolved microwave conductivity. The first CBGSe prototype solar cells (using chemical bath deposited CdS as a buffer layer) show a maximum of 1.5% efficiency with ~0.62 V open-circuit voltage. Furthermore, the measured properties point to possible limiting factors for CBGSe and related films for PV and optoelectronics and provide insights on possible approaches for improvement within this multinary chalcogenide family.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1];  [3];  [4]; ORCiD logo [2];  [3]; ORCiD logo [1]
  1. Duke Univ., Durham, NC (United States)
  2. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin (Germany)
  3. Dalhousie Univ., Halifax, NS (Canada)
  4. IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)
Publication Date:
Research Org.:
Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1865840
Alternate Identifier(s):
OSTI ID: 1825794
Grant/Contract Number:  
SC0020061
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 9; Journal Issue: 41; Related Information: https://www.rsc.org/suppdata/d1/ta/d1ta05666b/d1ta05666b1.pdf; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Cu2BaGeSe4; Cu2BaSnS4; thin film; chalcogenide; solar cell

Citation Formats

Kim, Yongshin, Hempel, Hannes, Levcenco, Sergiu, Euvrard, Julie, Bergmann, Eric, Gunawan, Oki, Unold, Thomas, Hill, Ian G., and Mitzi, David B. Optoelectronic property comparison for isostructural Cu2BaGeSe4 and Cu2BaSnS4 solar absorbers. United States: N. p., 2021. Web. doi:10.1039/d1ta05666b.
Kim, Yongshin, Hempel, Hannes, Levcenco, Sergiu, Euvrard, Julie, Bergmann, Eric, Gunawan, Oki, Unold, Thomas, Hill, Ian G., & Mitzi, David B. Optoelectronic property comparison for isostructural Cu2BaGeSe4 and Cu2BaSnS4 solar absorbers. United States. https://doi.org/10.1039/d1ta05666b
Kim, Yongshin, Hempel, Hannes, Levcenco, Sergiu, Euvrard, Julie, Bergmann, Eric, Gunawan, Oki, Unold, Thomas, Hill, Ian G., and Mitzi, David B. Mon . "Optoelectronic property comparison for isostructural Cu2BaGeSe4 and Cu2BaSnS4 solar absorbers". United States. https://doi.org/10.1039/d1ta05666b. https://www.osti.gov/servlets/purl/1865840.
@article{osti_1865840,
title = {Optoelectronic property comparison for isostructural Cu2BaGeSe4 and Cu2BaSnS4 solar absorbers},
author = {Kim, Yongshin and Hempel, Hannes and Levcenco, Sergiu and Euvrard, Julie and Bergmann, Eric and Gunawan, Oki and Unold, Thomas and Hill, Ian G. and Mitzi, David B.},
abstractNote = {To target mitigation of anti-site defect formation in Cu2ZnSnS4–xSex, a new class of chalcogenides, for which Ba or Sr (group 2) replace Zn (group 12), has recently been introduced for prospective solar absorber application. Cu2BaGeSe4 (CBGSe) and Cu2BaSnS4 (CBTS) are two such compounds, which share a common trigonal crystal structure (P31 space group) and similar quasi-direct band gap (~2 eV). While CBTS-based films have already been studied, there are no reports yet on films and solar cells based on related CBGSe. To identify key differences and similarities in the electronic properties between these two materials, electronic characteristics (e.g., carrier concentration, mobility, electron affinity, defect levels, recombination, and charge carrier kinetics) of vacuum-deposited CBGSe and CBTS films are compared using a variety of characterization methods. Hall effect measurements reveal that CBGSe films have relatively higher hole carrier concentration and lower mobility (3 × 1015 cm–3, 0.6 cm2 V–1 s–1) compared to CBTS (5 × 1012 cm–3, 3.5 cm2 V–1 s–1). Photoelectron spectroscopy yields low electron affinity values for both CBGSe (3.7 eV) and CBTS (3.3 eV), pointing to the necessity of pursuing low electron affinity buffer materials for both types of absorbers. At low temperatures, CBGSe films show free-exciton photoluminescence, as well as pronounced deep-level emission at ~1.4 eV, while CBTS films exhibit a strong bound-exciton signal with noticeably less intense deep-level emission than for CBGSe. Charge carrier kinetics, transport, and recombination properties of both types of films are also analyzed using optical-pump terahertz-probe spectroscopy and time-resolved microwave conductivity. The first CBGSe prototype solar cells (using chemical bath deposited CdS as a buffer layer) show a maximum of 1.5% efficiency with ~0.62 V open-circuit voltage. Furthermore, the measured properties point to possible limiting factors for CBGSe and related films for PV and optoelectronics and provide insights on possible approaches for improvement within this multinary chalcogenide family.},
doi = {10.1039/d1ta05666b},
journal = {Journal of Materials Chemistry. A},
number = 41,
volume = 9,
place = {United States},
year = {Mon Oct 04 00:00:00 EDT 2021},
month = {Mon Oct 04 00:00:00 EDT 2021}
}

Works referenced in this record:

Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation
journal, March 2001

  • Minemoto, Takashi; Matsui, Takuya; Takakura, Hideyuki
  • Solar Energy Materials and Solar Cells, Vol. 67, Issue 1-4
  • DOI: 10.1016/S0927-0248(00)00266-X

Carrier-resolved photo-Hall effect
journal, October 2019


A simple and efficient solar cell parameter extraction method from a single current-voltage curve
journal, September 2011

  • Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
  • Journal of Applied Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.3632971

Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights
journal, January 2009

  • Chen, Shiyou; Gong, X. G.; Walsh, Aron
  • Applied Physics Letters, Vol. 94, Issue 4
  • DOI: 10.1063/1.3074499

Solution-processed Cu(In,Ga)(S,Se) 2 absorber yielding a 15.2% efficient solar cell : Solution-processed CIGS absorber
journal, January 2012

  • Todorov, Teodor K.; Gunawan, Oki; Gokmen, Tayfun
  • Progress in Photovoltaics: Research and Applications, Vol. 21, Issue 1
  • DOI: 10.1002/pip.1253

The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells
journal, July 2016

  • Moore, James E.; Hages, Charles J.; Agrawal, Rakesh
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4955402

Is the Cu/Zn Disorder the Main Culprit for the Voltage Deficit in Kesterite Solar Cells?
journal, March 2016

  • Bourdais, Stéphane; Choné, Christophe; Delatouche, Bruno
  • Advanced Energy Materials, Vol. 6, Issue 12
  • DOI: 10.1002/aenm.201502276

The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study
journal, June 2011


Theory of Excitons Bound to Ionized Impurities in Semiconductors
journal, January 1967


Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4
journal, January 2010

  • Chen, Shiyou; Gong, X. G.; Walsh, Aron
  • Applied Physics Letters, Vol. 96, Issue 2, Article No. 021902
  • DOI: 10.1063/1.3275796

A parallel dipole line system
journal, February 2015

  • Gunawan, Oki; Virgus, Yudistira; Tai, Kong Fai
  • Applied Physics Letters, Vol. 106, Issue 6
  • DOI: 10.1063/1.4907931

Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells
journal, March 2015

  • Sardashti, Kasra; Haight, Richard; Gokmen, Tayfun
  • Advanced Energy Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aenm.201402180

Minority and Majority Charge Carrier Mobility in Cu2ZnSnSe4 revealed by Terahertz Spectroscopy
journal, September 2018


High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber
journal, May 2010

  • Todorov, Teodor K.; Reuter, Kathleen B.; Mitzi, David B.
  • Advanced Materials, Vol. 22, Issue 20, p. E156-E159
  • DOI: 10.1002/adma.200904155

Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%
journal, January 2016


Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology
journal, July 2013

  • Mitzi, D. B.; Gunawan, O.; Todorov, T. K.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, Issue 1996, Article No. 20110432
  • DOI: 10.1098/rsta.2011.0432

Band Gap Engineering of Alloyed Cu 2 ZnGe x Sn 1– x Q 4 (Q = S,Se) Films for Solar Cell
journal, January 2015

  • Khadka, Dhruba B.; Kim, JunHo
  • The Journal of Physical Chemistry C, Vol. 119, Issue 4
  • DOI: 10.1021/jp510877g

Abundance of Cu Zn  + Sn Zn and 2Cu Zn  + Sn Zn defect clusters in kesterite solar cells
journal, November 2012

  • Chen, Shiyou; Wang, Lin-Wang; Walsh, Aron
  • Applied Physics Letters, Vol. 101, Issue 22
  • DOI: 10.1063/1.4768215

Solution-Processed Earth-Abundant Cu 2 BaSn(S,Se) 4 Solar Absorber Using a Low-Toxicity Solvent
journal, August 2018


The Role of Sodium as a Surfactant and Suppressor of Non-Radiative Recombination at Internal Surfaces in Cu 2 ZnSnS 4
journal, August 2014

  • Gershon, Talia; Shin, Byungha; Bojarczuk, Nestor
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201400849

The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4
journal, May 2010

  • Biswas, Koushik; Lany, Stephan; Zunger, Alex
  • Applied Physics Letters, Vol. 96, Issue 20
  • DOI: 10.1063/1.3427433

Band tailing and efficiency limitation in kesterite solar cells
journal, September 2013

  • Gokmen, Tayfun; Gunawan, Oki; Todorov, Teodor K.
  • Applied Physics Letters, Vol. 103, Issue 10
  • DOI: 10.1063/1.4820250

Band gap energies of bulk, thin-film, and epitaxial layers of CuInSe2 and CuGaSe2
journal, April 1998

  • Chichibu, S.; Mizutani, T.; Murakami, K.
  • Journal of Applied Physics, Vol. 83, Issue 7
  • DOI: 10.1063/1.366588

Synthesis and Characterization of an Earth-Abundant Cu 2 BaSn(S,Se) 4 Chalcogenide for Photoelectrochemical Cell Application
journal, November 2016

  • Shin, Donghyeop; Ngaboyamahina, Edgard; Zhou, Yihao
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 22
  • DOI: 10.1021/acs.jpclett.6b02010

Oxygenated CdS Buffer Layers Enabling High Open‐Circuit Voltages in Earth‐Abundant Cu 2 BaSnS 4 Thin‐Film Solar Cells
journal, December 2016

  • Ge, Jie; Koirala, Prakash; Grice, Corey R.
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601803

Efficient and Stable Pt/TiO 2 /CdS/Cu 2 BaSn(S,Se) 4 Photocathode for Water Electrolysis Applications
journal, November 2017


Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
journal, November 2013

  • Wang, Wei; Winkler, Mark T.; Gunawan, Oki
  • Advanced Energy Materials, Vol. 4, Issue 7, Article No. 1301465
  • DOI: 10.1002/aenm.201301465

Solar cell efficiency tables (version 57)
journal, November 2020

  • Green, Martin; Dunlop, Ewan; Hohl‐Ebinger, Jochen
  • Progress in Photovoltaics: Research and Applications, Vol. 29, Issue 1
  • DOI: 10.1002/pip.3371

Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m -plane InGaN/GaN quantum wells
journal, November 2016


Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films
journal, April 1999

  • Nakada, T.; Kunioka, A.
  • Applied Physics Letters, Vol. 74, Issue 17
  • DOI: 10.1063/1.123875

Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis
journal, August 2016

  • Nakane, Akihiro; Tampo, Hitoshi; Tamakoshi, Masato
  • Journal of Applied Physics, Vol. 120, Issue 6
  • DOI: 10.1063/1.4960698

Intragrain charge transport in kesterite thin films—Limits arising from carrier localization
journal, November 2016

  • Hempel, Hannes; Redinger, Alex; Repins, Ingrid
  • Journal of Applied Physics, Vol. 120, Issue 17
  • DOI: 10.1063/1.4965868

High-temperature decomposition of Cu 2 BaSnS 4 with Sn loss reveals newly identified compound Cu 2 Ba 3 Sn 2 S 8
journal, January 2020

  • Márquez, José A.; Sun, Jon-Paul; Stange, Helena
  • Journal of Materials Chemistry A, Vol. 8, Issue 22
  • DOI: 10.1039/D0TA02348E

Structural Tolerance Factor Approach to Defect-Resistant I 2 -II-IV-X 4 Semiconductor Design
journal, January 2020


Assessing the defect tolerance of kesterite-inspired solar absorbers
journal, January 2020

  • Crovetto, Andrea; Kim, Sunghyun; Fischer, Moritz
  • Energy & Environmental Science, Vol. 13, Issue 10
  • DOI: 10.1039/D0EE02177F

Thin-film solar cells: device measurements and analysis
journal, March 2004

  • Hegedus, Steven S.; Shafarman, William N.
  • Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 23
  • DOI: 10.1002/pip.518

A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device
journal, October 2008


Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials
journal, May 2017

  • Hages, Charles J.; Redinger, Alex; Levcenko, Sergiu
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700167

Experimental and First-Principles Spectroscopy of Cu 2 SrSnS 4 and Cu 2 BaSnS 4 Photoabsorbers
journal, October 2020

  • Crovetto, Andrea; Xing, Zongda; Fischer, Moritz
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 45
  • DOI: 10.1021/acsami.0c14578

Predicting the ionization threshold for carriers in excited semiconductors
journal, April 2008


Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu 2 BaSn(S,Se) 4 Absorber
journal, April 2017


BaCu 2 Sn(S,Se) 4 : Earth-Abundant Chalcogenides for Thin-Film Photovoltaics
journal, June 2016


Band Gap Tailoring and Structure-Composition Relationship within the Alloyed Semiconductor Cu 2 BaGe 1– x Sn x Se 4
journal, August 2018


Alkali-metal-enhanced grain growth in Cu 2 ZnSnS 4 thin films
journal, January 2014

  • Johnson, M.; Baryshev, S. V.; Thimsen, E.
  • Energy Environ. Sci., Vol. 7, Issue 6
  • DOI: 10.1039/C3EE44130J

Phase and film formation pathway for vacuum-deposited C u 2 BaSn ( S , Se ) 4 absorber layers
journal, May 2019


Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials
journal, January 2017

  • Shin, Donghyeop; Saparov, Bayrammurad; Mitzi, David B.
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602366

Direct evidence of a buried homojunction in Cu(In,Ga)Se2 solar cells
journal, January 2003

  • Jiang, Chun-Sheng; Hasoon, F. S.; Moutinho, H. R.
  • Applied Physics Letters, Vol. 82, Issue 1
  • DOI: 10.1063/1.1534417

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

I 2 –II–IV–VI 4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for Thin-Film Photovoltaics
journal, September 2017


Cu depletion at the CuInSe2 surface
journal, April 2003

  • Liao, Dongxiang; Rockett, Angus
  • Applied Physics Letters, Vol. 82, Issue 17
  • DOI: 10.1063/1.1570516

Trigonal Cu 2 -II-Sn-VI 4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics
journal, January 2016

  • Hong, Feng; Lin, Wenjun; Meng, Weiwei
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 6
  • DOI: 10.1039/C5CP06977G

Sodium Assisted Sintering of Chalcogenides and Its Application to Solution Processed Cu 2 ZnSn(S,Se) 4 Thin Film Solar Cells
journal, January 2014

  • Sutter-Fella, Carolin M.; Stückelberger, Josua A.; Hagendorfer, Harald
  • Chemistry of Materials, Vol. 26, Issue 3
  • DOI: 10.1021/cm403504u

Classification of Lattice Defects in the Kesterite Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4 Earth-Abundant Solar Cell Absorbers
journal, February 2013


Cu(In,Ga)Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements
journal, November 1999