DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of salt concentration profiles on protrusion growth in lithium-polymer-lithium cells

Abstract

In this report, the formation of dendrites and other protrusions on lithium metal anodes is a subject of continued interest due to the potential to incorporate these anodes in next-generation rechargeable batteries with increased energy densities. Solid polymer electrolytes show improved stability against lithium metal compared to liquid carbonate electrolytes. We have studied the effect of salt concentration on the formation of protrusions formed on electrodeposited lithium through a rigid block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (PS-b-PEO or SEO), in a lithium-lithium symmetric cell. The cell lifetime decreases by a factor of 100 when salt concentration is increased by a factor of 5. Our main objective is to understand the reason for this observation. We show that this decrease is not due to a salt-induced change of the morphology of the block-copolymer electrolyte, nor is it due to a salt-induced change of mechanical properties. We use an approach based on Newman's concentrated solution theory to fully characterize ion transport in the block-copolymer electrolyte, and report the conductivity, salt diffusion coefficient, cation transference number, and thermodynamic factor. Neither cell lifetime nor protrusion density in failed cells correlate with any of these electrochemical parameters. However, the electrochemical parameters can be used to predictmore » salt concentration profiles in our symmetric cells. We posit that an important parameter in protrusion growth is the magnitude of the salt concentration gradient, Δ. We observe a direct correlation between Δ and lithium protrusion growth.« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1842997
Alternate Identifier(s):
OSTI ID: 1873941
Grant/Contract Number:  
AC02-05CH11231; DGE-2752814; DGE-1106400; DEAC02- 05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Solid State Ionics
Additional Journal Information:
Journal Volume: 358; Journal ID: ISSN 0167-2738
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium; polymer electrolyte; salt concentration; rechargeable batteries; salt concentration gradient; concentrated solution theory; electrochemical properties

Citation Formats

Frenck, Louise, Veeraraghavan, Vijay D., Maslyn, Jacqueline A., Müller, Alexander, Ho, Alec S., Loo, Whitney S., Minor, Andrew M., and Balsara, Nitash P. Effect of salt concentration profiles on protrusion growth in lithium-polymer-lithium cells. United States: N. p., 2020. Web. doi:10.1016/j.ssi.2020.115517.
Frenck, Louise, Veeraraghavan, Vijay D., Maslyn, Jacqueline A., Müller, Alexander, Ho, Alec S., Loo, Whitney S., Minor, Andrew M., & Balsara, Nitash P. Effect of salt concentration profiles on protrusion growth in lithium-polymer-lithium cells. United States. https://doi.org/10.1016/j.ssi.2020.115517
Frenck, Louise, Veeraraghavan, Vijay D., Maslyn, Jacqueline A., Müller, Alexander, Ho, Alec S., Loo, Whitney S., Minor, Andrew M., and Balsara, Nitash P. Wed . "Effect of salt concentration profiles on protrusion growth in lithium-polymer-lithium cells". United States. https://doi.org/10.1016/j.ssi.2020.115517. https://www.osti.gov/servlets/purl/1842997.
@article{osti_1842997,
title = {Effect of salt concentration profiles on protrusion growth in lithium-polymer-lithium cells},
author = {Frenck, Louise and Veeraraghavan, Vijay D. and Maslyn, Jacqueline A. and Müller, Alexander and Ho, Alec S. and Loo, Whitney S. and Minor, Andrew M. and Balsara, Nitash P.},
abstractNote = {In this report, the formation of dendrites and other protrusions on lithium metal anodes is a subject of continued interest due to the potential to incorporate these anodes in next-generation rechargeable batteries with increased energy densities. Solid polymer electrolytes show improved stability against lithium metal compared to liquid carbonate electrolytes. We have studied the effect of salt concentration on the formation of protrusions formed on electrodeposited lithium through a rigid block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (PS-b-PEO or SEO), in a lithium-lithium symmetric cell. The cell lifetime decreases by a factor of 100 when salt concentration is increased by a factor of 5. Our main objective is to understand the reason for this observation. We show that this decrease is not due to a salt-induced change of the morphology of the block-copolymer electrolyte, nor is it due to a salt-induced change of mechanical properties. We use an approach based on Newman's concentrated solution theory to fully characterize ion transport in the block-copolymer electrolyte, and report the conductivity, salt diffusion coefficient, cation transference number, and thermodynamic factor. Neither cell lifetime nor protrusion density in failed cells correlate with any of these electrochemical parameters. However, the electrochemical parameters can be used to predict salt concentration profiles in our symmetric cells. We posit that an important parameter in protrusion growth is the magnitude of the salt concentration gradient, Δ. We observe a direct correlation between Δ and lithium protrusion growth.},
doi = {10.1016/j.ssi.2020.115517},
journal = {Solid State Ionics},
number = ,
volume = 358,
place = {United States},
year = {Wed Nov 25 00:00:00 EST 2020},
month = {Wed Nov 25 00:00:00 EST 2020}
}

Works referenced in this record:

High-Strength Internal Cross-Linking Bacterial Cellulose-Network-Based Gel Polymer Electrolyte for Dendrite-Suppressing and High-Rate Lithium Batteries
journal, May 2018

  • Xu, Dong; Wang, Bangrun; Wang, Qing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 21
  • DOI: 10.1021/acsami.8b00034

Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
journal, June 2007

  • Singh, Mohit; Odusanya, Omolola; Wilmes, Gregg M.
  • Macromolecules, Vol. 40, Issue 13
  • DOI: 10.1021/ma0629541

In situ study of dendritic growth inlithium/PEO-salt/lithium cells
journal, April 1998


The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
journal, January 1995

  • Ma, Yanping
  • Journal of The Electrochemical Society, Vol. 142, Issue 6
  • DOI: 10.1149/1.2044206

Advances and issues in developing salt-concentrated battery electrolytes
journal, March 2019


Salt Diffusion Coefficients in Block Copolymer Electrolytes
journal, January 2011

  • Mullin, Scott A.; Stone, Gregory M.; Panday, Ashoutosh
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3563802

Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies
journal, January 2017

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP03304D

Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions
journal, January 2015

  • Balsara, Nitash P.; Newman, John
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0651514jes

Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions
journal, January 2018

  • Pesko, Danielle M.; Feng, Zhange; Sawhney, Simar
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0921813jes

Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes
journal, January 2016


Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


Optimizing Ion Transport in Polyether-Based Electrolytes for Lithium Batteries
journal, April 2018


Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
journal, January 2017


Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Block copolymer electrolytes for rechargeable lithium batteries
journal, November 2013

  • Young, Wen-Shiue; Kuan, Wei-Fan; Epps, Thomas H.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 52, Issue 1
  • DOI: 10.1002/polb.23404

Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes
journal, November 2019

  • Frenck, Louise; Sethi, Gurmukh K.; Maslyn, Jacqueline A.
  • Frontiers in Energy Research, Vol. 7
  • DOI: 10.3389/fenrg.2019.00115

Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


The history of polymer electrolytes
journal, August 1994


Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study
journal, December 2016

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0661702jes

Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries
journal, February 2018

  • Li, Dan; Chen, Long; Wang, Tianshi
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 8
  • DOI: 10.1021/acsami.7b18123

Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes
journal, July 2009

  • Panday, Ashoutosh; Mullin, Scott; Gomez, Enrique D.
  • Macromolecules, Vol. 42, Issue 13
  • DOI: 10.1021/ma900451e

Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes
journal, January 2018

  • Villaluenga, Irune; Pesko, Danielle M.; Timachova, Ksenia
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0641811jes

A superconcentrated ether electrolyte for fast-charging Li-ion batteries
journal, January 2013

  • Yamada, Yuki; Yaegashi, Makoto; Abe, Takeshi
  • Chemical Communications, Vol. 49, Issue 95, p. 11194-11196
  • DOI: 10.1039/c3cc46665e

Ohm’s law for ion conduction in lithium and beyond-lithium battery electrolytes
journal, July 2019

  • Galluzzo, Michael D.; Maslyn, Jacqueline A.; Shah, Deep B.
  • The Journal of Chemical Physics, Vol. 151, Issue 2
  • DOI: 10.1063/1.5109684

Inter-electrode in situ concentration cartography in lithium/polymer electrolyte/lithium cells
journal, October 2005


The Effect of Interfacial Deformation on Electrodeposition Kinetics
journal, January 2004

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1710893

Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes
journal, January 2015

  • Tominaga, Yoichi; Yamazaki, Kenta; Nanthana, Vannasa
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0211502jes

Effect of Anion Size on Conductivity and Transference Number of Perfluoroether Electrolytes with Lithium Salts
journal, January 2017

  • Shah, Deep B.; Olson, Kevin R.; Karny, Adar
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0301714jes

Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane
journal, January 2015

  • Harry, Katherine J.; Liao, Xunxun; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0321514jes

High Toughness, High Conductivity Ion Gels by Sequential Triblock Copolymer Self-Assembly and Chemical Cross-Linking
journal, June 2013

  • Gu, Yuanyan; Zhang, Sipei; Martinetti, Luca
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja4051394

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode
journal, January 2016

  • Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0191610jes

Fluctuation effects in a symmetric diblock copolymer near the order–disorder transition
journal, May 1990

  • Bates, Frank S.; Rosedale, Jeffrey H.; Fredrickson, Glenn H.
  • The Journal of Chemical Physics, Vol. 92, Issue 10
  • DOI: 10.1063/1.458350

A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
journal, August 1998


Calculation of the space charge in electrodeposition from a binary electrolyte
journal, February 2006


Polymer electrolytes
journal, January 1993

  • Bruce, P. G.; Vincent, C. A.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 17
  • DOI: 10.1039/ft9938903187

Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries
journal, March 2017

  • Hu, Jiulin; Tian, Jing; Li, Chilin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 13
  • DOI: 10.1021/acsami.7b00478

Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes
journal, December 2014

  • Schauser, Nicole S.; Harry, Katherine J.; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0511503jes

Relationship between Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Conductivity in Polymer Electrolytes
journal, March 2018


Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies
journal, January 2020

  • Galluzzo, Michael D.; Loo, Whitney S.; Wang, Andrew A.
  • The Journal of Physical Chemistry B, Vol. 124, Issue 5
  • DOI: 10.1021/acs.jpcb.9b11066

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Impact of Salt Concentration on Nonuniform Lithium Electrodeposition through Rigid Block Copolymer Electrolytes
journal, November 2019

  • Frenck, Louise; Maslyn, Jacqueline A.; Loo, Whitney S.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 51
  • DOI: 10.1021/acsami.9b15606

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth
journal, January 2018

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0651811jes

The interface between lithium and poly(ethylene-oxide)
journal, April 1999


Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3793

Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation
journal, April 2006

  • Cochran, Eric W.; Garcia-Cervera, Carlos J.; Fredrickson, Glenn H.
  • Macromolecules, Vol. 39, Issue 7
  • DOI: 10.1021/ma0527707

Growth of Lithium Dendrites and Globules through a Solid Block Copolymer Electrolyte as a Function of Current Density
journal, November 2018

  • Maslyn, Jacqueline A.; Loo, Whitney S.; McEntush, Kyle D.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 47
  • DOI: 10.1021/acs.jpcc.8b06355