DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic

Abstract

Biomass burning smoke is advected over the southeastern Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly in both magnitude and sign. NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) had deployments for field campaigns off the west coast of Africa in 3 consecutive years (September 2016, August 2017, and October 2018) with the goal of better characterizing this plume as a function of the monthly evolution by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on the comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosolmore » light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models, the simulated plume is too vertically diffuse and has smaller vertical gradients, and in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate underestimates in modeled plume concentrations, leading, in general, to underestimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2017) and September (2016). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and, therefore, in the aerosol direct radiative effect. Model biases in cloud fraction, and, therefore, the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is underestimated in the GEOS model; UM-UKCA simulates cloud optical thickness that is significantly too high. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a subset of five comparison grid boxes. A significant finding is that the observed grid box average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five grid boxes, whereas DARE using the grid-box-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [8];  [9];  [10]; ORCiD logo [10];  [3];  [11];  [12];  [12];  [2];  [7];  [5]; ORCiD logo [8]; ORCiD logo [4] more »; ORCiD logo [13];  [13]; ORCiD logo [1]; ORCiD logo [13] « less
  1. Univ. of Washington, Seattle, WA (United States)
  2. Univ. of California, Los Angeles, CA (United States)
  3. Univ. of Miami, FL (United States)
  4. Bay Area Environmental Research Institute, Moffett Field, Mountain View, CA (United States); NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)
  5. Univ. of Iowa, Iowa City, IA (United States)
  6. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  7. Univ. of Toulouse (France)
  8. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  9. Science Systems and Applications Inc., Hampton, VA (United States); NASA Langley Research Center, Hampton, VA (United States)
  10. Univ. of Hawaii at Manoa, Honolulu, HI (United States)
  11. NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)
  12. NASA Langley Research Center, Hampton, VA (United States)
  13. Univ. of Oklahoma, Norman, OK (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Aeronautics and Space Administration (NASA); NOAA
Contributing Org.:
Pacific Northwest National Laboratory (PNNL); Brookhaven National Laboratory (BNL); Argonne National Laboratory (ANL); Oak Ridge National Laboratory (ORNL)
OSTI Identifier:
1839971
Grant/Contract Number:  
SC0018272; NNX15AF96G; NA15OAR4320063
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 22; Journal Issue: 1; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Doherty, Sarah J., Saide, Pablo E., Zuidema, Paquita, Shinozuka, Yohei, Ferrada, Gonzalo A., Gordon, Hamish, Mallet, Marc, Meyer, Kerry, Painemal, David, Howell, Steven G., Freitag, Steffen, Dobracki, Amie, Podolske, James R., Burton, Sharon P., Ferrare, Richard A., Howes, Calvin, Nabat, Pierre, Carmichael, Gregory R., da Silva, Arlindo, Pistone, Kristina, Chang, Ian, Gao, Lan, Wood, Robert, and Redemann, Jens. Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic. United States: N. p., 2022. Web. doi:10.5194/acp-22-1-2022.
Doherty, Sarah J., Saide, Pablo E., Zuidema, Paquita, Shinozuka, Yohei, Ferrada, Gonzalo A., Gordon, Hamish, Mallet, Marc, Meyer, Kerry, Painemal, David, Howell, Steven G., Freitag, Steffen, Dobracki, Amie, Podolske, James R., Burton, Sharon P., Ferrare, Richard A., Howes, Calvin, Nabat, Pierre, Carmichael, Gregory R., da Silva, Arlindo, Pistone, Kristina, Chang, Ian, Gao, Lan, Wood, Robert, & Redemann, Jens. Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic. United States. https://doi.org/10.5194/acp-22-1-2022
Doherty, Sarah J., Saide, Pablo E., Zuidema, Paquita, Shinozuka, Yohei, Ferrada, Gonzalo A., Gordon, Hamish, Mallet, Marc, Meyer, Kerry, Painemal, David, Howell, Steven G., Freitag, Steffen, Dobracki, Amie, Podolske, James R., Burton, Sharon P., Ferrare, Richard A., Howes, Calvin, Nabat, Pierre, Carmichael, Gregory R., da Silva, Arlindo, Pistone, Kristina, Chang, Ian, Gao, Lan, Wood, Robert, and Redemann, Jens. Mon . "Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic". United States. https://doi.org/10.5194/acp-22-1-2022. https://www.osti.gov/servlets/purl/1839971.
@article{osti_1839971,
title = {Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic},
author = {Doherty, Sarah J. and Saide, Pablo E. and Zuidema, Paquita and Shinozuka, Yohei and Ferrada, Gonzalo A. and Gordon, Hamish and Mallet, Marc and Meyer, Kerry and Painemal, David and Howell, Steven G. and Freitag, Steffen and Dobracki, Amie and Podolske, James R. and Burton, Sharon P. and Ferrare, Richard A. and Howes, Calvin and Nabat, Pierre and Carmichael, Gregory R. and da Silva, Arlindo and Pistone, Kristina and Chang, Ian and Gao, Lan and Wood, Robert and Redemann, Jens},
abstractNote = {Biomass burning smoke is advected over the southeastern Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly in both magnitude and sign. NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) had deployments for field campaigns off the west coast of Africa in 3 consecutive years (September 2016, August 2017, and October 2018) with the goal of better characterizing this plume as a function of the monthly evolution by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on the comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models, the simulated plume is too vertically diffuse and has smaller vertical gradients, and in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate underestimates in modeled plume concentrations, leading, in general, to underestimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2017) and September (2016). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and, therefore, in the aerosol direct radiative effect. Model biases in cloud fraction, and, therefore, the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is underestimated in the GEOS model; UM-UKCA simulates cloud optical thickness that is significantly too high. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a subset of five comparison grid boxes. A significant finding is that the observed grid box average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five grid boxes, whereas DARE using the grid-box-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.},
doi = {10.5194/acp-22-1-2022},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 1,
volume = 22,
place = {United States},
year = {Mon Jan 03 00:00:00 EST 2022},
month = {Mon Jan 03 00:00:00 EST 2022}
}

Works referenced in this record:

Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis
journal, April 2021

  • Chang, Ian; Gao, Lan; Burton, Sharon P.
  • Geophysical Research Letters, Vol. 48, Issue 7
  • DOI: 10.1029/2020GL091469

Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2
journal, January 2015


MOD06_L2 MODIS/Terra Clouds 5-Min L2 Swath 1km and 5km
null, January 2015


Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate
journal, July 2016

  • Zuidema, Paquita; Redemann, Jens; Haywood, James
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 7
  • DOI: 10.1175/BAMS-D-15-00082.1

Diurnal cycle of liquid water path over the subtropical and tropical oceans: DIURNAL CYCLE OF LIQUID WATER PATH
journal, December 2002

  • Wood, R.; Bretherton, C. S.; Hartmann, D. L.
  • Geophysical Research Letters, Vol. 29, Issue 23
  • DOI: 10.1029/2002GL015371

Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios
journal, January 2008

  • Capes, G.; Johnson, B.; McFiggans, G.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009845

Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations
journal, January 2020

  • Herbert, Ross J.; Bellouin, Nicolas; Highwood, Ellie J.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 3
  • DOI: 10.5194/acp-20-1317-2020

Cloud fraction errors for trade wind cumuli from EOS-Terra instruments
journal, January 2006

  • Zhao, Guangyu; Di Girolamo, Larry
  • Geophysical Research Letters, Vol. 33, Issue 20
  • DOI: 10.1029/2006GL027088

The ASTER dataset for EUREC4A
dataset, January 2022


The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models: TOO FEW TOO BRIGHT LOW-CLOUDS
journal, November 2012

  • Nam, C.; Bony, S.; Dufresne, J. -L.
  • Geophysical Research Letters, Vol. 39, Issue 21
  • DOI: 10.1029/2012GL053421

Spectral absorption properties of atmospheric aerosols
journal, January 2007

  • Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 23
  • DOI: 10.5194/acp-7-5937-2007

Determination of the age distribution of primary and secondary aerosol species using a chemical transport model
journal, January 2009

  • Wagstrom, Kristina M.; Pandis, Spyros N.
  • Journal of Geophysical Research, Vol. 114, Issue D14
  • DOI: 10.1029/2009JD011784

Aerosol, cloud and related data acquired aboard P3 during ORACLES 2017, version 3
dataset, January 2021


Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements
journal, January 2005

  • Provencal, Robert; Gupta, Manish; Owano, Thomas G.
  • Applied Optics, Vol. 44, Issue 31
  • DOI: 10.1364/AO.44.006712

LACIS-measurements and parameterization of sea-salt particle hygroscopic growth and activation
journal, January 2008

  • Niedermeier, D.; Wex, H.; Voigtländer, J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 3
  • DOI: 10.5194/acp-8-579-2008

Marine Low Clouds and their Parameterization in Climate Models
journal, January 2020

  • Kawai, Hideaki; Shige, Shoichi
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 98, Issue 6
  • DOI: 10.2151/jmsj.2020-059

Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
journal, January 2010

  • Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 3
  • DOI: 10.5194/acp-10-1155-2010

Results from the DC-8 Inlet Characterization Experiment (DICE): Airborne Versus Surface Sampling of Mineral Dust and Sea Salt Aerosols
journal, February 2007

  • McNaughton, Cameron S.; Clarke, Antony D.; Howell, Steven G.
  • Aerosol Science and Technology, Vol. 41, Issue 2
  • DOI: 10.1080/02786820601118406

Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies
journal, July 2019

  • Hodshire, Anna L.; Akherati, Ali; Alvarado, Matthew J.
  • Environmental Science & Technology, Vol. 53, Issue 17
  • DOI: 10.1021/acs.est.9b02588

From aerosol-limited to invigoration of warm convective clouds
journal, June 2014


Validation of the CERES Edition-4A Surface-Only Flux Algorithms
journal, February 2020

  • Kratz, David P.; Gupta, Shashi K.; Wilber, Anne C.
  • Journal of Applied Meteorology and Climatology, Vol. 59, Issue 2
  • DOI: 10.1175/JAMC-D-19-0068.1

Ocean Surface Albedo and Its Impact on Radiation Balance in Climate Models
journal, December 2006

  • Li, J.; Scinocca, J.; Lazare, M.
  • Journal of Climate, Vol. 19, Issue 24
  • DOI: 10.1175/JCLI3973.1

Organic matter and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources
journal, January 2012

  • Shank, L. M.; Howell, S.; Clarke, A. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 1
  • DOI: 10.5194/acp-12-557-2012

Correction of the Calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP)
journal, June 2010


Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol
journal, January 2010


Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean
journal, January 2021

  • Pistone, Kristina; Zuidema, Paquita; Wood, Robert
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 12
  • DOI: 10.5194/acp-21-9643-2021

Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds
journal, January 2020

  • Adebiyi, Adeyemi A.; Zuidema, Paquita; Chang, Ian
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 18
  • DOI: 10.5194/acp-20-11025-2020

Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements
journal, January 2014


Lifting potential of solar-heated aerosol layers: LIFTING POTENTIAL
journal, December 2010

  • Boers, R.; de Laat, A. T.; Stein Zweers, D. C.
  • Geophysical Research Letters, Vol. 37, Issue 24
  • DOI: 10.1029/2010GL045171

The Influence of Pollution on the Shortwave Albedo of Clouds
journal, July 1977


The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region
journal, January 2020

  • Kacarab, Mary; Thornhill, K. Lee; Dobracki, Amie
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 5
  • DOI: 10.5194/acp-20-3029-2020

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus
journal, April 2004

  • Johnson, B. T.; Shine, K. P.; Forster, P. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 599
  • DOI: 10.1256/qj.03.61

Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors
journal, January 2019

  • Kacenelenbogen, Meloë S.; Vaughan, Mark A.; Redemann, Jens
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-4933-2019

Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009: DE GRAAF ET AL.
journal, November 2014

  • de Graaf, M.; Bellouin, N.; Tilstra, L. G.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061103

Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime
journal, January 2016

  • Hodzic, Alma; Kasibhatla, Prasad S.; Jo, Duseong S.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 12
  • DOI: 10.5194/acp-16-7917-2016

Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere
journal, January 2006

  • Schwarz, J. P.; Gao, R. S.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 111, Issue D16
  • DOI: 10.1029/2006JD007076

Stratocumulus Clouds
journal, August 2012


Humidification factors of aerosols from biomass burning in Brazil
journal, December 1998

  • Kotchenruther, Robert A.; Hobbs, Peter V.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D24
  • DOI: 10.1029/98JD00340

Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes
journal, January 2006

  • Marshak, Alexander; Platnick, Steven; Várnai, Tamás
  • Journal of Geophysical Research, Vol. 111, Issue D9
  • DOI: 10.1029/2005JD006686

Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime
journal, January 2015

  • Hodzic, A.; Madronich, S.; Kasibhatla, P. S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9253-2015

Angstrom exponent and bimodal aerosol size distributions
journal, January 2006

  • Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.
  • Journal of Geophysical Research, Vol. 111, Issue D7
  • DOI: 10.1029/2005JD006328

Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ
journal, January 2020

  • Saide, Pablo E.; Gao, Meng; Lu, Zifeng
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 11
  • DOI: 10.5194/acp-20-6455-2020

PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description
journal, October 2008

  • Wilson, Damian R.; Bushell, Andrew C.; Kerr-Munslow, Amanda M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 134, Issue 637
  • DOI: 10.1002/qj.333

Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic
journal, January 2021

  • Gupta, Siddhant; McFarquhar, Greg M.; O'Brien, Joseph R.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 6
  • DOI: 10.5194/acp-21-4615-2021

The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth
journal, April 2004

  • Haywood, Jim M.; Osborne, Simon R.; Abel, Steven J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 598
  • DOI: 10.1256/qj.03.100

The k-distribution method and correlated-k approximation for a shortwave radiative transfer model
journal, May 1999

  • Kato, Seiji; Ackerman, Thomas P.; Mather, James H.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 62, Issue 1
  • DOI: 10.1016/S0022-4073(98)00075-2

The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget
journal, March 1995

  • Haywood, J. M.; Shine, K. P.
  • Geophysical Research Letters, Vol. 22, Issue 5
  • DOI: 10.1029/95GL00075

Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean
journal, January 2013

  • Twohy, C. H.; Anderson, J. R.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2541-2013

Unexpected Biomass Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing State
journal, October 2020

  • Denjean, Cyrielle; Brito, Joel; Libois, Quentin
  • Geophysical Research Letters, Vol. 47, Issue 19
  • DOI: 10.1029/2020GL089055

Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP: ABOVE-CLOUD DARE FROM MODIS AND CALIOP
journal, May 2013

  • Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50449

Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols
journal, June 1999

  • Bond, Tami C.; Anderson, Theodore L.; Campbell, Dave
  • Aerosol Science and Technology, Vol. 30, Issue 6
  • DOI: 10.1080/027868299304435

Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil
journal, November 1999

  • Reid, Jeffrey S.; Eck, Thomas F.; Christopher, Sundar A.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D22
  • DOI: 10.1029/1999JD900833

The absorption Ångström exponent of black carbon: from numerical aspects
journal, January 2018

  • Liu, Chao; Chung, Chul Eddy; Yin, Yan
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 9
  • DOI: 10.5194/acp-18-6259-2018

Aerosol absorption in global models from AeroCom phase III
journal, January 2021

  • Sand, Maria; Samset, Bjørn H.; Myhre, Gunnar
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 20
  • DOI: 10.5194/acp-21-15929-2021

Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite observations with machine learning
journal, January 2018

  • Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 22
  • DOI: 10.5194/acp-18-16537-2018

Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES
journal, January 2018

  • Burton, S. P.; Hostetler, C. A.; Cook, A. L.
  • Applied Optics, Vol. 57, Issue 21
  • DOI: 10.1364/AO.57.006061

Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index: MODELING DUST TRANSPORT AND OPTICS
journal, January 2014

  • Colarco, Peter R.; Nowottnick, Edward P.; Randles, Cynthia A.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 2
  • DOI: 10.1002/2013JD020046

The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments: Role of the AEJ-S over Southeast Atlantic
journal, April 2016

  • Adebiyi, Adeyemi A.; Zuidema, Paquita
  • Quarterly Journal of the Royal Meteorological Society, Vol. 142, Issue 697
  • DOI: 10.1002/qj.2765

Large simulated radiative effects of smoke in the south-east Atlantic
journal, January 2018

  • Gordon, Hamish; Field, Paul R.; Abel, Steven J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-15261-2018

High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols 1: Theory and instrumentation
journal, January 1983

  • Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.
  • Applied Optics, Vol. 22, Issue 23
  • DOI: 10.1364/AO.22.003716

MOD06_L2 MODIS/Terra Clouds 5-Min L2 Swath 1km and 5km
dataset, January 2015


The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals
journal, January 2013

  • Painemal, D.; Minnis, P.; Sun-Mack, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 19
  • DOI: 10.5194/acp-13-9997-2013

Aerosol, cloud and related data acquired aboard P3 during ORACLES 2018, version 3
dataset, January 2021


An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
journal, January 2021

  • Redemann, Jens; Wood, Robert; Zuidema, Paquita
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 3
  • DOI: 10.5194/acp-21-1507-2021

The effect of physical and chemical aerosol properties on warm cloud droplet activation
journal, January 2006

  • McFiggans, G.; Artaxo, P.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 9
  • DOI: 10.5194/acp-6-2593-2006

MYD06_L2 MYD06_L2 MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km
dataset, January 2017


Biomass burning aerosols in most climate models are too absorbing
journal, January 2021


The ASTER dataset for EUREC4A
dataset, January 2022


Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study
journal, January 2013

  • Stier, P.; Schutgens, N. A. J.; Bellouin, N.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3245-2013

An Observational Study of Diurnal Variations of Marine Stratiform Cloud
journal, July 1995


Visibility forecast in the phase of pre-condensation
journal, January 1969


Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct observations and climate models
journal, August 2018


Multiple scattering of light and some of its observable consequences
journal, June 1987

  • Bohren, Craig F.
  • American Journal of Physics, Vol. 55, Issue 6
  • DOI: 10.1119/1.15109

Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction
journal, June 2019


Absorption closure in highly aged biomass burning smoke
journal, January 2020

  • Taylor, Jonathan W.; Wu, Huihui; Szpek, Kate
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 19
  • DOI: 10.5194/acp-20-11201-2020

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements
journal, February 2002


On the shortwave radiative properties of stratiform water clouds
journal, April 1982

  • Slingo, A.; Schrecker, H. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 108, Issue 456
  • DOI: 10.1002/qj.49710845607

Estimate of satellite-derived cloud optical thickness and effective radius errors and their effect on computed domain-averaged irradiances
journal, January 2006

  • Kato, Seiji; Hinkelman, Laura M.; Cheng, Anning
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2005JD006668

The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua
journal, January 2017

  • Platnick, Steven; Meyer, Kerry G.; King, Michael D.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, Issue 1
  • DOI: 10.1109/TGRS.2016.2610522

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties
journal, January 2008

  • Hair, Johnathan W.; Hostetler, Chris A.; Cook, Anthony L.
  • Applied Optics, Vol. 47, Issue 36
  • DOI: 10.1364/AO.47.006734

Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)
journal, January 2017

  • van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.
  • Geoscientific Model Development, Vol. 10, Issue 9
  • DOI: 10.5194/gmd-10-3329-2017

Thermodynamic and optical properties of sea salt aerosols
journal, October 1997

  • Tang, I. N.; Tridico, A. C.; Fung, K. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D19
  • DOI: 10.1029/97JD01806

MOD08_D3 MODIS/Terra Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG
null, January 2015


Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12 km
journal, August 2018

  • Aldhaif, Abdulmonam M.; Stahl, Connor; Braun, Rachel A.
  • Journal of Geophysical Research: Atmospheres
  • DOI: 10.1029/2018JD028504

Near-real time cloud retrievals from operational and research meteorological satellites
conference, October 2008

  • Minnis, Patrick; Nguyen, Louis; Palikonda, Rabindra
  • SPIE Remote Sensing, SPIE Proceedings
  • DOI: 10.1117/12.800344

Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region
journal, January 2020

  • Nabat, Pierre; Somot, Samuel; Cassou, Christophe
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 14
  • DOI: 10.5194/acp-20-8315-2020

A global view on the effect of water uptake on aerosol particle light scattering
journal, August 2019


Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean
journal, January 2018

  • Diamond, Michael S.; Dobracki, Amie; Freitag, Steffen
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 19
  • DOI: 10.5194/acp-18-14623-2018

A review of biomass burning emissions part II: intensive physical properties of biomass burning particles
journal, January 2005

  • Reid, J. S.; Koppmann, R.; Eck, T. F.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 3
  • DOI: 10.5194/acp-5-799-2005

Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing
journal, January 2010

  • Coddington, O. M.; Pilewskie, P.; Redemann, J.
  • Journal of Geophysical Research, Vol. 115, Issue D10
  • DOI: 10.1029/2009JD012829

Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WE‐CAN) and Southern Africa (ORACLES and CLARIFY)
journal, July 2021

  • Carter, Therese S.; Heald, Colette L.; Cappa, Christopher D.
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 15
  • DOI: 10.1029/2021JD034984

Soot and smoke aerosol may not warm climate: SOOT AND SMOKE AEROSOL MAY NOT WARM CLIMATE
journal, November 2003

  • Penner, Joyce E.; Zhang, Sophia Y.; Chuang, Catherine C.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D21
  • DOI: 10.1029/2003JD003409

A New Moist Turbulence Parameterization in the Community Atmosphere Model
journal, June 2009


The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer
journal, January 2007

  • Wyant, Matthew C.; Bretherton, Christopher S.; Chlond, Andreas
  • Journal of Geophysical Research, Vol. 112, Issue D24
  • DOI: 10.1029/2007JD008536

The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation
journal, September 2017


Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth
journal, January 2010

  • Colarco, Peter; da Silva, Arlindo; Chin, Mian
  • Journal of Geophysical Research, Vol. 115, Issue D14
  • DOI: 10.1029/2009JD012820

Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis
journal, January 2019

  • Konovalov, Igor B.; Beekmann, Matthias; Golovushkin, Nikolai A.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12091-2019

Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants
journal, January 2006

  • Freitas, S. R.; Longo, K. M.; Andreae, M. O.
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026608

The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic
journal, January 2019


Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans: FAILED MODIS CLOUD RETRIEVALS
journal, May 2015

  • Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 9
  • DOI: 10.1002/2015JD023161

Mie Scattering Captures Observed Optical Properties of Ambient Biomass Burning Plumes Assuming Uniform Black, Brown, and Organic Carbon Mixtures
journal, November 2019

  • Chylek, Petr; Lee, James E.; Romonosky, Dian E.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 21
  • DOI: 10.1029/2019JD031224

Satellite-derived direct radiative effect of aerosols dependent on cloud cover
journal, February 2009

  • Chand, D.; Wood, R.; Anderson, T. L.
  • Nature Geoscience, Vol. 2, Issue 3
  • DOI: 10.1038/ngeo437

The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model
journal, April 2015

  • Matus, Alexander V.; L’Ecuyer, Tristan S.; Kay, Jennifer E.
  • Journal of Climate, Vol. 28, Issue 8
  • DOI: 10.1175/JCLI-D-14-00426.1

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations
journal, January 2021

  • Cochrane, Sabrina P.; Schmidt, K. Sebastian; Chen, Hong
  • Atmospheric Measurement Techniques, Vol. 14, Issue 1
  • DOI: 10.5194/amt-14-567-2021

Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires
journal, January 2015

  • Jolleys, M. D.; Coe, H.; McFiggans, G.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 6
  • DOI: 10.5194/acp-15-3077-2015

Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use
journal, January 2005


Global bias adjustment for MODIS aerosol optical thickness using neural network
journal, January 2013

  • Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym
  • Journal of Applied Remote Sensing, Vol. 7, Issue 1
  • DOI: 10.1117/1.JRS.7.073514

Untangling aerosol effects on clouds and precipitation in a buffered system
journal, October 2009


The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign
journal, January 2021

  • Haywood, Jim M.; Abel, Steven J.; Barrett, Paul A.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 2
  • DOI: 10.5194/acp-21-1049-2021

Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic
journal, June 2018


Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign
journal, July 2016

  • Collier, Sonya; Zhou, Shan; Onasch, Timothy B.
  • Environmental Science & Technology, Vol. 50, Issue 16, p. 8613-8622
  • DOI: 10.1021/acs.est.6b01617

Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer
journal, January 1998


Particle identification by laser-induced incandescence in a solid-state laser cavity
journal, January 2003

  • Stephens, Michelle; Turner, Nelson; Sandberg, Jon
  • Applied Optics, Vol. 42, Issue 19
  • DOI: 10.1364/AO.42.003726

Intercomparison and Interpretation of Single-Column Model Simulations of a Nocturnal Stratocumulus-Topped Marine Boundary Layer
journal, September 2005

  • Zhu, Ping; Bretherton, Christopher S.; Köhler, Martin
  • Monthly Weather Review, Vol. 133, Issue 9
  • DOI: 10.1175/MWR2997.1

Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study
journal, January 2014

  • Ma, P. -L.; Rasch, P. J.; Fast, J. D.
  • Geoscientific Model Development, Vol. 7, Issue 3
  • DOI: 10.5194/gmd-7-755-2014

MYD08_D3 MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG
dataset, January 2017


Aerosol, cloud and related data acquired aboard P3 during ORACLES 2016, version 3
dataset, January 2021


Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison: An Advanced Aerosol Activation Scheme
journal, July 2015

  • Zhang, Yang; Zhang, Xin; Wang, Kai
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 14
  • DOI: 10.1002/2014JD023051

The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward
journal, July 2019

  • Formenti, Paola; D’Anna, Barbara; Flamant, Cyrille
  • Bulletin of the American Meteorological Society, Vol. 100, Issue 7
  • DOI: 10.1175/BAMS-D-17-0278.1

Aerosol, cloud and related data acquired aboard ER2 during ORACLES 2016, version 3
dataset, January 2021


Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation: ALBEDO VERSUS CLOUD FRACTION RELATIONSHIPS
journal, July 2017

  • Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 13
  • DOI: 10.1002/2017JD026467

Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016
journal, January 2020

  • Shinozuka, Yohei; Saide, Pablo E.; Ferrada, Gonzalo A.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 19
  • DOI: 10.5194/acp-20-11491-2020

Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
journal, January 2011

  • Cubison, M. J.; Ortega, A. M.; Hayes, P. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12049-2011

Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016
journal, January 2019

  • Pistone, Kristina; Redemann, Jens; Doherty, Sarah
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
  • DOI: 10.5194/acp-19-9181-2019

CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data
journal, November 2011

  • Minnis, Patrick; Sun-Mack, Szedung; Chen, Yan
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, Issue 11
  • DOI: 10.1109/TGRS.2011.2144602

Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models: Intermodel variances in CMIP5 models
journal, November 2014


CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms
journal, November 2011

  • Minnis, Patrick; Sun-Mack, Szedung; Young, David F.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, Issue 11
  • DOI: 10.1109/TGRS.2011.2144601

Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations
journal, January 2008

  • Heald, C. L.; Goldstein, A. H.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 7
  • DOI: 10.5194/acp-8-2007-2008

Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties
journal, January 2020

  • Cappa, Christopher D.; Lim, Christopher Y.; Hagan, David H.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 14
  • DOI: 10.5194/acp-20-8511-2020

MYD06_L2 MYD06_L2 MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km
dataset, January 2014


MYD08_D3 MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG
dataset, January 2014