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Abstract The goal of this paper is to provide an overview the microphysical
measurements made during the C-FOG (Toward Improving Coastal Fog Prediction) field
project. In addition, we evaluate microphysical parameterizations using the C-FOG
dataset. C-FOG is designed to advance understanding of liquid fog formation,
development, and dissipation in coastal environments to improve fog predictability and
monitoring. The project took place along eastern Canada’s (Nova Scotia, NS and
Newfoundland, NL) coastlines and open water environments from August-October 2018,
where environmental conditions play an important role for late-season fog formation.
Visibility (Vis), wind speed (Un), and turbulence along coastlines are the most critical
weather-related parameters affecting marine transportation and aviation. In the analysis,
microphysical observations are summarized first and then they are, together with 3D-
wind components, used for fog intensity (visibility) evaluation. Results suggest that
detailed microphysical observations collected at the supersites and aboard the Research
Vessel (R/V) Hugh R. Sharp are useful for developing microphysical parameterizations.
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The fog life cycle and turbulence kinetic energy dissipation rate were strongly related to
each other. The magnitude of 3D-wind fluctuations was higher during the formation and
dissipation stages. An array of cutting-edge instruments used for data collection provided
new insight into the variability and intensity of fog (visibility) and microphysics. It is
concluded that further modifications in microphysical observations and parameterizations
are needed to improve fog predictability of NWP (Numerical Weather Prediction)
models.

Keywords: Coastal Fog, Eddy Dissipation Rate, Fog Microphysics NWP parameterization, Visibility.

1 Introduction

Coastal fog plays an important role for weather conditions affecting marine environments
that include aviation (Gultepe et al 2020), marine shipping (Fernando et al 2020),
sporting and social activities (Pezzoli et al 2010), as well as vegetation (Schemenauer et
al 2016; Torregrosa et al 2014). The direct consequence of fog is the impairment of
visibility, and hence the ‘intensity’ of fog is defined in terms of visibility (Vis).
Advection supplies moisture for Atlantic-Canadian coastal fog, while the overhead
passage of cyclonic or anticyclonic systems fosters its actual formation (Dorman et al.
2020). Other factors such as large-scale subsidence leading to thermal inversions, frontal
systems, radiative cooling, topography, tropical cyclones, and turbulence fluxes can also
have an impact on the life cycle of coastal fog (Gultepe et al 2007; Toth et al 2011).
Intensity of turbulence and turbulence dissipation rate occurred during life cycle of
radiation fog were studied by Zhou and Ferrier (2008) and Price (2019) and these
suggested that turbulence intensity should be less than a threshold value.

Microphysical measurements were performed using a fog measuring device
(FMD, FM100) for the first time by Gultepe et al (2007a) during the FRAM project,
followed by others (Niu et al 2010; Spiegel et al 2012; Isaac et al 2020). The FM100 was
developed using the principles of a forward scattering probe (FSSP), measurements of
which were used in developing Vis parameterization by Gultepe et al (2007b). The
FM100 provides droplet spectra, which are used to obtain liquid water content (LWC™),




71 *Definitions are provided in Nomenclature in the end of paper.

72 mean volume diameter (MVD), effective size (rerr), droplet number concentration (Nq),
73 and the droplet settling rate (LWCeVs), where Vr is the droplet fall velocity. NWP
74  modeling and evaluation studies of fog have helped to improve forecasting and gain
75  physical insights (e.g. Yang et al. 2009; Gultepe et al. 2007a,b).Warm-fog droplet spectra
76  and its distribution are related to condensation nuclei (CN) and relative humidity with
77  respect to water (RHw). There have been several studies on this issue, but cloud
78  condensation nuclei (CCN) versus supersaturation with respect to water (Sw)
79  relationships are mostly developed for cloud studies and generally use fixed values of
80 100 cm for marine environments (Thompson et al 2008). In reality, such fixed values
81  may not be valid, and therefore we have seen parametric modifications. Prediction of Ng
82 is obtained using prognostic equations that represent processes related to turbulence,
83 droplet growth, radiative heating/cooling, as well as turbulence flux divergence
84  (Storelvmo et al 2014). Based on assumed modified-gamma distributions, either using
85  Kohler theory (Chen 1994) and/or Twomey parameterization (Twomey 1959), Ng
86  predictions can be performed using single or double moment microphysical schemes
87  (Milbrandt and Yau, 2005a,b; Morrison and Gettelman 2008; Schwenkel and Maronga,
88  2019). However, these schemes have been developed for clouds and not for fog.

89 As in Twomey et al (1959), Nq is parameterized based on Kohler theory assuming
90 equilibrium and cooling of an air volume by lifting via the vertical air velocity (wa). The
91 latter in fog, excluding formation and dissipation conditions, is usually not as strong as in
92  clouds, complicating the application of these parameterizations to fog. Therefore, its
93  usage cannot be verified for all fog types. Another equation for Ng prediction, mainly
94  applicable to climate studies, expresses it as a function of wa, Na (aerosol total number
95  concentration) as well as aerosol composition (Abdul-Razzak and Ghan 2000; Ghan et al
96 1998; 2001). In addition to parameters given in Twomey (1974; 1991), this equation uses
97  aerosol composition as an independent parameter. Clearly, environmental conditions such
98 as air temperature (Ta), dew point temperature (Tq) and RHw, and wa as well as aerosol
99 and microphysics parameters (CCN and droplet growth rate) play an important role in Ng
100  prediction, thereby affecting Vis estimation (Schwenkel and Maronga, 2019). In this
101 regard, Gultepe et al (2007b) have suggested that accurate predictions of Ng and LWC are
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102  critical for Vis prediction, and Vis cannot be accurate if only LWC is used (Kunkel 1984;
103  Stoelinga and Warner 1999). Vis is usually diagnosed in the post processing stage of
104  forecast model outputs using Stoelinga-Warner's method (Stoelinga and Warner 1999),
105  which includes large uncertainties in fog prediction (Gultepe et al 2006, 2007c).

106 Lately, field observations from various projects have been used to improve Vis
107  parameterizations (Gultepe et al 2009; 2014; Haeffelin 2010; Price et al 2018; Wang et al
108  2020) but these are often site dependent because of the nature of Na spectra and
109  compositional properties (Bergot et al 2005). In this respect, marine fog studies used
110  microphysical parameterizations extensively (Gultepe et al 2009; Gultepe et al 1996).
111  The C-FOG (Toward Improving Coastal Fog Prediction) field project has had better tools
112  to evaluate coastal fog microphysical and dynamical properties, such as droplet and
113 aerosol spectra and turbulence over both the coastal areas and at the ship (Fernando et al
114  2020).

115 Vis parameterizations commonly use only RHyw and/or (Ta-Tq) (called dew point
116  depression) to predict fog coverage but they cannot be used for fog intensity (e.g., Vis)
117  because RHw (as well as T,-Tq) indicates only the existence of fog (Toth et al., 2011;
118  Gultepe et al 2009; Dimitrova et al 2020). Therefore, fog microphysical parameters such
119 as LWC and Ng are needed for accurate Vis forecasting, but they are not accurately
120  predicted by models (Pu et al 2016, Dimitrova et al 2020, Gultepe and Milbrandt 2010).
121 In single-moment and double moment microphysical schemes used in NWP models,
122 LWC is usually a prognostic variable and Ng is assumed as a fixed value or or obtained
123 either deterministically or prognostically, by making several assumptions on physical
124  terms affecting Nq. If Ng is not fixed, a modified gamma distribution is usually assumed
125  in presenting fog droplet size distribution that is used to obtain Ng.

126 In this work, C-FOG related studies are briefly summarized; WRF fog simulations
127  using various microphysical and surface boundary layer schemes are performed for Vis
128  predictions at the ship and supersite locations. Another microphysics paper is focused on
129  a case of stratus lowering fog over the coastline based on the R/V Sharp observations
130 (Wagh et al 2020). Understanding fog microphysics and its impact on Vis, based on a
131 LES model, is provided by Wainwright and Richter (2020). A study using a Tethered
132 Balloon System (TBS) with aerosol and droplet spectral measurements as well as fog
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133 thermodynamics is examined by Singh et al (2020). Detailed coastal fog observations at
134  The Downs, Ferryland (Wang et al. 2020) are studied by providing TBS dynamic and
135  thermodynamic profiles and collecting fog-droplet spectra from a CDP modified to
136  increase and measure the instantaneous flow rate. Perelet et al (2020) present a
137  methodology for using a two-wavelength scintillometer system for measuring fog
138  characteristics on scales of 1 km. Wang et al. (2020) also focused on the impact of the
139  fog layer on optical propagation using contrasting measurements at Ferryland and on the
140  US West Coast. In addition, large-scale synoptic events affecting local fog formation are
141 summarized by Dorman et al (2020). An overview of the C-GOG project is given in
142  Fernando et al. (2020).

143 The goal of this paper is to provide an overview of coastal fog microphysical
144  measurements and to evaluate microphysical parameterizations based on the C-FOG field
145  project. In addition, the importance of fog Vis predictions is discussed and challenges are
146 noted when turbulence kinetic energy (TKE) dissipation rates are included. The C-FOG
147  field project has provided microphysical observations from several coastal sites and the
148  R/V Hugh R. Sharp (hereafter R/V Sharp). The paper organization is planned as follows:
149  Section 2 provides information on observations and project design. Section 3 explains the
150 analysis used in Vis and eddy dissipation rate (EDR) parameterizations. Sections 4 and 5
151 focus on discussions and conclusions, respectively.

152

153 2 Field Project and Observations

154 2.1 Project Location

155  The C-FOG field campaign took place from 01 September to 07 October 2018. The field
156  campaign took place along the coastlines of Atlantic Canada and the northeastern US. C-
157  FOG is designed to advance our understanding of liquid fog formation, development, and
158  dissipation over coastal environments, and thus improve fog predictability and
159  monitoring. It was designed to capture fog variability in time and space using an array of
160 platforms that included ground, airborne, and shipborne in-situ instruments, remote
161  sensors as well as numerical models. Instruments were located at two supersites (Battery
162  and The Downs sites in Ferryland, NL; Figure 1a,b), four satellite sites, as well as on the
163  R/V Sharp (Fernando et al 2020). Figure 1c shows the entire project area overlaid on a
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satellite SST image for 28 September 2018. A strong SST gradient stands out near the

northern region of the project area. In the current study, four cases are presented covering
parts of the Intense Operational Periods IOP10 (27-30 Sep 2018) and 10P 12 (03-04 Oct
2018) that mainly represent warm advection fog events (Table 1).

Table 1 Case studies of coastal fog events studied in the present work. T, is air temperature and SST is sea

surface temperature.

Day Location Weather
Sep 28 2018 Battery Ta, SST, warm air advection
supersite
Sep 29 2018 Battery Warm air advection
supersite
Sep 28 2018 R/V Sharp Warm air advection
Oct 04 2018 R/V Sharp Advection and tropical depression

T e

e

- ® .
- - -
e -
- - 5
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193

194

GFS MSLP (mb) &
Ik Ots Sep 28 201

195

196

197

198

199

200

201 Fig. 1 Ferryland supersite region (a), Battery supersite (b), NOAA NESDIS Geo-Polar blended 5 km SST
202 and entire project area with supersites (red circles) and ship locations (indicated by a red star for foggy days
203 (c), synoptic weather systems affecting project area (d) with LP for “low pressure”, F “front”, SST “sea
204 surface temperature”, AP “advection process”, HP “high pressure”, and CS “cyclonic system”, and US
205 NCEP (National Center for Environmental Prediction) GFS (Global Forecasting System) based surface
206 pressures and wind speed in Knots (e).

207

208 2.2 Synoptic Weather Systems

209 The C-FOG campaign took place at the end of the summer fog season (Gultepe et al 2009).
210  During this time, various weather systems affect coastal-fog conditions. Figure 1d shows the SST
211 for the project area and Fig. le is the GFS sea-level pressure and 10 m wind vectors on 28
212 September 2018. The latter shows major weather systems affecting the project area: a low
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pressure over Nova Scotia in the NW and associated with a warm frontal system (F) in the
east, a high pressure (HP) to the NE, and tropical cyclones to the south east (CS), and
warm-air advection processes (AP) resulting from T and qv gradients along a north-south
direction. The tropical cyclones usually became tropical depressions when moved to
colder northern latitudes and usually they were about 500 km south and southeast of the
main project site. During May 25-Oct 31 2018, 16 tropical depressions occurred over 4-
months time period and about 4 of them affected physical conditions somehow at the
project site. Their advection of SW quadrant of warm and moist air to N and NW
quadrants likely played an important role for fog formation 100s of km away from storm
center. . The photos in Figure 2 depict fog cases observed at The Downs supersite, and

from the R/V Sharp, respectively.

SEP29

Fig. 2 The pictures of advection process occurring on Sep 28/29 2018 case at the Downs supersite (a) and
on Oct 04 2018 (taken from the RV) (b).

2.3 Microphysical Observations
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In this subsection, microphysical and meteorological instruments are summarized. All
instruments used are summarized in Fernando et al. (2020). These measurements are
related to dynamics, microphysics, radiation, aerosol, and thermodynamic properties of
the environment. For particle size thresholds, fog droplets usually cover 1-30 pm, cloud
droplets 1-100 pum, drizzle drops 100 (or 30)-500 um , and drizzle and rain drops >100
pum in diameter.

Microphysical instruments used during C-FOG are summarized in Table 2 for the
R/V Sharp and in Table 3 for all ground-based sites. Special sensors (Table 2) were
developed for fog microphysics investigations, including a ‘gondola’ shaped assembly
(located on the R/V Sharp) that contained microphysical sensors such as a cloud droplet
probe (CDP) and a backscatter cloud probe (BCP) in a gondola unit for measuring droplet
sizes ranging from 1-50 and 5-75 um, respectively A laser precipitation monitor (LPM)
for 100 um to mm sizes and an optical particle counter (OPC) for sizes of 0.3-20 um

using 16 spectral channels allowed fog and drizzle discrimination (Table 2).

Table 2 Microphysical instruments mounted on the R/V Sharp during the C-FOG campaign. Parameters in
Column 2: Ng Droplet number concentration, Na Aerosol number concentration, SV Sampling Volume, Sw
Supersaturation with respect to water, and Vis Visibility. Parameters in Column 4: UOIT Ontario
Technical University, UU University of Utah, Wood Corporation, DU Dalhousie University, and NDU

Notre Dame University.

Instrument Name Measurements | Height (asl, m) | Owner
CDP, DMT, Gondola Ng, Droplet spectra (1-50) um 31.8 UoIT
BCP, DMT, Gondola Ng, Droplet spectra (5-75) um 31.8 UoIT
OPC N2, Alphasense Na, Aerosol Spectra 0.38-17um, 16 channels 15 Uu
DMT, FM120, near Gondola Ng, Droplet spectra (1-50) um 31.6 WOOD
TSI Moudi Impactor 100NR Na spectra, 0.18-18 um, 8 stages, 30 L m™! 37.9 WOOD
Virtual Impactor Inlet At 20 m, SV=16.7 L min*! 30.1 DU
SMPS 3082, TSI Na Spectra, 10-500 nm; SV=1.0 L min*! 30.1 DU
APS 3321, TSI Na Spectra, 0.5-20 um SV=1.0 L min™! 30.1 DU
ACSM, Aerodyne Na Composition, <1 um SV=0.1 L min~! 30.1 DU
CCN-100, DMT N=>0.01 um;Sw=0.2,0.4,0.8,1% SV=0.5 L m*! 30.1 DU
PWD22- Vaisala Vis <20 km 10 NDU

Also, three Scintillometers (Table 3) with measurements in the NIR (Near Infra-
Red) and MW (MicroWave) radiation channels were utilized to allow discrimination of

9|Page



251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267

fog from rain (Perelet et al. 2020). Figure 3 shows the microphysical, aerosols, as well as
meteorological instruments. Remote-sensing platforms (e.g. microwave radiometer
MWR, ceilometer, Lidar), meteorological towers, tethered balloons, and the GOES-R
(Geostationary Operational Environmental Satellite-R series) Products (fog coverage and
effective droplet size) provided information on horizontal and vertical variability.
Observational products are used for fog-visibility parameterization development, with a
focus on understanding the influence of dynamical processes such as turbulent mixing
and dissipation.

Table 3 Microphysical instruments located at the ground sites during C-FOG field campaign. The
parameters in Column 2: Vis Visibility, PR Precipitation rate, IR Infrared, SW shortwave, RF radiative
fluxes, LWC liquid water content, Z. radar reflectivity, V4 Doppler velocity, Na aerosol number
concentration, Zg, cloud base height, B backscattering coefficient, A wavelength, B, extinction coefficient,
CN condensation nuclei, RH relative humidity, T temperature, Un horizontal wind, and P pressure.
Parameters in Column 7 and 8: BA Battery Supersite, BH Blackhead site, DO Downs Supersite, UOIT
Ontario Technical University, UU University of Utah, UND University of Notre Dame, and NPS (Naval

Postgraduate School).

Instrument Name Measurements H VA Lat Lon Site Owner
(aglim) | (aglm) | [deg] [deg]
PWD50-Vaisala Vis and PR 2 6 47.03443 | -52.8782 | BA UoIT
FM100 & FM120 Fog droplet spectra 2 6 47.03443 | -52.8782 | BA UoIT
CRN1 IR&SW up and down RF | 2 6 47.03443 | -52.8782 | BA uoIT
Kipp&Zonen
PMWR MP3017 Profiling, T, RH, LWC 2 6 47.03443 | -52.8782 | BA uoIT
MRR, Metek Ze & V4 2 6 47.03443 | -52.8782 | BA UoIT
LPM, Metek Precip. Spectra >100 pm 2 6 47.03443 | -52.8782 | BA UoIT
OPC, Alphasense Na spectra, >0.3 um 2 6 47.03443 | -52.8782 | BA uu
CL31, Vaisala Zepand B 2 6 47.03443 | -52.8782 | BA uu
Vaisala PWD 50 Vis (<30 km) 29 10 4752633 | -52.6583 | BH uoIT
Vaisala PWD 22 Vis (<30 km) 3 31 47.02181 | -52.8731 | DO UND
LPM Metek Precip. spectra >100 um 2.74 10 4752633 | -52.6583 | BH uoIT
OPC, Alphasense Aerosol spect. (0.3-20 ym) | 1.37 10 47.52633 | -52.6583 | BH uu
DMT CDP fog droplets (1-50 pm) 3 31 47.02181 | -52.8731 | DO NPS
TSI -3563 3-\ scat& Bn 3 31 47.02181 | -52.8731 | DO NPS
Nephelometer (0.45,0.55,070 um)
TSI OPC-310 CN >0.01 um 3 31 47.02181 | -52.8731 | DO NPS
PSAP, Part Soot 1-A absorp. at 0.565 pm 3 31 47.02181 | -52.8731 | DO NPS
Abs Photometer
Scintillometer wavelength 0.88 pm 29 31 47.02181 | -52.8731 | DO-BH | NPS
(BLS -900, Scintec | extinction Tx-Rx
AG)
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268
269

270

Scintillometer wavelength 0.88 um 2 6 47.03443 | -52.8782 | BA-DO | UU
(BLS 900, Scintec | extinction, Tx-Rx

AG)

Scint. MWSC 160, | microwave (wavelength 2 6 47.03443 | -52.8782 | BA-DO | UU
Radio.Phy. GmbH | 1.860 pm extinction TX-RX

Met parameters RH, T, Uh, P 3 31 47.02181 | -52.8731 | DO NPS

Downs Sepersioe

Fig. 3 Project locations with microphysical probes: The battery site (see Table 3) (a), NPS microphysical

sensors mounted on a trailer at the Downs site (b) with CDP2 located in a housing at a mast, FM120, PWD,
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271 LPM at Battery (c), PWD, LPM, and OPC at Blackhead (d), a close look of FM120 at Battery (e), PMWR
272 at Battery (f), Wood MOUDI impactor (g), Gondola BCP (h) and CDP2 (i) mounted on Sharp RV, UU
273 OPC (j), Wood Corp FM120 (k), Dalhousie University(DU) CCNC (), DU SMPS (m), and DU ACSM (n),
274  and Gondola housed CDP and BCP (o) physical characteristics (adapted from Beswick et al. 2014).

275 2.4 Macro-physical Characteristics

276  During the installation and campaign period that spanned 7-weeks (Aug 14-Oct 7 2018)
277  various fog conditions existed, as represented by Vis measurements from the Battery site
278  (Fig. 4). This figure shows Vis for 46 days starting from Aug 21 to Oct 7 during which
279  drizzle and light precipitation usually occurred prior to fog. Average fog occurrence

280  during entire campaign was 20-25%.

Visibility [km]

+
MR EARE N X L
S P e b

+

20 30 40 50
281 Time [Days]

282 Fig. 4 Time series of Vis obtained from PWD52 present weather sensor for the entire time period from Aug
283 24 to Oct07 2018. The red dots are for drizzle and black lines are for fog Vis. The line with double arrow
284 indicates Vis level at 1 km.

285

286 A CL31 ceilometer measured the backscatter ratio () time and height cross
287  sections at the Battery supersite and on the R/V Sharp for the 4 cases studied, as shown in
288  Fig. 5. Note that the ceilometer-based fog-top heights are not accurate because of its
289  strong extinction when a large number of smaller fog droplets exist. Figure 5a and 5b are
290 for 28 and 29 September cases, respectively, as observed at the Battery supersite and Fig.
291 5cand 5d are for 28 September and 04 October cases, respectively, aboard R/V Sharp.
292 The 28 September case at the Battery site, occurred at about 1000 UTC after the
293  stratus layer base lowered from 500 m to the surface over 3 hrs. Some drizzle was

294  observed (indicated by the spiking cloud base in red colour), which disappeared about
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295 1700 UTC. The 29 September case was a continuation of the 28 September case, during
296  which fog briefly lifted at 1600 UTC and then re-formed at 2200 UTC and lasted until
297  almost 1800 UTC, which is not likely related solely to a lowering stratus, but was also
298  likely due to warm-air advection that is verified by using synoptic weather conditions

299 The R/V Sharp data for 28 September (Fig. 5c¢) show that the cloud base
300 decreased from 500 m at 0000 UTC to almost the surface at 1000 UTC, and then lifted
301 very quickly at 1330 UTC. After this, the stratus base lowered again to form fog at 1400
302 UTC. At 1600 UTC, the fog base lifted and eventually disappeared. The R/V Sharp
303  observations for 04 October show that fog formed again due to stratus lowering around
304 2000 UTC and lasted until 2300 UTC. Note that the lowering cloud base occurred late on
305 this day and is likely due to IR cooling and/or large-scale subsidence. This might also be
306  related to drizzle that moistened lower layers, eventually led to fog formation (Singh et al
307  2020; Wagh et al 2020).
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322 Fig. 5 Time-height cross sections of backscatter coefficient (B) from CL31 ceilometers measurements at the
323 Battery supersite and onboard the Sharp RV for the 4 cases studied; Sep 28 (a) and Sep 29 (b) cases
324  observed at the Battery supersite and Sep 28 (c) and Oct 04 2018 (d) cases at the Sharp RV. The white

325 lines with arrow indicate foggy regions.
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326 The general characteristics of these four fog cases at the Battery supersite and R/V
327 Sharp are presented as a backdrop for the development of microphysical
328  parameterizations. Note that ceilometer measurements cannot unequivocally identify fog
329  regions, and ceilometer inferences should be validated using PWD Vis observations.

330

331 3. ANALYSIS AND MICROPHYSICAL PARAMETERIZATION

332 An analysis of the main microphysical and turbulence parameters to be used in the
333  evaluation of fog conditions and for developing parameterizations is provided in this
334  section.

335

336 3.1 Time Series of microphysical parameters and Turbulence Dissipation Rate ()
337  Time series were obtained based on various microphysical parameters, including Vis, N,
338 LWC, and MVD. Vis was obtained from PWD52 measurements representing various
339  NWS (National Weather Service) codes, droplet spectral measurements of FMD (FM120,
340 in Battery) and CDP and BCP housed in the gondola aboard the R/V Sharp. NOAA NWS
341 codes can be found in LPM (2011), based on PR and Vis time series for each
342  hydrometeor type obtained. The FMD was operated at a 1 Hz sampling rate, compared to
343  1-min Vis measurements from PWD52. All meteorological parameters such as T, RHuw,
344  and wind speed (Un) and directions were employed as appropriate.

345 Ng is obtained using the corrected ship heading and apparent wind, which
346 includes both ship speed and wind measurements (Gultepe and Starr 1995). It is corrected
347 by computing the cosine of the angle 6 between the heading and the apparent wind

348  measured by an anemometer as

349 Ny = N./(SA * TAS * At), 1)
350  where the true air speed (TAS) is given by

351 TAS = Up,cos0. 2
352 In Eqg. 1, SA is the sampling area, At the sampling interval and N the counts of

353  droplets in each bin of the CDP and BCP. Ng is obtained from the FM120 located at the
354  Battery site using a fixed TAS (true air speed) of 5 m s? for sampling of the
355  environmental air. Una is the apparent wind speed that includes both ship speed and wind
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356  speed. During normal observational conditions, the R/V Sharp average speed was about 8
357 mst

358 The TKE dissipation rate (edis) is usually calculated based on the spectral slope
359  assumption, representing the inertial subrange (Panofsky and Dutton, 1984). In this work,
360 3D sonic anemometer wind measurements (collected at 20 Hz) at 2 m were used to
361  estimate €. It should be noted that € calculation is strongly related to averaging scales and
362 here & approximately represents scales of 0.3-0.5 km that matches scales of high
363  resolution NWP models. Thus, using a structure function, ¢ is estimated (Paluch and
364 Baumgardner, 1989; Gultepe and Starr, 1995). Clearly, 1-min averages do not capture
365 inertial subrange scales but a structure function representing 3D scales can be used to

366  calculate &qis along the mean horizontal wind speed as

3/2
1 D
367 €ais = gmrore (397 ®)

368 where C is a constant ~0.18, Ds the structure function and Ar the horizontal distance
369 along main horizontal wind, and these are given, respectively, as

370 Dy = 0.38(4u” + Av? + Aw?) and Ar = At(UZ, + UZ,)*2. (4)
371 In Eq. 4, Au, Av, and Aw represent the change in wind components along X, y, and z axis
372 at unit time interval (At), receptively; Uax and Ugy are wind speed components along x
373 and y axis, respectively, over At. Thus, Eq. 3 can then be used in dissipation rate
374  calculations and evaluation of the fog life cycle. For the NWP models, ¢ is not always an
375  output parameter; therefore, TKE can be calculated from the following equation (or a
376  transformation equation given in Discussion section) that is used to obtain a threshold for
377  fog formation:

378 TKE =2 (u? +v'> + w'?), )
379 where u’,v’,and w' are fluctuations of wind x, y, and z components that are calculated
380 over 10 min intervals.

381

382 3.2 Visibility Parameterization

383  The visibility parameterization is calculated diagnostically, which is a function of various
384  moments of DSD (drop size distribution). In this study, Nqg and LWC are used in the Vis
385  parameterization; but Ng is replaced with MVD to emphasize that two microphysical
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386  parameters are sufficient to calculate Vis (Gultepe et al 2018). It is emphasized that
387  either RHw or Ta-Tq can be used to indicate the existence of fog, but not intensity (e.g.
388  Vis).

389

390 3.2.1 Vis-RHw Parameterization

391  The visibility can be parameterized as a function of RHw, which is measured by a Vaisala
392 HMP 155. RHy is measured together with Ta from which Tq is estimated. A PWD is used
393 to obtain Vis measurements. The functional relationship between Vis and RHw is
394  determined by testing various regression fits and selecting the function that ‘best’ fits the
395  observations. Here, humidity data used for the best fit are first bin averaged in 5%
396 intervals. A derived relationship between Vis and RHy together with a plot is provided in
397 section 4.1.1 and given in Table 3. Note that we do not use Ta-Tq In the Vis
398  parameterization because RHy is based on both T, and T4 (Gultepe and Milbrandt 2011).
399  Therefore, fog coverage is obtained when RHyw > 95%, which is further explained in the
400  results section.

401

402  3.2.2 Vis versus Microphysics Parameters

403  Fog Vis can be obtained in two ways. The first is based on an extinction coefficient
404  measured directly by a probe (e.g., PWD) which is then used to retrieve microphysical
405  parameters assuming certain particle size distributions. The second is based on droplet
406  spectral measurements from which LWC and Ng (or MVD) can be used to estimate Vis.
407  Usually, direct measurement of Vis cannot be considered in the same way as those
408 obtained from measured particle size spectra, because of measurement issues. Using
409 warm fog microphysical spectral measurements, Gultepe et al (2006) developed a
410 parameterization that is based on the theory of extinction of visible light in a volume of
411  fog droplets as

412 Bext = 11:% nQeff(r: l)n(r)rzAr ) (6)
413 where Pext is the extinction coefficient (cm™), Qe the extinction efficiency, r droplet
414  radius (um), A the visible light wavelength (um), n(r) the particle number density (cm™

415  pm 1), and r? the droplet surface area. Qs is usually assumed to be 2, because size
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416  parameters (k=2mr/A) are within the regions where geometric optics apply. For sizes less
417  than about 5 um, Qeff can be larger than 2, significantly affecting the extinction of visible
418  light. Equation 5 can be used for calculating Pext if the particle size spectrum is known for
419  each time step, when NWP model simulations exist.

420 The extinction coefficient (Eg. 6) can be converted into Vis using the

421  Koschmieder (1924) relationship as

422 Vis =~ (7)
ﬁext

423  For the meteorological observed range (MOR), C is defined as the threshold value that
424  best fits to conditions whereby the human eye can recognize a target during daytime and
425 istaken as 0.05 (Gultepe et al 2014). Using Eqg. 5 and Eqg. 6, the Vis can be obtained as

_ —QnE)pw X n(r)riar

426 Vis = QextLWC E7E n(r)r2ar ®)

427  Then, Eq. 7 can be simplified as

428 Vis = 5.216 22/ (9)
QextLWC

429  where pw is the liquid water density ~1000 kg m™. Vis can be obtained from Eq. 9 if the
430  effective radius (resf) and LWC are known. Mist conditions (defined as Vis>1 km and
431  RHw<100%) can also be important for visibility reduction due to swelled aerosols (Fig.
432 6). A lower limit for mist is usually defined as RHw~80%. Haze is composed of dry
433 aerosols where RHy is usally <70%. Lower limit of haze Vis can be down to a few km.
434 Since Ngq is inversely related to particle size (e.g. refr), as refs decreases Ng usually
435 increases. Gultepe and Milbrandt (2007) replaced Eq. 9 with the approximate form

Y
436 Vis = a [p—w] , (10)
QeffNgLWC

437  where o and y are regression constants, and Ng and LWC are obtained from fog DSD,

438  respectively, as

439 Ny =Y n(r)Ar (11)
440  and
441 LWC = ﬁ(g)npwn(r)ﬁm’. (12)

442  Assuming that Qefr, and pw are constants, Eq. 10 can be rewritten as
443 Vis = a(NgLWC)7?, (13)
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444  which can be converted to Bext using Eq. 7. For Eq. 13, o and y are provided in Table 4. In
445  NWP models, Vis is usually diagnosed with post processed model outputs for LWC,
446  which is typically a prognostic output variable. If a numerical forecast model can resolve
447  microphysical processes at small time and space scales, Vis can also be predicted
448  diagnostically. This parameterization does not need droplet spectra at each time step that
449  increases calculation time significantly.

450 Vis parameterizations may not include effective size (or MVD) because Ng is a
451  function of MVD as follows

1\ LWC
452 Na = (E) MVD3

(14)

453  where k=(4/3)mpw. Moreover, replacing Nq in Eq. 13 with Eq. 14, Vis can be rewritten as
454  follows

Lwc
MVD3/2

455 Vis = a((%) )2 (15)
456  This suggests that knowing MVD and LWC, Vis can be obtained prognostically from a
457  NWP model simulation without requirement of Ng. Therefore, the 3rd parameter from a
458  DSD may not be required.

459
460 4 Results

461 4.1 The 8 September Case (Battery Site)

462  4.1.1 Vis-RHw Parameterization

463  Vis-RHy parameterizations are usually derived for fog coverage but not fog intensity,
464  which are obtained based on observations of Vis and RHw, as well as Ta-Tq differences.
465 RHy close to 100% indicates the existence of fog layers but does not indicate intensity
466  because of measurement uncertainty in T and Tq measurements and RHw (Gultepe et al
467  2019). In fact, RHyw is obtained as a function of T, and Tq S0 it is redundant to use both
468  Ta-Tg and RHyw in the same parameterization (Gultepe and Milbrandt 2010; Benjamin et
469 al 2010; Smirnova et al. 2000). Figure 6 shows Vis versus RHy for 3 sites located in
470  Ferryland, including Battery, Blackhead, and the Downs, for 28 Sep 2018. In this figure,
471 fog (Vis<l km), mist (2>Vis>1 km), and haze layers (Vis>2 km & RHw<80%) as well as

472  rain data points are shown. Differences among RHw values are likely related to location
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473  and elevation differences. A best fit for the equation for Vis versus RHyw using 5% RHw

474  bins is also shown in the figure 6 and given in Table 3.

™
£
X
[ ==}
1% PRI A At
> ¢ Battery
& Downs :
©  BlackHead '
10" @ MeanBA ¢
e [T

....................................

L ]
- 0019409)x + (0. 438?)x . (32 4589)x + (317 0615) |

50 60 70 80 90 100
475 RHw [%]

476  Fig. 6 Vis versus RHy for NWS hydrometeor classification based on PWD instrument measurements at

477 Battery, Blackhead, and Downs sites on 28 Sep 2018. The fit line is applied to bin averaged RH,, values at

478 5% intervals. The equation fitted is shown on the plot together with rain data points.

479 This figure suggests that Vis<1 km corresponds to RHw>95%, which can be used
480 as a criterion for detecting fog coverage but not intensity. Note that RHy measurement
481  accuracy is about 10% (Gultepe et al 2019). Haze and mist layers can occur when RHy, >
482  55% up to RHw ~ 95% (Vis> 1 km). Rain with Vis <1 km occurs when RHw < 95%.
483  Evidently there is no clear distinction between mist and haze for Vis (>1 km). Another
484  point is that Blackhead and Downs had a larger RHw compared to the Battery site, likely
485  due to their higher elevations (30 m versus 2 m).

486

487  4.1.2 Time Series of Meteorological Parameters

488  Time series of Vis, PR, and precipitation types are shown in Fig. 7a based from PWD
489  measurements at 1-min time resolution. Fog and mist are seen mainly in the early
490 morning (segment 1; rectangular box) and later in the day (segment 2). Specifically, a
491  drizzle and light rain event is clearly seen before segment 2, which likely played an

492  important role for BL saturation. During fog events Vis was a few 100s of meters.
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493 Fog formation and dissipation are likely related to the TKE magnitude and
494  dissipation rate, which are related to the fluctuations of 3D wind components. The value
495  for ¢ is calculated from Eq. 3 using 3D wind components and a 2D structure function (Eq.
496  4) and utilizing 1-min and 5-min running averages (Fig. 7b). The € during fog is usually
497  less than for fog free conditions (e.g. 0500 and 2000 UTC). The 3D wind components are
498  shown in Fig. 7c. During fog events (see Vis time series in Fig. 7¢), the magnitudes of 3D
499  wind components are found to be significantly lower than for fog free conditions. The
500 vertical air velocity (wa) fluctuations were significantly smaller compared to u and v
501 components for the entire day, indicating the importance of advection processes in the
502  horizontal direction on the fog life cycle. Figure 7d shows 1-minute averaged local
503 accelerations of u, v, and w,, indicating that the turbulence intensity levels were almost
504  50% less compared to fog-free segments.

505 Results suggest that ¢ is about 3x10“ m? s in foggy segments compared to
506 >1x10° m? s in fog-free conditions, which can be used as a criterion for fog formation
507 and dissipation. These values are found to be comparable to those of Downs site
508  (Grachev et al. 2020) who showed that during foggy conditions edis was between 1x107
509 m?s?and 1x10* m? s, Some differences between their work and current work is that
510 The Downs site at 30 m likely had stronger wind fluctuations compared to current one at
511  sea level. Another reason may arise due to their use of TKE based on averages done over
512 15 mins.

513

514  4.1.3 Vis parameterization and microphysical parameters

515 To develop a Vis parameterization, fog microphysical parameters such as Ng, MVD, and
516 LWC are needed because Vis is defined in terms of these parameters. Microphysical
517  parameters are calculated from the FM120 measurements from the Battery site. Figure 8a
518 shows a time series of Ng as a function of LWC, where Nq increases with increasing
519 LWC. Ng time series as a function of log(Vis) is shown in Fig. 8b where log(Vis) < 0
520 indicates fog conditions. Vis decreases with increasing Nq. These figures suggest that Vis
521 isrelated to both Ng and LWC (Gultepe et al 2006). Figure 8c shows MVD versus Ngas a
522  function of LWC (colour bar) together with theoretical lines obtained from Eq. 13. The
523  lines ranging from bottom to top in Fig. 8c represent values for LWC = 0.001:0.01:0.1 g
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524
525
526
527
528
529
530

553
554
555

m= with solid lines, and LWC = 0.1:0.05:0.3 g m™ with dashed lines with theoretical
lines calculated using Eq. 13 (c). Clearly MVD is a function of Ng, and decreases with
increasing Ng while LWC increases. This suggests that Vis can be obtained as a function
of either Ng and LWC or MVD and LWC. Figure 8d shows the fit equation for Vis =

f(LWC, Ng) overlaid on observations, where mean values at dx intervals along x axis and

percentile values are also shown. This equation is obtained from the measurements at

Battery and represents local coastal fog conditions.
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Fig. 7 Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 for Battery site (a) with fog regions
shown with light blue data points, &q4is (TKE dissipation rate) time series for 1-min and 5-min running

averages are shown in (b), 1-min averaged 3D wind components of uy, vy, and wa, as well as Vis time series
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573

(purple line) are shown in (c) with fog regions indicated as blue coloured horizontal bars, and (c), and
acceleration terms du/dt (black line), dv/dt (green line), and dw/dt (red line) with dt=60 s and Vis time
series (blue line) are shown in (d). Note that during fog conditions these wind speed changes become

comparable low versus fog free conditions.

4.2 The 29 September case (Battery site)

4.2.1 Time Series of Meteorological Parameters

Time series of Vis, PR, and precipitation types are shown in Fig. 9a, similar to the 28 Sep
case, representing PWD measurements at 1-min sampling rate. Fog and mist are seen
mainly between 0000 UTC and 1200 UTC early morning (segment 1) and mist and
drizzle mainly later in the day (segment 2; 1300-0000 UTC). A drizzle event is seen
during segment 2. During fog segment 1, Vis is a few hundred meters.
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Fig. 8 Time series of Ng coloured by LWC (a), Ng coloured by log(Vis) (b), and MVD versus Ng with
points coloured by LWC (LWC=0.001:0.01:0.1 solid lines and LWC=0.1:0.05:0.3 dashed lines) (c) with
theoretical lines calculated from Eq. 13. Vis parameterization as a function of fog index (FI along x axis)

with statistical parameters and fit equation overlaid on observations are shown in (d) for 28 Sep 2018.

22 |Page



574
575
576
577
578
579
580
581
582
583
584
585
586

604
605

The calculation for € is similar to the 28 Sep case, utilizing 1-min and 5-min
running averages (Fig. 9b). The values for € are found to fluctuate more during the foggy
segment 1 (0000-1000 UTC), than segment 2 (1400-2300 UTC) fog and misty
conditions. The values for € change between 1x102 m? s and 1x107 m? s during the
foggy segment 1, where uy is highly variable between +1 and -1 m s? (Fig. 9¢c and 9d).
Overall, egis is less than 10° m? s for both fog segments. Figure 9d shows 3D wind
components and Vis, where stronger wind fluctuations likely play an important role,

leading to increasing Vis values during segment 2 (light fog).
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Fig. 9 Vis, PR, and NWS hydrometeor code time series on 29 Sep 2018 for Battery site (a) with fog

(drizzle) regions shown with light blue (green) data points, eqis time series for 1 min and 5 min running
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606  averages are shown in (b), 1-min averaged 3D wind components of u, v, and w, as well as Vis time series
607  are shown in (c) with fog regions indicated as blue coloured horizontal bars, and (c), and acceleration terms
608 du/dt (black line), dv/dt (green line), and dw/dt (red line) with dt=60 s and Vis time series (blue line) are
609  shown in (d). Note that during fog conditions these wind speed changes become comparable to low versus
610  fog free conditions.
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613 Fig. 10 Time series of microphysical parameters Ny versus LWC (a), Ng versus log(Vis) (b), and MVD
614  versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
615 function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
616 are shown in (d) for 04 October 2018.

617

618 In summary, most of the ¢ data points are found below the dissipation rate of
619  3x10° m? s3during fog segments. The w, fluctuations in segment 1 are smaller compared
620 to drizzle and fog conditions seen in segment 2. Note that wetting of the sonic
621  anemometer transmitter/receiver may occasionally cause large fluctuations of wind
622  components during heavy fog conditions. Results suggest that, based on 1-min averages,
623  minimum (max) ¢ is about 1x10° m? s (3x102 m? s?) in foggy segment 1, compared to
624  3x10° m? s during mist and drizzle conditions (segment 2). Another point is that
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625  southerly wind fluctuations (wind coming from south) are likely responsible for warm
626  and moist advection over the region, leading to fog formation similar to 28 Sep case.

627

628  4.2.2 Vis parameterization and microphysical parameters

629  Results and parameterizations for this case are obtained similar to that of 28 Sep case
630  (Fig. 10). MVD and Ngq are found to be comparatively larger on this day (Fig. 10a,b,c).
631  For example, the maximum MVD reaches 40 um compared to 30 um on 28 Sep. The
632  maximum Ng is about 60 cm™ compared to a maximum for Ng of 70 cm™ on 28 Sep.
633  Finally, the Vis fit equation is shown in Fig. 10d. Overall, the slope of the best fit line is
634  very similar to the 28 Sep case but with relatively lower values of observed Vis.

635

636 4.3 The 28 September Case (RV Sharp)

637  4.3.1 Time Series of Vis and RV Wind Components

638  Time series of R/V Sharp’s navigation parameters obtained from the VectorNav VN100
639  IMU and Trimble BX982 Dual GNSS receiver (Fernando et al 2020) are reported here at
640  1-min intervals (Fig. 11a). This figure shows the R/V Sharp’s speed with respect to the
641  ground (Ury), true wind speed (Unt), wind speed with respect to ground (Unr) and
642  smoothed values of Unr over 10 mins intervals. During the fog event between 1000 UTC
643 and 1600 UTC, the R/V Sharp was heading 250 deg (SW) until 1300 UTC, then changed
644  to 50 deg NE with Ury at about 5-8 m s™X. Low Vis was observed between 1000 UTC and
645 1600 UTC, during which Vis improved from 1 km to 5 km after R/V Sharp changed
646  direction. After 1600 UTC, Vis increased up to 15 km. Low Vis and haze conditions (Fig.
647  11b) before 1000 UTC likely played an important role later on for drizzle conditions after
648 1000 UTC. Thereafter, drizzle just before fog formation likely led to moistening of the
649  BL and resulted in fog occurrence at about 1200 UTC.

650

651

652

653
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656  Fig. 11 Time series of Ury, Unt, Ung, and Unrs for 1 min and 10 min running averages are shown in (a) and
657  Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 (b) with fog regions shown with light
658 blue data points.
659

660  4.3.2Vis parameterization and microphysical parameters from the gondola

661 In this subsection, fog droplet spectral characteristics obtained from the CDP and BCP
662  housed in the gondola (Fig. 2) are investigated. Both CDP and BCP plots were obtained
663  similar to the Battery plots. Note that BCP (Fig. 12) measurement starts at 5 um
664  compared to CDP at 2 um (Fig. 13) and had the capability for measurements up to 75 pm.
665 Measurements of Ng, MVD, and LWC are less than 60 cm™, 40 pm, and 40 g cm?,
666  respectively. A parameterization is obtained with a power-law form similar to Eg. 12 and

667 is shown in the figure. The best fit line indicates that increasing fog index (FI
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=1/(LWC*Ng)) results in increasing Vis, which is found to be similar to the fit line

obtained for the Battery site. FI increases with increasing values of either Ng or LWC.

Note that Nq can be replaced with MVD using Eq. 14.
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Fig. 12 Time series of microphysical parameters Ng versus LWC (a), Nq versus log(Vis) (b), and MVD

versus Nq as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a

function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations

are shown in (d) for RV CDP on 28 Sep 2018.

Fog-droplet spectral characteristics obtained from the BCP measurements are

shown in Fig. 13. Note that because of missing the first 2 channels in BCP compared to
CDP, Ng, LWC, and MVD cannot have the same values for both probes. Nq and LWC are
based on BCP measurements and therefore, are expected to be less; but MVD is higher

than CDP parameters. Results suggest that max values for Ng are about 15 cm, for LWC

about 0.07-0.08 g m=, and for MVD~60 pm.
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Fig. 13 Time series of microphysical parameters Ng versus LWC (a), Nq versus log(Vis) (b), and MVD
versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
are shown in (d) for RV BCP on 28 Sep 2018.

4.4 The 4 October Case (RV Sharp)

4.4.1 Time Series of Vis and RV Wind Components

Time series of R/V Sharp’s navigation parameters are given in Fig. 14a. This figure also
shows Urv, Unt, Unr, and smoothed values of Unr over 10-minute intervals. Fog occurred
between 1900 and 2300 UTC. Before the fog event at 1900 UTC, the ship was headed
250 deg (SW), and Ugry changed from about 4 m s™ to 8 m s, Unr was from north during
the fog event (not shown). Low Vis (1 km) was observed between 1900 and 2300 UTC
and Vis improved to 5 km at 2300 UTC. Before 1900 UTC, Vis increased to 15-20 km.

Thereafter, the cloud base lowered to the surface and Vis decreased to <300 m. During
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low Vis conditions (Fig. 14b) near the end of fog event, drizzle was observed around
2300 UTC. After 1930 UTC, Vis improved significantly.
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Fig. 14 Time series of Ury, Unt, Unr, and Unrs for 1 min and 10 min running averages are shown in (a) and
Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 (b) with fog regions shown with light
blue data points.

4.4.2 Vis Parameterization and Microphysical Parameters from the Gondola

Fog droplet spectral characteristics obtained from the CDP and BCP during the 29 Oct
case are shown in Fig. 15 and Fig. 16, respectively. Note that max CDP Ngq (Fig. 15a,b) is
about 75 cm™ and LWC reaches 0.4 g m3. Low Vis, representing fog conditions, is
found between 2000 and 2200 UTC. MVD (Fig. 16¢) ranged from a few um up to 40 um
at low LWC and Ng but was at about 22 um when Ng reached a maximum at 70 cm,
CDP measurements of MVD and LWC were less than 40 um and 0.45 g m?,

respectively. The parameterization obtained based on CDP measurements are shown in
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717  Fig. 16d. Similar to previous cases, Vis also increases with increasing values of fog index
718  (FI = 1/(LWC*Ny) but decreases with increasing LWC and Nq (with decreasing MVD).
719  The best fit line indicates that increasing Fl values result in similar increasing Vis

720  conditions that represent the Battery site.
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723 Fig. 15 Time series of microphysical parameters Ng versus LWC (a), Nqg versus log(Vis) (b), and MVD
724  versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
725 function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
726 are shown in (d) for RV CDP on 04 October 2018.

727 Fog droplet spectral characteristics based on BCP are shown in Fig. 16. Again,
728  due to missing the first 2 channels of CDP in BCP measurements, CDP, Ng, LWC, and
729 MVD cannot be directly compared to those of CDP measurements. As suggested
730  previously, if there is no drizzle, Ng and LWC based on BCP measurements are expected
731  to be less compared to CDP parameters; but MVD is expected to be higher because of
732 larger droplets. Results suggest that max Ng was about 25 cm, LWC about 0.4 g m=,
733 and MVD~40 um. The parameterization for this case based on BCP measurements is

734  shown in Fig. 16d. Similar to previous cases, Vis increases with increasing Fl.
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736 Fig. 16 Time series of microphysical parameters Ng versus LWC (a), Nqg versus log(Vis) (b), and MVD
737  versus Ny as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
738  function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
739 are shown in (d) for RV BCP on 04 October 2018.

740 4.5 Summary of Vis Parameterizations

741  Vis parameterizations are obtained for each platform (R/V Sharp or Battery supersite)
742 using FM100, CDP, and BCP probes and are summarized in Table 4. The Vis-RHw
743  relationships are also provided to emphasize that they are used only as a threshold for fog
744  formation (e.g. RHw>95% in Fig. 6). Then, fog intensity (e.g. Vis) can be estimated based
745  on model-predicted values for LWC and Nqg (or MVD) (see Eq. 14). Note that the G2007
746  parameterization (Gultepe et al 2007) was obtained using FSSP measurements based on
747  low-level flying aircraft observations over the Bay of Fundy, NS taken during the RACE
748  (Regional Aerosol and Cloud Experiment) campaign. These parameterizations are
749  discussed in the next section.

750

751

752
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753

754
755 Table 4 Summary of C-FOG Vis parameterizations and previous work. The FI (fog index) is defined as
756  1/(LWCeNg) with units of [g* m3 cm?].

Case Parameterization FMD Platform location
28 Sep - Vis=0.7531(F1)0-4828 FM10 Ground-C-FOG
Battery 0
29 Sep - Vis=0.7280(F1)%-471 FM10 Ground-C-EOG
Battery 0
28 Sep -RV Vis=0.4765(F1)0-5568 CDP Sharp RV-C-FOG
28 Sep -RV Vis=0.4506(F1)0-5206 BCP Sharp RV-C-FOG
04 Oct -RV Vis=0.4012(F1)°-5455 CDP Sharp RV-C-FOG
04 Oct -RV Vis=0.5009(F1)0-4%82 BCP Sharp RV-C-FOG
28 Sep - Vis=-0.009RH3+0.437RH? PWD Ground-C-FOG
Battery -2.459RH+817.062
Gultepe et Vis=1.002(F1)06473 FSSP Aircraft Obs. RACE
al 2007

757
758 5 Discussion

759 5.1 Overview of Fog Forecasting

760  Fog prediction cannot be done accurately because of rapid changes in its intensity (Vis)
761  over short time and space scales, as well as non-linear relationships between surface and
762  atmospheric conditions. There are several methods for fog prediction. These methods
763 include rule-based techniques (Toth et al. 2007, Zhou and Du 2010), statistical methods
764  (Claxton 2008, Miao et al. 2012), numerical forecast models (Gultepe and Milbrandt
765  2010; Bott et al. 1990; Muller et al. 2007, 2010; Bott and Trautmann 2002; Clark et al.
766  2008; Shi et al. 2012) and integrated nowcasting methods (Golding, 1993; Golden, 1998;
767  Wright and Thomas, 1998; Haiden et al. 2014). If no persistence exists and turbulence
768  becomes more dominant, prediction usually fails, unless very short-term data assimilation
769  techniques are performed. More detailed information on fog modeling issues can be
770  found in the works of Gultepe et al. (2007a), Wilfried et al. (2008), Croft et al. (1997) and
771 Fernando et al. (2020).

772

773 5.2 NWP and Microphysical Schemes

774  Prognostic fog forecasting is usually done using model-based prediction of LWC and Ng,
775  and that uses detailed droplet nucleation processes described above. In general, a regional
776  forecast model uses boundary conditions from a global model. As described in Section 1,

777  assuming a gamma size distribution, visibility can be diagnosed from the size distribution
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778  parameters such as No (intercept parameter), u (spectral shape parameter), and A (slope
779  parameter), or either Ngt or LWC or both (Gultepe and Milbrandt 2007b, Milbrandt and
780  Yau 2005a,b). If both LWC and Ng are available as prognostic variables, Vis estimation
781  can be obtained using NWP simulations.

782 Microphysical schemes are used to evaluate fog prediction conditions using NWP
783  models. Cloud-droplet and fog-droplet size distributions are usually represented by a
784  modified-gamma size distribution in NWP models. The parameters used in a modified
785  gamma size distribution are the N (total droplet number concentration), and shape and
786  slope parameters. N is obtained either from empirical relationships as a function of
787  aerosol number concentrations (Na) or from a prognostic equation for Ng¢ with assumed
788  size distribution parameters. The microphysical schemes (MPS) such as MY (Milbrandt
789  and Yau 2005a,b), MG (Morrison and Gettelman 2008), and TO (Thompson et al. 2008,
790 2014) use modified-gamma size distributions and microphysical parameters based on
791  DSD parameters.

792 The Ng can be obtained directly from Na diagnostically, as stated, or based on Sw
793  (supersaturation) which is function of vertical air velocity (wa) and Na as well as its
794  composition (Twomey 1959; Chen 1994; Kohler 1934). The Kohler curve provides a
795  general equilibrium relationship between an aqueous salt solution droplet size and water
796  vapour. Sy can be calculated as a function of both wa and Ng and that is directly related to
797  size distribution and the composition and mixing state of aerosols. A similar relationship
798 to Twomey (1959) is also suggested by Ghan et al. (1993, 1997) for large-scale cloud
799  formation. Cohard et al. (1998) extended Twomey’s power law expression by using a
800  more realistic four parameter CCN activation spectrum with physiochemical properties of
801  aerosols. The most important parameter to estimate Ng is Sw that is obtained using 3
802  methods (Schwenkel and Maronga 2019): 1) saturation adjustment scheme, 2) diagnostic
803  scheme where Sy is diagnosed by the prognostic fields of T and qv, and 3) a prognostic
804  method (Clark 1973; Morrison and Grabowski 2007; Lebo et al. 2012). These methods
805 are not discussed here, but are listed to emphasize the importance of wa, CCN, and Ng on
806  Sw.

807 In microphysical schemes, Nq is usually represented with a complete gamma size

808 distribution function as
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809 N4(D) = N,D*e=*P, (16)

810 where D is the diameter, and No, u, and As should also be known to obtain an accurate
811  droplet spectra. The u parameter is obtained as a function of CCN (Wilkinson et al.,
812 2013) or as u = 1/n? -1 with n the dispersion of radius (sd/mean), which is given by
813  Morrison and Gettelman (2008) as

814 n = 0.0005714N, + 0.2714, (17)

815  where Nq can be obtained as a function of aerosol number concentration (Na) (Jones et al.
816  1994; Martin et al. 1994; Gultepe and Isaac, 1999; Gultepe et al. 2015). But Ng versus Na
817  relationships are not unique, and their variability can be large. In Eq. 15, No and A are
818 usually obtained using a fixed p and predicted value of total droplet number

819  concentration (Ngt) and water vapour mixing ratio (qw) as

1/3

wNaT(u+4)
820 A = [% (18)
821 and

NgeAH+t
822 o=%. (19)
823 When models use a single-moment scheme, qw (e.g. LWC) is predicted but Nat

824 and p are fixed. In double-moment schemes, usually both qw and Ng: are prognostic
825  variables. Ng prediction is an important step in NWP models for accurate fog Vis
826  estimation.

827 In the MPS, CCN concentration is assumed to be a function of Sw, and Na for the
828 ocean (Nao) and land (Na.) air masses set as fixed values. The values for CCN
829  concentration as a function of supersaturation are also given in Fletcher (1966). The CCN
830  parameterization, given as CCN=cS¥ where c~1000 cm and k~1 (a unitless constant),
831 are for continental air masses and ~100 cm™ and ~0.5 for maritime air masses (Feingold
832 et al 1998). Sometimes, Ng is fixed as 100 cm™ over ocean and 300 cm™ over land
833  (Wilkinson et al 2013). In reality, as stated in Cohard et al. (1998), the coefficients ¢ and
834 k change with high Sw. They suggested that this happens especially in maritime
835 environments. Therefore, ¢ and k should be matched locally to the activated CN. This
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836  suggests that parameterization of Sy and both ¢ and k are critical to improve fog Vis

837  predictions

838

839 5.3 Scale Issues

840  Fog usually happens over small areas and dissipates quickly; therefore, NWP models can
841  have difficulty predicting short lived fog conditions. Although fog models can resolve the
842  smaller scales, most of the physics developed for the NWP model cannot be used for high
843  resolution fog models. Due to cloud coverage over the large scales (1-100 km), some dry
844  air pockets result in lower values of RHw, LWC, and Nqg (Gultepe and Isaac, 1999; 2004)
845 and these need to be extrapolated to fog occurrence scales (usually less than 1 km)
846  (Wilkinson et al 2013). The latter study clearly recognizes the issues for better fog
847  prediction on various grid areas. This suggests that further improvement of fog
848  microphysical parameterizations is required for better fog prediction.

849

850 5.4 Variability in Vis

851  Visibility calculation based on observations and NWP model outputs may include large
852  uncertainties due to fog microphysical and BL processes. Variability in Vis based on
853  measurements of PWD located at Battery, Downs, Blackhead, and Judges Hill sites for
854  28-29 Sep is shown in Fig. 17. Figure 17a shows mean Vis from all these sites with a
855  standard deviation. Overall, Vis at Judges Hill had the lowest values compared to the
856  other stations, likely due to its elevation of 129 m (Fig. 17b). The second lowest Vis
857  values are found at The Downs site, at 32 m above sea level. Blackhead and Battery Vis
858  follow, with the next highest values. During dense fog conditions, Vis from Blackhead
859 was much higher than others, likely due to the distance between the Blackhead and
860  Ferryland sites. Vis, representing a scale of about 1.5 km, ranged from 0.2 km up to 1 km
861 for any given time (Fig. 17); therefore, NWPs should be capable of simulating fog
862  conditions at 1 min time intervals and 100 m spatial scales.

863

864

865

866
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868 Fig. 17 Time series of mean (red filled circles) and sd (gray coloured regions) of Vis based on
869 measurements of PWDs (indicated in (b)) are shown in (a). Time series of Vis representing Battery (Visg),
870 Downs (Visp), Blackhead (Visgn), and Judges Hill (Vis;y) for 28-29 Sep 2018 are shown in (b). Fog

871 regions are shown for Vis<1 km (yellow coloured area).

872 5.5 Variability in sonic anemometer wind components

873 The 3-D wind component time series of mean and sd obtained from the (20Hz)
874  measurements of sonic anemometers located at 1, 2, 5, 8, and 15 m levels of the Battery
875  supersite tower are shown in Fig. 18a for 28-29 Sep cases. Figure 18b shows 3D wind
876  components and Vis from each of the 5 levels. The Uzqg values (3-D wind speed) between
877  0600-1200 UTC indicate some noise in the data and should be ignored because of heavy
878  condensation on the prongs of the sonic anemometers. The largest Uszq fluctuations are
879 seenat5, 8, and 15 m levels but these were reduced to lower values during fog events on
880 May 28 (Fig. 18b). Vertical air velocities (wa) in Fig. 18c are obtained at the same levels
881  as in Fig. 18b. Figure 18c shows the mean and standard deviation of w, obtained from
882  measurements, representing all levels from 1 m up to 15 m. Clearly, wa, fluctuations were
883  higher in the fog-free layers compared to foggy layers, indicating greater turbulent heat,

884  moisture and momentum fluxes in the vertical direction. Note that large fluctuations of
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892
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896

Wa at 15 m from 0600 to 1200 UTC in Fig. 18d were likely noise, as noted previously.
The wa fluctuations within the fog layers were found generally between +0.3 and -0.3 m
st, but were more than -0.7 m s and +0.7 m s in fog-free layers. These suggest that
without estimating wind fluctuations at 3 axis accurately, NWP models cannot properly
handle the fog life cycle.

Sep 28-29 2018 3D-Wind
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3D wind speed [m/s]
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Fig. 18 Wind components obtained from the sonic anemometers located at 1, 2, 5, 8, and 15 meters levels
of a tower and Vis at 2 m (purple line) are shown in (a) for mean and sd of Usq (3D wind component) and
in (b) for Usq for each level, representing 28-29 Sep cases at the Battery supersite. Mean (red filled circles)
and sd (gray lines) of vertical air velocity (wa) are shown in (c) and w, measurements at each level are

shown in (d). Fog layers indicated by red double arrow are obtained from PWD Vis shown in (d) and
previous plots.
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897 5.5 Nd Uncertainty and Droplet Spectra

898  Droplet spectra from CDP, BCP, and FM120 probes include uncertainties related to the
899 calculations of TAS, turbulence, wind speed and ship direction. The aspirator used in
900  FM100 pulls in air at about 5 m s but winds coming directly into the inlet can increase
901 (or decrease) the aspirator wind speed. Usually, using a higher TAS compared to a fixed
902 TAS at 5 m s set up in FM120 results in a significant decrease (~50-100%) in Ng. For
903  ship measurements, these errors can be much larger. For example, a ship heading north (0
904  degrees) at 8 m s plus a wind from NE can result in

905 TAS = Ugy + Uycoso. (20)
906  Therefore, the error in TAS estimation, applying a derivative of TAS with respect to

907 time, can be written as

dTAS dUgry dcos6 dUp
— = U cosf —. 21
dt a U T dt (21)

908 ETas =

909  The L.h.s of Eq. 20, er45 represents an error in TAS per unit time [(m s?)/s]. Assuming
910 that error in the first term of the r.h.s of Eq. 20 is approximately 1 m s per unit time
911  (e.g., dt=1 s) at Urv=8 m s, and Uy has an error of 10% say at 0.5 m s and wind
912  directional error is about 10 degrees (second term on the rhs), then using Un=10 m s,
913  eras=1 m s+ 10 m s* (cos30-cos40) +cos(30)*0.5 m s1=1.0+1.0+0.43=2.43 m s.
914  Absolute error in TAS~18 m s can then be calculated at about 15%. This means that Ng
915 uncertainty is also about 15%, but likely increases with decreasing TAS. Following
916  works can be suggested for further statistical evaluation of the analysis uncertainty;
917  Moffat (1982) and Kline and McClintock (1953).

918 Figure 19 shows fog droplet spectra obtained from the CDP and BCP probes for
919  Sep 28 (a and b) and Oct 04 (c and d) cases. The mean (black line) and standard deviation
920 (red line) of each bin during fog events of Sep 28 and Oct 4 are shown. Each coloured
921  line represents 1 s spectra. Clearly, Sep 28 droplet spectrum is much different from the
922 Oct 04 droplet spectra, based on both probes. Multi-modes in DSD indicate the various
923  fog regimes that were likely related to droplet fall velocities (V) and wa. For both cases,
924  DSD did not indicate drizzle droplet sizes > 50 um. MVD for the Oct 04 was much larger
925 than for the Sep 28 case. Note that the mean DSD can shift upward if a lower threshold of
926  Ng is chosen to have a higher value (e.g. 1 # cm™ instead of 0.1 # cm™. In BCP
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measurements, having a large value for Ng at about 25 um, may indicate cooling

processes leading to increasing values for Ng.
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Fig. 19 Fog droplet spectra vs diameter obtained from CDP and BCP probes for 28 Sep (a and b) and Oct
04 (c and d) cases. The mean (black line) and sd (red line) values of each bin during time periods

representing fog events of 28 Sep and 4 Oct 2018 are also shown on the plots. Each line with a colour

represents 1 s spectra.

Sea spray particles can also affect Ng spectra (at 10m) significantly because of
breaking waves, especially at small size ranges because of their low settling rates. In the
marine environment, droplets can be generated by wave breaking processes, which can
then be counted as fog droplets. Entrainment of air at breaking wave crests leads to the
formation of a large number of bubbles, which emerge at the ocean surface because of
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their positive buoyancy and then burst into droplets at the water surface (Troitskaya et al
2018). The spray production due to the bursting of bubbles with sizes smaller than <10
um has been studied by Blanchard (1963) and Spiel (1995, 1997, 1998). All of these
studies suggest that bursting bubbles are the main source of the ocean spray process,

generating droplets with radii less than 50 um (Wu, 1981).

5.6 Impact of TKE Dissipation Rate on Vis

Fog occurs usually at the end of a dynamically unstable environment along coastlines and
marine environments and is augmented sometimes by thermal inversions, keeping
moisture trapped below a stable layer. Thereafter, when the mature fog stage has
developed under dynamically stable conditions, fog dissipates as a result of droplet
growth, increasing turbulence, entrainment, and solar heating. All these factors play an
important role for fog dissipation without considering direct impact of a larger scale
event such as pressure systems and associated fronts. In this work, calculated dissipation
rates suggest that higher eqis values result in improved Vis conditions. Accuracy of &gdis
will not be discussed here, except in its usage in a fog prediction scheme. TKE
dissipation rate is calculated in NWP models using TKE based on various turbulence
prediction schemes (Mellor and Yamada 1982; Castelli et al 2005; Duynkerke 1988);
therefore, it can be used to improve fog prediction.

Table 5. Mean and std of TKE dissipation rate calculated using Eq. 3 and Eq. 23, representing 1 hr time
segments based on a 10-min filtering method for Sep 28 and Sep 29 2018 cases. Sep 29 case did not have
wind measurements during heavy fog conditions. Reddish coloured area indicates missing data due to

increased precipitation on the sonic anemometer located at the Battery.

Method Sep 28 Sep 28 Sep 29 Sep 29
Mean egis [m?s3] | Std eq4is [m?s3] | Mean g4 [m? s3] Std eqis [m? s3]

Using Eq. 3 1.23x10% 1.73 x10? 1.65 x107 1.19x1027°°

Foggy 966

Using Eq. 26 8.73 x107 24.94 x107? 7.53 x1072 9.21x107?

Fogay 967

Using Eq. 3 7.76 x107 10.3 x1072 - -

Clear

Using Eq. 26 20.00x102 25.59 x107? - -

Clear

40| Page



971  Table 5 is prepared using Eq. 3 and Eq. 26 for mean and std of &qis during foggy and fog
972  free conditions, representing means of 1 hr time intervals. It shows that for both Sep 28
973  and 29, foggy conditions had much smaller &q4is than fog free conditions (excluding Sep 29
974  case). For fog free conditions on Sep 29,eq4is was corrupted due to precipitation on the 3D
975  sonic anemometer optics. It is shown based on Table 5 that fog occurs usually when
976  £4is<1x10? m? s® and dissipates for eqis>10x102 m? s3. Between these two limits,
977 intermediate fog intensity can likely occur. A conversion equation between &qgis and TKE
978  (Scully et al 2011) can be obtained using,

TKE3/2
979 L=C;} : (22)

Edis

980 where L and Cy are turbulent length scale (kz=0.41*2) where k is the Von Karman
981 constant and z is the height (m) above sea level, and the non-dimensional stability
982  function, respectively, that is assumed as a constant (0.447). Then, Eq. 22 can be
983  rewritten for eddy dissipation rate as

TKE3/2
kz

984 eais = Cpt (23a)
985

986  Note that e4is and TKE are function of scales that need to be further evaluated and
987  developed to improve NWP models based fog Vis predictions. After using the values of

988  parameters given above, Eq. 23a becomes

989 €4is = 0.8199VTKE3 (23b)
990

991  Based on ¢ time series (Figs. 7 and 9) and equations given in Table 4, we can suggest the
992  following parameterizations for fog (Vis<l km & RHw>95%), mist (Vis>1 km &

993  RHw>80%), and light fog (Vis>1 km & RHw>95%) conditions, respectively, as

994

995  for RH,, > 95% & £4;s < 1072m?s73;

996 Vis = 0.412(LWC - N,)~0-5455 (24)
997  for 80% < RH,, < 95% & &4;s < 1072m?s73;

998 Vis = —0.0094RH3 + 0.437RH2 — 32.459RH,, + 817.062  (25)
999 and

1000 for RH,, > 95% & £4;s > 10x1072m?2s~3;
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1001
1002
1003
1004
1005
1006

1007
1008

1009
1010

1011
1012
1013
1014
1015

Vis = 1.002(LWCN,) 06473, (26)

The thresholds for TKE corresponding &dis thresholds for fog and clear air segments are
estimated as <4.06x102 m? s and >18.9x102 m? s?, respectively. Between them, fog to

light fog/mist conditions may occur but this needs further analysis.

10"

BA-Sep 28 FM100
— BA-Sep 29 FM100
—RV-Sep 28 CDP
I RV-Sep 28 BCP
m—— RV-Oct 04 CDP
- | we—— R\/.Oct 04 BCP
= G2007 FSSP

..................................

.............................

FI=1/(LWC*N ) [g"! m® em™]

Fig. 20 Vis parameterizations obtained for all the cases based on Table 4. LWC was fixed at 0.1 g m
while Ng changed from 1 to 300 cm. RV represents research vessel, BA Battery, G2007 Gultepe et al
(2007) and FI fog index. FM100, CDP, BCP, and FSSP probes are used for droplet spectral measurements.

6 Conclusions

In this paper, Vis associated with fog environmental parameters such as RHw, 3D wind
components, and microphysical parameters, including LWC, N4, and MVD were studied
for four cases. Results representing two 10Ps from the Battery supersite and two IOPs
from the R/V Sharp are used in Vis parameterization development and to verify the
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1016  previous parameterizations. Based on the results of this work, the following points can be

1017  drawn:

1018 1. Synoptic weather conditions and ocean-atmosphere interactions are the larger-
1019 scale factors that affect coastal fog microphysics and visibility. The cold ocean
1020 surface off the coast of Ferryland was usually a major reason for fog formation
1021 observed there.

1022 2. The main synoptic weather systems that affected fog were usually related to a
1023 high-pressure system located to the NE, a low-pressure system along W-NW, and
1024 a chain of tropical cyclonic motions. This may not be valid early in the fog season
1025 and usually can be valid during the Fall transition period

1026 3. Vis s found to be less than 1 km when RHy, is greater than 95%, and this suggests
1027 that the Ta.-Tq difference is an important variable indicating fog regions, but not
1028 intensity.

1029 4. By decreasing dynamic activity, indicated by smaller 3D wind fluctuations and
1030 lifting, the eddy dissipation rate decreases during mature fog conditions that can
1031 be used for a threshold for prediction of mature fog conditions. Wind
1032 components; u, v, and w, are relatively smaller in fog-developed regions than in
1033 fog-free regions.

1034 5. The wa fluctuations were 0.1 m s during mature fog conditions compared to >0.3
1035 m s for fog-free regions. Note that these values can be much larger at the time
1036 scale of 16Hz or 32Hz.

1037 6. The TKE dissipation rate was usually <102 m? s during mature fog events
1038 compared to >10"t m? s for fog—free regions and can be used for fog prediction
1039 criteria based on NWP models.

1040 7. Vis parameterizations that we constructed suggest that the slopes of the Vis versus
1041 fog index (FI) relationships are consistent with each other; but found to be
1042 comparably smaller in magnitude. This can be related to the nature of the
1043 measurement platform, fog season, as well as cloud versus fog measurements.
1044 8. Vis is expected to be function of LWC and Ng and this can be replaced with LWC
1045 and MVD without involvement of a 3rd parameter; this can be more generally
1046 applicable for NWP models.
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1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

1063
1064
1065
1066

1067

1068

1069

9. Vis<1 km observations showed a large variability, covering an area of a few km?

(1.5 km?) up to 20 km?, and the difference was very high between a station at

height 129 m (Judges’ Hill) compared to one at the sea level, 2 m, (Battery

station) although the horizontal separation distance was only about 1.0 km.

10. BCP droplet number concentration is found to be at least half of the CDP Ng and

this is likely due to BCP’s higher threshold of 5 um; there were no droplets larger

than 50 pm.

11. There were double and triple peaks for fog DSDs and this can affect the NWP’s

fog prediction algorithms and needs to be further researched.

Based on these points, it is suggested that Vis parameterizations can be obtained

using both dynamical and microphysical

parameters, but fog droplet spectra

representation for various fog conditions need to be further investigated. Specifically, the
turbulence impact on droplet spectra and the nucleation processes are very critical for the
fog life cycle in low vertical air velocity situations. Moreover, this is the most important
parameter affecting the auto-conversion of fog droplets to drizzle formation.
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Nomenclature

BCP: Backscattering Cloud Probe

RF: radiative fluxes

C: A constant ~0.18 in Eg. 3

SA: Sample Area

C: Visibility threshold constant as 0.05

SV: sampling volume

CN: Condensation nuclei

Ta: Air temperature

CCN: Cloud Condensation Nuclei

Tq: Td: dew point temperature

CDP: Cloud Droplet Probe

TKE: Turbulent Kinetic Energy

Ds: The structure function

u, v, wa: Measured wind components along x,y, z

DSD: Droplet Size Distribution

u’,v’, w’: Wind fluctuations

FI: Fog Index

Una: The apparent wind speed

FSSP: Forward Spectral Scattering Probe

Uax and Ugy: wind speed along x and y axis at dt t

FM100: DMT fog measuring device (FMD)

Urv: RV Sharp’s speed with respect to the ground

IR and SW: Infrared and shortwave rad.fluxes

Unr : True wind speed over 10 mins intervals

k: The Von Karman constant as 0.41

Unr: Wind speed with respect to ground

L: Turbulent length scale

Usp: 3D wind component
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L: The turbulent length scale Vis: Visibility

LES: large eddy simulation Vs: Droplet fall velocity

LWC: liquid water content Vq: Doppler velocity

MVD: Mean VVolume Diameter Visg: Vis at Battery site

n(r): Droplet number spectra Visp: Vis at Downs site

Na: Aerosol number concentration Visgn: Vis at Blackhead site

Nao: Aerosol number conc. over ocean Vis;n: Vis at Judges Hill site

NaL: Aerosol number concentration over land Z.: Radar reflectivity factor

Nc: Droplet counts z: The height (m)

Ng: Droplet number concentration a and y: empirical constants in Eq. 13
Ng: total droplet number concentration w: spectral shape parameter

No: intercept parameter A: slope parameter

NWP: Numerical Weather Prediction Bext: Extinction coefficient

PR: Precipitation Rate B: Lidar backscatter coefficient

Qesr: Extinction efficiency n: the dispersion of radius (sd/mean),
r: droplet radius pw: water density

rerr. Effective radius 6: Angle between the ship heading and Up,
Ar: The horizontal distance in Eq. 3. ¢: Eddy dissipation rate

At: Time interval gras. Errorin TAS

RH,: relative humidity with respect water
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1. The TKE dissipation rate was found under certain level for C-fog events. This is an important finding of
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This work studies coastal fog microphysics and its visibility that affect visibility parameterizations. It
uses detail in-situ observations representing coastal fog based on a vessel and supersites. Their results
suggested that environmental conditions play an important role for late-season fog formation.
Visibility (Vis), wind speed (Uh), and turbulence along coastlines are the most critical weather-related
parameters affecting marine transportation and aviation. In the analysis, microphysical observations
are summarized together with 3D wind components and used for fog intensity (visibility)
evaluation.Overall their conclusions stated that EDR is a critical parameter affecting microphysics and
that should be part of NWP developments. In addition, they summarized microphysical
parameterizations for coastal/marine fog research and clearly provided issues for microphysical
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very useful for coastal/marine fog research related to observations and prediction of fog.
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and not easy to follow up.
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* In a paper in this C-FOG special issue on coastal fog; this needs to be rewritten to and modified as
"In this work, CFOG related studies are briefly summarized; ..."
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* 3.1 Time Series of Nd and Turbulence Dissipation Rate (g)-change this to "3.1 Time series of
microphysics and turbulence.....
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LN76- ......may not be valid {, and therefore we have seen parametric modifications} take out the part
in brackets
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LN84: take out "or specifically coastal fog"
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clouds"
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formation, development, and dissipation over coastal environments, and thus improve fog
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"microphysical and meteorological instruments are summarized" Table 2 : col 4, add ASL.
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Results:
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for Vis evaluation and this helps advancement of research on fog studies.
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Item 5; please explain 1 min versus 20 Hz values, and scale dependency

Improved now.

-References: Please check for refs in case of missing ones/citations.

This is checked and corrected.

Thanks for your improvements on the paper.




response to RES3 Click here to access/download;attachment to
manuscript; RESPONSE_REV3_09_15_2020.pdf

Click here to view linked References

REVIEWER 3

Responses are given in red colored text

Reviewer #3 Comments on BOUN-D-20-00120
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This study summarizes the microphysical observations carried out during C-FOG field campaign. Using
the microphysical measurements along with the 3D wind components, authors have shown the
magnitude of 3D-wind fluctuations was higher during the formation and dissipation stages of FOG life
cycle. The observations reported in the present study strengthen our current understanding of life cycle
of coastal fog and helps in improving the existing microphysical parameterization schemes for accurate
fog forecast of NWP models. Overall the study is very good and manuscript is well written. The following
minor comments need to be addressed before considering it for publication.

Specific comments:

Lines 56-58: What are anticyclonic storms? Reference has been submitted and hence cannot be
checked. | thought fog formed in quiescent conditions. Need clarification.

It is corrected as anticyclonic system, was a mistake. These systems can transport moisture and heat

over colder regions of ocean, corrected. Various corrections are also done for the manuscript to improve

the quality. Thanks for your points improve the paper.

Line 138: "(Toward Improving Coastal Fog Prediction)" should go to line 119 where C-FOG is first
introduced

It is done.
Line 142:"the importance fog Vis predictions" should be "the importance of fog Vis predictions"
Corrected.

Figure 1: color bars too small; parenthesis missing after "days"; vectors in panel (e) cannot be seen;
what is the meaning of the two stars in panel (c) and the acronyms in panel (b)? It should be made clear
in the caption.

This is improved now.

Line 176: cold front or warm front?

Improved as warm front.
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Line 177: how many tropical cyclones? How strong were they and how far away did they get from the
measuring sites? This information is needed to gauge their potential impact on the weather conditions
at the site.

Over 6 week time period we located at least 4 tropical systems, and they were usually 500 km south or

south east of the project location. This is now clarified.

Line 194: the acronym CDP was already defined in line 129, no need to do it again Lines 190-197: for
readers that may_not be familiar with this, can you please provide the typical radius of droplets in clouds
and in fog and drizzle events?

Second definition is taken out, and improved. Droplet sizes are provided as 1-30 micron for fog, 30-100

micron as drizzles, and 1-100 micron for cloud droplets because usually clouds are more active

dynamically compared to fog events. This is improved now.

Lines 205-209: define the acronyms NIR, MW, LIDAR and GOES-R

These are defined now.

Table 2: Not sure it is a good idea to have Table 2aand 2b, better to have Table 2 and Table 3. In Table
2b, is Z the height above mean sea-level and H the height aboveground level?

We separate them as 2a and 2b because we cant fit them into 1-page.

Now tables are given as T2 and T3, and text is modified accordingly.

Z and H are defined now.

Figure 3 and others: No need to add "Shows" at the beginning of the caption Line 231: spacing is missing
at the end Line

Corrected for all figures and

LN231: It is modified for spacing.

234: "prior to fog, and average" should be "prior to fog. The average"
Corrected now.

Figure 4: Fog is defined as horizontal visibility impaired by water droplets dropping below 1 km. Perhaps
a horizontal line corresponding to Vis = 1km can be drawn to better highlight the fog events, or shade as
you do in Figure 17.

This is improved now as suggested. Vis=1 km is shown with a line now.

Figure 5: again, very hard to see color bar and labels, please improve the quality of the figure



This is corrected, and we have original figs that will be provided to printing office.

Lines 252-253 and 259-262: can you prove these hypothesisis with the available measurements?

Yes, we can, and modified the first sentence but second one is already shown by the given reference.

Section 3: | suggest using a better title as you are describing the theory here. An equation can be
provided for Vis-RHw parameterization in section 3.2.1 or at least refer to section 4.1.1 for more details.

Title is modified and Eq. is provided now/refer to section 4.1.1

Line 365: Mist refers to visibility between 1 and 2 km and haze between 2 and 4 km even though
different thresholds are_used. Stating mist as having a visibility >1 km is incorrect as there is an upper-
limit.

These values are not firm unfortunately and need to be further discussed; mist Vis>1 km but <5 km with
RH>80%, and haze is usually Vis>5 km with RH<80%, and this is clarified now.

Lines 880-883: TCs do not occur that often in the region, but it is still nice to report on their impacts

Agree and this is slightly modified now.

Thanks for your constructive points.
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8 Abstract The goal of this paper is to provide an overview the microphysical
9  measurements made during the C-FOG (Toward Improving Coastal Fog Prediction) field
10  project. In addition, we evaluate microphysical parameterizations using the C-FOG
11  dataset. C-FOG is designed to advance understanding of liquid fog formation,
12 development, and dissipation in coastal environments to improve fog predictability and
13 monitoring. The project took place along eastern Canada’s (Nova Scotia, NS and
14 Newfoundland, NL) coastlines and open water environments from August-October 2018,
15 where environmental conditions play an important role for late-season fog formation.
16  Visibility (Vis), wind speed (Un), and turbulence along coastlines are the most critical
17 weather-related parameters affecting marine transportation and aviation. In the analysis,
18  microphysical observations are summarized first and then they are, together with 3D-
19 wind components, used for fog intensity (visibility) evaluation. Results suggest that
20 detailed microphysical observations collected at the supersites and aboard the Research
21 Vessel (R/V) Hugh R. Sharp are useful for developing microphysical parameterizations.
22 The fog life cycle and turbulence kinetic energy dissipation rate were strongly related to
23 each other. The magnitude of 3D-wind fluctuations was higher during the formation and
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dissipation stages. An array of cutting-edge instruments used for data collection provided
new insight into the variability and intensity of fog (visibility) and microphysics. It is
cconcluded__—that further modifications in microphysical observations and
parameterizations are needed to improve fog predictability of NWP (Numerical Weather
Prediction) models.

Keywords: Fog Microphysics. Coastal Fog. Visibility. Eddy Dissipation Rate

1 Introduction

Coastal fog plays an important role for weather conditions affecting marine environments
that include aviation (Gultepe et al 2020), marine shipping (Fernando et al 2020),
sporting and social activities (Pezzoli et al 2010), as well as vegetation (Schemenauer et
al 2016; Torregrosa et al 2014). The direct consequence of fog is the impairment of
visibility, and hence the ‘intensity’ of fog is defined in terms of visibility (Vis).
Advection supplies moisture for Atlantic-Canadian coastal fog, while the overhead
passage of cyclonic or anticyclonic systemssterms fosters its actual formation (Dorman et
al. 2020). Other factors such as large-scale subsidence leading to thermal inversions,
frontal systems, radiative cooling, topography, tropical cyclones, and turbulence fluxes
can also have an impact on the life cycle of coastal fog (Gultepe et al 2007; Toth et al
2011). Intensity of turbulence and turbulence dissipation rate occurred during life cycle
of radiation fog were studied by Zhou and Ferrier (2008) and Price (2019) and these

suggested that turbulence intensity should be less than a threshold value.

Microphysical measurements were performed using a fog measuring device
(FMD, FM100) for the first time by Gultepe et al (2007a) during the FRAM project,
followed by others (Niu et al 2010; Spiegel et al 2012; Isaac et al 2020). The FM100 was
developed using the principles of a forward scattering probe (FSSP), measurements of
which were used in developing Vis parameterization by Gultepe et al (2007b). The
FM100 provides droplet spectra, which are used to obtain liquid water content (LWC?),

*Definitions are provided in Nomenclature in the end of paper.
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72 mean volume diameter (MVD), effective size (rRefr), droplet number concentration (Ng),
73 and the droplet settling rate (LWCeVs), where Vr is the droplet fall velocity. NWP
74  modeling and evaluation studies of fog have helped to improve forecasting and gain
75  physical insights (e.g. Yang et al. 2009; Gultepe et al. 2007a,b).Warm-fog droplet spectra
76  and its distribution are related to condensation nuclei (CN) and relative humidity with
77  respect to water (RHw). There have been several studies on this issue, but cloud
78  condensation nuclei (CCN) versus supersaturation with respect to water (Sw)
79  relationships are mostly developed for cloud studies and generally use fixed values of
80 100 cm for marine environments (Thompson et al 2008). In reality, such fixed values
81  may not be valid, and therefore we have seen parametric modifications. {Fhempsen-etal
82  2014)—Prediction of Ng is obtained using prognostic equations that represent processes
83 related to turbulence, droplet growth, radiative heating/cooling, as well as turbulence flux
84  divergence (Storelvmo et al 2014). Based on assumed modified-gamma distributions,
85  either using Kohler theory (Chen 1994) and/or Twomey parameterization (Twomey
86  1959), Ng predictions can be performed using single or double moment microphysical
87  schemes (Milbrandt and Yau, 2005a,b; Morrison and Gettelman 2008; Schwenkel and
88  Maronga, 2019). However, these schemes have been developed for clouds and not for
‘ 89  fog. orspecifically-coastalfog:
90 As in Twomey et al (1959), Nq is parameterized based on Kohler theory assuming

91  equilibrium and cooling of an air volume by lifting via the vertical air velocity (wa). The

‘ 92 latter in fog, excluding formation and dissipation conditions, is usually not as strong as in
93 clouds, complicating the application of these parameterizations to fog. Therefore, its
94  usage cannot be verified for all fog types. Another equation for Ng prediction, mainly
95 applicable to climate studies, expresses it as a function of wa, Na (aerosol total number
96  concentration) as well as aerosol composition (Abdul-Razzak and Ghan 2000; Ghan et al
97  1998; 2001). In addition to parameters given in Twomey (1974; 1991), this equation uses
98 aerosol composition as an independent parameter. Clearly, environmental conditions such
99  as air temperature (Ta), dew point temperature (Tq) and RHw, and wa as well as aerosol

100  and microphysics parameters (CCN and droplet growth rate) play an important role in Ng

101  prediction, thereby affecting Vis estimation (Schwenkel and Maronga, 2019). In this

102 regard, Gultepe et al (2007b) have suggested that accurate predictions of Ng and LWC are
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critical for Vis prediction, and Vis cannot be accurate if only LWC is used (Kunkel 1984;
Stoelinga and Warner 1999). Vis is usually diagnosed in the post processing stage of
forecast model outputs using Stoelinga-Warner's method (Stoelinga and Warner 1999),
which includes large uncertainties in fog prediction (Gultepe et al 2006, 2007c).

Lately, field observations from various projects have been used to improve Vis
parameterizations (Gultepe et al 2009; 2014; Haeffelin 2010; Price et al 2018; Wang et al
2020) but these are often site dependent because of the nature of Na spectra and
compositional properties (Bergot et al 2005). In this respect, marine fog and-cloud-studies
have-been-used-to-develop-m_used microphysical parameterizations extensively (Gultepe
et al 2009; Gultepe et al 1996). The C-FOG (Toward Improving Coastal Fog Prediction)

field project has had better tools to evaluate coastal fog microphysical and dynamical

properties, such as droplet and aerosol spectra and turbulence over both the coastal areas
and at the ship (Fernando et al 2020).

Adthough Vis parameterizations commonly use only RHw and/or (Ta-Tq) (called
dew point depression) to predict fog coverage_but --they cannot be used for fog intensity
(drop-ofe.q., Vis) because RHw (as well as Te-Tq) indicates only the existence of fog
(Toth et al., 2011; Gultepe et al 2009; Renata et al 2020). Therefore, fog microphysical
parameters such as LWC and Nq are needed for accurate Vis forecasting, but they are not

accurately predicted by models_(Pu et al 2016, Renata et al 2020, Gultepe and Milbrandt

2010). In single-moment and double moment microphysical schemes used in NWP

models, LWC is usually a prognostic variable; and but-net Ng is {assumed as a fixed
value or)}—tn-deuble-moment-schemes,—Ng¢-can-be or obtained either deterministically or

prognostically, by making several assumptions on physical terms affecting Nq._If Ng_is

[ Formatted: Subscript

not fixed, a modified gamma distribution is usually assumed in presenting fog droplet

size distribution that is used to obtain Ng.
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-apaperin-this-C-FOG-specialssue-on-ceastal-fog-In this work, C-FOG related

studies are briefly summarized; {Bimitrova-etal2020)-WRF fog simulations predictiens
usingwith  various microphysical and surface boundary layer schemes are

performedtested for Vis predictions at the ship and supersite locations. Another
microphysics paper is focused on a case of stratus lowering fog over the coastline based

on the R/V Sharp observations (Wagh et al 2020). Understanding fog microphysics and
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134 its impact on Vis, based on a LES model, is provided by Wainwright and Richter (2020).
135 A study using a Tethered Balloon System (TBS) with aerosol and droplet spectral
136  measurements as well as fog thermodynamics is examined by Singh et al (2020). Detailed
137  coastal fog observations at The Downs, Ferryland (Wang et al. 2020) are studied by
138  providing TBS dynamic and thermodynamic profiles and collecting fog-droplet spectra
139  and-aeresol-extinction—parameters—from a cloud—drepletprobe{CBP)fog measuring
140  device in-a-heusing-unit. Perelet et al (2020) present a methodology for using a two-
141 wavelength scintillometry system for measuring fog characteristics on scales of 1 km.
142 Wang et al. (2020) also focused on the impact of the fog layer on optical propagation
143 using contrasting measurements at Ferryland and on the US West Coast. In addition,
144 large-scale synoptic events affecting local fog formation are summarized by Dorman et al
145  (2020). An overview of the C-GOG project is given in Fernando et al. (2020).

146 The goal of this paper is to provide an overview of coastal fog microphysical
147  measurements and to evaluate microphysical parameterizations based on the C-FOG

148  {Foward-lmproving-Coastal-Fog-Prediction)-field project._In addition, the importance of

149  fog Vis predictions is discussed and challenges are noted when turbulence kinetic energy

150 (TKE) dissipation rates are included. C-FOG-is-desighed-to-advance-our-understanding

151

152 i itoring—The C-FOG field project has
153 microphysical observations from several coastal ané sites and the R/V Hugh R. Sharp

154 (hereafter R/V Sharp). In-addition—theimportance—fog-\is-predictions-is-discussed-and
155 e , inati o .

provided

156  The paper organization is planned as follow: Section 2 provides information on

157  observations and project design. Section 3 explains the analysis used in Vis and eddy
158  dissipation rate (EDR) parameterizations. Sections 4 and 5 focus on discussions and
159  conclusions, respectively.

160

161 2 Field Project and Observations

162 2.1 Project Location

163  The C-FOG field campaign took place from 01 September to 07 October 2018. The field
164  campaign took place along the coastlines of Atlantic Canada and the northeastern US. C-
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165 FOG is designed to advance our understanding of liquid fog formation, development, and

166  dissipation over coastal environments, and thus improve fog predictability and

167  monitoring. It was designed to capture fog variability in time and space using an array of
168  platforms that included ground, airborne, and shipborne in-situ instruments, remote

169  sensors as well as numerical models.

170 —Instruments were located at two supersites

171  (Battery and The Downs sites in Ferryland, NL; Figure 1a,b), four satellite sites, as well
172 as on the R/V Sharp (Fernando et al 2020). Figure 1c shows the entire project area
173 overlaid on a satellite SST image for 28 September 2018. A strong SST gradient stands
174  out near the northern region of the project area. In the current study, four cases are
175  presented covering parts of the Intense Operational Periods I0P10 (27-30 Sep 2018) and
176 10P 12 (03-04 Oct 2018) that mainly represent warm advection fog events (Table 1).

177

178

179

180  Table 1 Case studies of coastal fog events studied in the present work. T, is air temperature and SST is sea

181 surface temperature.

Day Location Weather
Sep 28 2018 Battery supersite Ta, SST, warm air advection
Sep 29 2018 Battery supersite Warm air advection
Sep 28 2018 R/V Sharp Warm air advection
Oct 04 2018 R/V Sharp Advection and tropical
| depressioneyclonre
182
183
184
185
186
187
188
189
190
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232 Fig. 1 Ferryland supersite region (a), Battery supersite (b), NOAA NESDIS Geo-Polar blended 5 km SST
233 and entire project area with supersites (red circles) and ship locations (indicated by a red star for foggy days
234 (c), synoptic weather systems affecting project area (d) with LP for “low pressure”, F “front”, SST “sea
235 surface temperature”, AP “advection process”, HP “high pressure”, and CS “cyclonic system”, and US
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236 NCEP (National Center for Environmental Prediction) GFS (Global Forecasting System) based surface
237 pressures and wind speed in Knots (€).

238

239

240 2.2 Synoptic Weather Systems

241 The C-FOG campaign took place at the end of the summer fog season (Gultepe et al 2009).
242 During this time, various weather systems affect coastal-fog conditions. Figure 1d shows the SST
243 for the project area and Fig. 1le is the GFS sea-level pressure and 10 m wind vectors on 28
244 September 2018. The latter shows— major weather systems affecting the project area: a low
245  pressure over Nova Scotia in the NW and associated_with a warm frontal system (F) in the
246 east, a high pressure (HP) to the NE, and tropical cyclones- to the south east (CS), and
247  warm-air advection processes (AP) resulting from T and gy gradients along a north-south

248  direction. The tropical cyclones usually became tropical depressions when moved to

249  colder northern latitudes and usually they were about 500 km south and southeast of the

250  main project site. During May 25-Oct 31 2018, 16 tropical depressions occurred over 4-

251  months time period and about 4 of them affected physical conditions somehow at the

252  project site. Their advection of SW quadrant of warm and moist air to N and NW

253  guadrants likely played an important role for fog formation 100s of km away from storm

254  center. Fi

255 . The photos in Figure 2 depict fog cases observed at The
256  Downs supersite, and from the R/V Sharp, respectively.
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257
258 Fig. 2 shews-tThe pictures of advection process occurring on Sep 28/29 2018 case at the Downs supersite
259  (a) and on Oct 04 2018 (taken from the RV) (b).

260 2.3 Microphysical Observations
261 In this subsection, microphysical and meteorological instruments as—weH—as—other

262  available-sensors-are summarized. All instruments used are summarized in Fernando et

263 al. (2020). These measurements are related to dynamics, microphysics, radiation, aerosol,

264 and thermodynamic properties of the environment._For particle size thresholds, fog

265  droplets usually cover 1-30 um, cloud droplets 1-100 um, drizzle drops 100 (or 30)-500

266 um, and drizzle and rain drops >100 pum in diameter.

267 Microphysical instruments used during C-FOG are summarized in Table 2a for
268 the R/V Sharp and in Table 2b-3 for all ground-based sites. Special sensors (Table 2a)

269  were developed for fog microphysics investigations, including a ‘gondola’ shaped
270 assembly (located on the R/V Sharp) that contained microphysical sensors such as a cloud
271  droplet probe (CDP) and a backscatter cloud probe (BCP)_in a gondola unit for measuring

10|Page



‘272
273
‘274

275
|276
277
278
279
280

281
282
283
284
285
286
287
288
289
290

291
292
293
294
295

droplet sizes ranging from 1-50 and 5-75 um, respectively- A laser precipitation monitor
(LPM) for 100 pm to mm sizes and an optical particle counter (OPC) for sizes of 0.3-20
um using 1620 spectral channels allowed fog and drizzle discrimination_(Table 2).

Table 2a Microphysical instruments mounted on the R/V Sharp during the C-FOG campaign. Parameters
in Column 2: Ng Droplet number concentration, Na Aerosol number concentration, SV Sampling Volume,
Sw Supersaturation with respect to water, and Vis Visibility. Parameters in Column 4: UOIT Ontario
Technical University, UU University of Utah, Wood Corporation, DU Dalhousie University, and NDU
Notre Dame University.

Instrument Name Measurements | Height (asl, m) | Owner
CDP, DMT, Gondola Ny, Droplet spectra (1-50) um 31.8 uoIT
BCP, DMT, Gondola Ny, Droplet spectra (5-75) um 31.8 uoIT
OPC N2, Alphasense Na, Aerosol Spectra 0.38-17um, 16 channels 15 uu
DMT, FM120, near Gondola Ny, Droplet spectra (1-50) um 31.6 WOOD
TSI Moudi Impactor 100NR Na spectra, 0.18-18 um, 8 stages, 30 L m™! 37.9 WOOD
Virtual Impactor Inlet At 20 m, SV=16.7 L mint 30.1 DU
SMPS 3082, TSI N. Spectra, 10-500 nm; SV=1.0 L min* 30.1 DU
APS 3321, TSI Na Spectra, 0.5-20 um SV=1.0 L min* 30.1 DU
ACSM, Aerodyne Na Composition, <1 um SV=0.1 L min* 30.1 DU
CCN-100, DMT N2>0.01 u1m;Sw=0.2,0.4,0.8,1% SV=0.5 L m* 30.1 DU
PWD22- Vaisala Vis <20 km 10 NDU

Also, three Scintillometers (Table 32b) with measurements in the NIR_(Near
Infra-Red) and MW (MicroWave) radiation channels were utilized to allow
discrimination of fog from rain (Perelet et al 2020). Figure 3 shows the microphysical,
aerosols, as well as meteorological instruments. Remote-sensing platforms (e.g.
microwave radiometer MWR, ceilometer, Lidar), meteorological towers, tethered

balloons, and the GOES-R (Geostationary Operational Environmental Satellite-R series)

Products (fog coverage and effective droplet size) provided information on horizontal and
vertical variability. Observational products are used for fog-visibility parameterization
development, with a focus on understanding the influence of dynamical processes such as

turbulent mixing and dissipation.

Table 32b Microphysical instruments located at the ground sites during C-FOG field campaign. The
parameters in Column 2: Vis Visibility, PR Precipitation rate, IR Infrared, SW shortwave, RF radiative

fluxes, LWC liquid water content, Z. radar reflectivity, V4 Doppler velocity, N. aerosol number
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296
297
298
299
300

concentration, Ze, cloud base height, B backscattering coefficient, A wavelength, B, extinction coefficient,
CN condensation nuclei, RH relative humidity, T temperature, Uy horizontal wind, and P pressure.
Parameters in Column 7 and 8: BA Battery Supersite, BH Blackhead site, DO Downs Supersite, UOIT
Ontario Technical University, UU University of Utah, UND University of Notre Dame, and NPS Navy

Postgraduate School.

Instrument Name Measurements H z Lat Lon Site Owner
(agl.m#m) | (agl.m) | [deg] [deg]
AGL
PWD50-Vaisala Vis and PR 2 6 47.03443 | -52.8782 | BA UoIT
FM100 & FM120 Fog droplet spectra 47.03443 | -52.8782 | BA uoIT
CRN1 IR&SW up and down RF | 2 6 47.03443 | -52.8782 | BA uoIT
Kipp&Zonen
PMWR MP3017 Profiling, T, RH, LWC 2 6 47.03443 | -52.8782 | BA UoIT
MRR, Metek Ze & Vy 2 6 47.03443 | -52.8782 | BA uoIT
LPM, Metek Precip. Spectra >100 um 2 6 47.03443 | -52.8782 | BA uoIT
OPC, Alphasense Na spectra, >0.3 um 2 6 47.03443 | -52.8782 | BA uu
CL31, Vaisala Zgand B 2 6 47.03443 | -52.8782 | BA uu
Vaisala PWD 50 Vis (<30 km) 2.9 10 4752633 | -52.6583 | BH uoIT
Vaisala PWD 22 Vis (<30 km) 3 31 47.02181 | -52.8731 | DO UND
LPM Metek Precip. spectra >100 um 2.74 10 4752633 | -52.6583 | BH uoIT
OPC, Alphasense Aerosol spect. (0.3-20 um) | 1.37 10 4752633 | -52.6583 | BH uu
DMT CDP fog droplets (1-50 pm) 3 31 47.02181 | -52.8731 | DO NPS
TSI -3563 3-) scat& Bn 3 31 47.02181 | -52.8731 | DO NPS
Nephelometer (0.45,0.55,070 pm)
TSI OPC-310 CN>0.01 pm 3 31 47.02181 | -52.8731 | DO NPS
PSAP, Part Soot 1-A absorp. at 0.565 um 3 31 47.02181 | -52.8731 | DO NPS
Abs Photometer
Scintillometer wavelength 0.88 pm 29 31 47.02181 | -52.8731 | DO-BH | NPS
(BLS -900, Scintec | extinction Tx-Rx
AG)
Scintillometer wavelength 0.88 pm 2 6 47.03443 | -52.8782 | BA-DO | UU
(BLS 900, Scintec | extinction, Tx-Rx
AG)
Scint. MWSC 160, | microwave (wavelength 2 6 47.03443 | -52.8782 | BA-DO | UU
Radio.Phy. GmbH | 1.860 pum extinction Tx-RX
Met parameters RH, T, Uh, P 3 31 47.02181 | -52.8731 | DO NPS
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301
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307

BCP (2010)

Fig. 3 PShews—project locations with microphysical probes: NPS microphysical sensors mounted on a
trailer at the Downs site (a), CDP2 located in a housing shown in (b), FM120, PWD, LPM at Battery (c),
PWD, LPM, and OPC at Blackhead (d), a close look of FM120 at Battery (e), PMWR at Battery (f), Wood
MOUDI impactor (g), Gondola BCP (h) and CDP2 (i) mounted on Sharp RV, UU OPC (j), Wood Corp
FM120 (k), Dalhousie University(DU) CCNC (I), DU SMPS (m), and DU ACSM (n), and Gondola housed
CDP and BCP (0) physical characteristics (adapted from Beswick et al 2014).
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308 2.4 Macro-physical Characteristics

‘309 During the installation and campaign period that spanned 7-weeks (Aug 14-Oct 7 2018)
310 various fog conditions existed, as represented by Vis measurements from the Battery site
311 (Fig. 4). This figure shows Vis for 46 days starting from Aug 21 to Oct 7 during which
‘312 drizzle and light precipitation usually occurred prior to fog.,—and—a Average fog

313  occurrence during entire campaign was about 20-25%.
VIS FOR ALL DAYS

Visibility [km]

20 30 40 50
314 Time [Days]

315 Fig. 4-Shews Ttime series of Vis obtained from PWD52 present weather sensor for the entire time period

316  from Aug 24 to Oct07 2018. The red dots are for drizzle and black lines are for fog Vis. Transition from

317 fog to drizzle cannot be exactly defined. The line with double arrow indicates Vis level at 1 km.

318

319 A CL31 ceilometer measured the backscatter ratio (B) time and height cross
320  sections at the Battery supersite and on the R/V Sharp for the 4 cases studied, as shown in
321  Fig. 5. Note that the ceilometer-based fog-top heights are not accurate because of its
322  strong extinction when a large number of smaller fog droplets exist. Figure 5a and 5b are
323 for 28 and 29 September cases, respectively, as observed at the Battery supersite and Fig.
324  5cand 5d are for 28 September and 04 October cases, respectively, aboard R/V Sharp.

325 The 28 September case at the Battery site, occurred at about 1000 UTC after the
326  stratus layer base lowered from 500 m to the surface over 3 hrs. Some drizzle was
327 observed (indicated by the spiking cloud base in red color), which disappeared about
328 1700 UTC. The 29 September case was a continuation of the 28 September case, during
329  which fog briefly lifted at 1600 UTC and then re-formed at 2200 UTC and lasted until
330 almost 1800 UTC, which is not likely related solely to a lowering stratus, but was also

331 likely due to warm-air advection_that is verified by using synoptic weather conditions-
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332 The R/V Sharp data for 28 September (Fig. 5c) show that the cloud base
333 decreased from 500 m at 0000 UTC to almost the surface at 1000 UTC, and then lifted
334  very quickly at 1330 UTC. After this, the stratus base lowered again to form fog at 1400
335 UTC. At 1600 UTC, the fog base lifted and eventually disappeared. The R/V Sharp
336  observations for 04 October show that fog formed again due to stratus lowering around
337 2000 UTC and lasted until 2300 UTC. Note that the lowering cloud base occurred late on
338 this day and is likely due to IR cooling and/or large-scale subsidence. This might also be
339 related to drizzle that moistened lower layers, eventually led to fog formation (Singh et al
340  2020; Wagh et al 2020).

282018 283208 Bsep 218 25092018
w0 0800 1200 1500 b i

Tima (NST)

Tine (UIC)
1200

0402018 0402018 040ct2018 040ct2018 050ct2018
200 0800 1200 1800 0000

28Sep 2018 2 sep 2018 28 Sep 2018 288002018 20Sep 2018
000 0600 1200 180 0000 Tine UTG)
Time (UTC)

355 Fig. 5 Time-height cross sections of backscatter coefficient (B) from CL31 ceilometers measurements- at
356 the Battery supersite and onboard the Sharp RV for the 4 cases studied; Sep 28 (a) and Sep 29 (b) cases
357  observed at the Battery supersite and Sep 28 (c) and Oct 04 2018 (d) cases at the Sharp RV. The white

358 lines with arrow indicate foggy regions.

359 The general characteristics of these four fog cases at the Battery supersite and R/V
360 Sharp are presented as a backdrop for the development of microphysical
361  parameterizations. Note that ceilometer measurements cannot unequivocally identify fog
362  regions, and ceilometer inferences should be validated using PWD Vis observations.
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363
364 3.  ANALYSIS AND MICROPHYSICAL PARAMETERIZATION

365 An analysis of the main microphysical and turbulence parameters to be used in the

366  evaluation of fog conditions and for developing parameterizations is provided in this
367  section.
368

369 3.1 Time Series of microphysical parametersef-Ng and Turbulence Dissipation Rate

370 (¢)

371 Time series were obtained based on various microphysical parameters, including Vis, Ng,
372 LWC, and MVD. Vis was obtained from PWD52 measurements representing various
373 NWS (National Weather Service) codes, droplet spectral measurements of FMD (FM120,
374  in Battery) and CDP and BCP housed in the gondola aboard the R/V Sharp. NOAA NWS
375 codes can be found in LPM (2011), based on PR and Vis time series for each
376  hydrometeor type obtained. The FMD was operated at a 1 Hz sampling rate, compared to
377  1-min Vis measurements from PWD52. All meteorological parameters such as T, RHuw,
378  and wind speed (Un) and directions were employed as appropriate.

379 Nq¢ is obtained using the corrected ship heading and apparent wind, which
380 includes both ship speed and wind measurements (Gultepe and Starr 1995). It is corrected
381 by computing the cosine of the angle 8 between the heading and the apparent wind

382  measured by an anemometer as

383 Ny = N,&/(SA * TAS * At), (1)
384  where the true air speed (TAS) is given by

385 TAS = Up,cos6. (2
386 In Eq. 1, SA is the sampling area, At the sampling interval and N¢€ the counts of

387  droplets in each bin of the CDP and BCP. Ng is obtained from the FM120 located at the
388  Battery site was-ebtained using a fixed TAS (true air speed) of 5 m s for sampling of the
389  environmental air. Un, is the apparent wind speed that includes both ship speed and wind
‘390 speed. During rermal-normal observational conditions, the R/V Sharp average speed was
391 about8 ms,

‘392 The TKE dissipation rate (edis) is usually calculated based on the spectral slope

393  assumption, representing the inertial subrange (Panofsky and Dutton, 1984). In our work,
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394  1-minute averaged data from 3D sonic anemometer wind measurements (collected at 20
395 Hz) at 2 m were used to estimate €. This calculation uses an assumption that turbulence
396 fluctuations do not change over 1 min intervals. It should be noted that & calculation is
397  strongly related to averaging scales and here € approximately represents scales of 0.3-0.5
398  km that matches scales of high resolution NWP models Thus, using a structure function,
399  gis estimated (Paluch and Baumgardner, 1989; Gultepe and Starr, 1995). Clearly, 1-min
400 averages do not capture inertial subrange scales but a structure function representing 3D
401  scales can be used to calculate &gis along the mean horizontal wind speed as

402 €E4is = ﬁ L‘TD;BJS/Z, (3)
403  where C is a constant ~0.18, Ds the structure function and Ar the horizontal distance
404  along main horizontal wind, and these are given, respectively, as

405 Dy = 0.38(4u? + Av? + Aw?) and Ar = dAt(UZ, + UZ,)">. — 4)

406  In Eq. 4, Au, Av, and Aw represent the change in wind components along x, y, and z axis

407  at unit time interval (At), receptively; Uax and Ugy are wind speed components along x

408  and y axis, respectively, over At. in-Cartesian-system—over dt-{samphng-time—period)-

409  Thus, Eq. 3 can then be used in dissipation rate calculations and evaluation of the fog life

410  cycle._For the NWP models, ¢ is not always an output parameter; therefore, TKE can be

411  calculated from the following equation (or a transformation equation given in Discussion

412  section) that is used to obtain a threshold for fog formation:

413 TKE == (w? + v + w'?), (5)

414  where u',v’,and w'_are fluctuations of wind x, y, and z components that are calculated

415  over 10 min intervals.

416

417 3.2 Visibility Parameterization

418  The visibility parameterization is calculated diagnostically, which is a function of various
419  moments of DSD (drop size distribution). In this study, Ng and LWC are used in the Vis
420  parameterization; but Ng is replaced with MVD to emphasize that two microphysical
421 parameters are sufficient to calculate Vis (Gultepe et al 2018). It is emphasized that
422 either RHw or Ta-Tq can enhy-be used to indicate the existence of fog, but not intensity
423 (e.g. Vis).
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3.2.1 Vis-RHw Parameterization

The visibility can be parameterized as a function of RHw, which is measured by a Vaisala
HMP 155. RHw is measured together with T, from which Tq is estimated. A PWD is used
to obtain Vis measurements. The functional relationship between Vis and RHyw is
determined by testing various regression fits and selecting the function that ‘best” fits the
observations. Here, humidity data used for the best fit are first bin averaged in 5%
intervals. A derived relationship between Vis and RH, together with a plot is provided in

section 4.1.1 and given in Table 3. Note that we do not use Ta-Tg in the Vis

parameterization because RHyw is based on both T, and T4 (Gultepe and Milbrandt 2011).
Therefore, fog coverage is obtained when RHw > 95%, which is further explained in the

results section.

3.2.2 Vis versus Microphysics Parameters

Fog Vis can be obtained in two ways. The first is based on an extinction coefficient
measured directly by a probe (e.g., PWD) which is then used to retrieve microphysical
parameters assuming certain particle size distributions. The second is based on droplet
spectral measurements from which LWC and Ng (or MVD) can be used to estimate Vis.
Usually, direct measurement of Vis cannot be considered in the same way as those
obtained from measured particle size spectra, because of measurement issues. Using
warm fog microphysical spectral measurements, Gultepe et al (2006) developed a
parameterization that is based on the theory of extinction of visible light in a volume of

fog droplets as

Bext = ZrimQers (r, In(r)r?Ar, (65)
where Bex is the extinction coefficient (cm™), Qe the extinction efficiency, r droplet
radius (um), A the visible light wavelength (um), n(r) the particle number density (cm™
um 1), and r? the droplet surface area. Qerr is usually assumed to be 2, because size
parameters (k=2zr/)) are within the regions where geometric optics apply. For sizes less

than about 5 um, Qesf can be larger than 2, significantly affecting the extinction of visible
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light. Equation 5 can be used for calculating Bex: if the particle size spectrum is known for
each time step, when NWP model simulations exist.
The extinction coefficient (Eq. 65) can be converted into Vis using the

Koschmieder (1924) relationship as

Vis = Q) (78)
Bext

For the meteorological observed range (MOR), C is defined as the threshold value that
best fits to conditions whereby the human eye can recognize a target during daytime and
is taken as 0.05 (Gultepe et al 2014). Using Eq. 5 and Eq. 6, the Vis can be obtained as

_ ~@n(epw Iin(riar

Vis =
QextLWC Y2 n(r)r2ar

(&%)

LS = o. P ——
Vis !;2 I() LAk 89

QextLWC'
where pw is the liquid water density ~1000 kg m. Vis can be obtained from Eq. 89 if the
effective radius (rer) and LWC are known. Mist conditions (defined as Vis>1 km and
RHw<100%) can also be important for visibility reduction due to swelled aerosols_(Fig.

6)._A lower limit for mist is usually defined as RHw~80%. Haze is composed of dry

aerosols where RHw is isually <70%. Lower limit of haze Vis can be down to a few km.

Since Ng is inversely related to particle size (e.g. ref), as resr decreases Nq usually

increases. Gultepe and Milbrandt (2007) replaced Eq. 98 with the approximate form

Y
Vis = a ["—W] , (109)
QeffNgLWC

where o and y are regression constants, and Ng and LWC are obtained from fog DSD,
respectively, as
Ny = X3 n(r)ar (101)
and
LWC = Zﬁ(g)npwn(r)TSAr . (122)
Assuming that Qefr, and pw are constants, Eq. 109 can be rewritten as
Vis = a(N,LWC) ™Y, (123)
which can be converted to Bext using Eq. 76. For Eq. 132, a and y are provided in Table
34. In NWP models, Vis is usually diagnosed with post processed model outputs for

LWC, which is typically a prognostic output variable. If a numerical forecast model can
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482  resolve microphysical processes at small time and space scales, Vis can also be predicted
483  diagnostically. This parameterization does not need droplet spectra at each time step that
484  increases calculation time significantly.

485 Vis parameterizations may not include effective size (or MVD) because Ngq is a

486  function of MVD as follows

1) Lwc (143)

487 Ng = (; MVD3
488  where k=(4/3)npw. Moreover, replacing Ng in Eq. 123 with Eq. 143, Vis can be rewritten

489  as follows

Lwc
MVD3/2

)7 (145)

490 Vis = a((%)
491  This suggests that knowing MVD and LWC, Vis can be obtained prognostically from a
492 NWP model simulation without requirement of Na. Therefore, the 3rd parameter from a
493  DSD may not be required.

494

495 4 Results

496 4.1 The 8 September Case (Battery Site)

497  4.1.1 Vis-RH, Parameterization

498  Vis-RHw parameterizations are usually derived for fog coverage but not fog intensity,
499  which are obtained based on observations of Vis and RHw, as well as T,-Tq differences.
500 RHw close to 100% indicates the existence of fog layers but does not indicate intensity
501  because of measurement uncertainty in T and Tq measurements and RHw (Gultepe et al
502  2019). In fact, RHy is obtained as a function of T, and Tq so it is redundant to use both
503  Ta-Tg and RHyw in the same parameterization (Gultepe and Milbrandt 2010; Benjamin et
504 al 2010; Smirnova et al. 2000). Figure 6 shows Vis versus RHy for 3 sites located in
505  Ferryland, including Battery, Blackhead, and the Downs, for 28 Sep 2018. In this figure,
506  fog (Vis<l km), mist (2>Vis>1 km), and haze layers (Vis>2 km & RHw<80%) as well as
507 rain data points are shown. Differences among RHw values are likely related to location
508 and elevation differences. A best fit for the equation for Vis versus RHw using 5% RHw
509 hins is also shown in the figure 6 and given in Table 3.-
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Fig. 6 Vis versus RHy for NWS hydrometeor classification based on PWD instrument measurements at
Battery, Blackhead, and Downs sites on 28 Sep 2018. The fit line is applied to bin averaged RH,, values at
5% intervals. The equation fitted is shown on the plot together with rain data points.

This figure suggests that Vis<1 km corresponds to RHw>95%, which can be used
as a criterion for detecting fog coverage but not intensity. Note that RHw measurement
accuracy is about 10% (Gultepe et al 2019). Haze and mist layers can occur when RHy >
55% up to RHw ~ 95% (Vis> 1 km). Rain with Vis <1 km occurs when RHw < 95%.
Evidently there is no clear distinction between mist and haze for Vis (>1 km). Another
point is that Blackhead and The Downs had a larger RHw compared to the Battery site,

likely due to their higher elevations (30 m versus 2 m).

4.1.2 Time Series of Meteorological Parameters
Time series of Vis, PR, and precipitation types are shown in Fig. 7a based from PWD
measurements at 1-min time resolution. Fog and mist are seen mainly in the early
morning (segment 1; rectangular box) and later in the day (segment 2). Specifically, a
drizzle and light rain event is clearly seen before segment 2, which likely played an
important role for BL saturation. During fog events Vis was a few 100s of meters.

Fog formation and dissipation are likely related to the TKE magnitude and
dissipation rate, which are related to the fluctuations of 3D wind components. The value

for ¢ is calculated from Eq. 3 using 3D wind components and a 2D structure function (Eq.
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531  4) and utilizing 1-min and 5-min running averages (Fig. 7b). The ¢ during fog is usually
532 less than for fog free conditions (e.g. 0500 and 2000 UTC). The 3D wind components are
533  shown in Fig. 7c. During fog events (see Vis time series in Fig. 7c), the magnitudes of 3D
534  wind components are found to be significantly lower than for fog free conditions. The
535  vertical air velocity (wa) fluctuations were significantly smaller compared to u and v
536 components for the entire day, indicating the importance of advection processes in the
537  horizontal direction on the fog life cycle. Figure 7d shows 1-minute averaged local
538  accelerations of u, v, and ws, indicating that the turbulence intensity levels were almost
539  50% less compared to fog-free segments.

540 Results suggest that ¢ is about 3x10* m? s¥ in foggy segments compared to
541 >1x10° m? s in fog-free conditions, which can be used as a criterion for fog formation
542 and dissipation. These values are found to be comparable to those of The Downs site
543 (Grachev et al. 2020) who showed that during foggy conditions qis was between 1x107°
544 m? s and 1x10* m? s3. Some differences between their work and current work is that
545  The Downs site at 30 m likely had stronger wind fluctuations compared to current one at
546  sea level. Another reason may arise due to their use of TKE based on averages done over
547 15 mins.

548

549  4.1.3 Vis parameterization and microphysical parameters

550 To develop a Vis parameterization, fog microphysical parameters such as Ng, MVD, and
551  LWC are needed because Vis is defined in terms of these parameters. Microphysical
552  parameters are calculated from the FM120 measurements from the Battery site. Figure 8a
553  shows a time series of Ng as a function of LWC, where Nq increases with increasing
554  LWC. Ng time series as a function of log(Vis) is shown in Fig. 8b where log(Vis) < 0
555 indicates fog conditions. Vis decreases with increasing Ng. These figures suggest that Vis
556 s related to both Ng and LWC (Gultepe et al 2006). Figure 8c shows MVD versus Nqas a
557  function of LWC (color bar) together with theoretical lines obtained from Eq. 13. The
558 lines ranging from bottom to top in Fig. 8c represent values for LWC = 0.001:0.01:0.1 g
559  m™ with solid lines, and LWC = 0.1:0.05:0.3 g m*® with dashed lines with theoretical
560 lines calculated using Eq. 13 (c). Clearly MVD is a function of Ng, and decreases with

561 increasing Ng while LWC increases. This suggests that Vis can be obtained as a function
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592

of either Ng and LWC or MVD and LWC. Figure 8d shows the fit equation for Vis =
f(LWC, Nq) overlaid on observations, where mean values at dx intervals along x axis and
percentile values are also shown. This equation is obtained from the measurements at
Battery and represents local coastal fog conditions.
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Fig. 7 Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 for Battery site (a) with fog regions
shown with light blue data points, eqis (terbulence-TKE dissipation rate) time series for 1-min and_5-min
running averages are shown in (b), 1-min averaged 3D wind components of uy, vy, and w, as well as Vis
time series (purple line) are shown in (c) with fog regions indicated as blue colored horizontal bars, and (c),

and acceleration terms du/dt (black line), dv/dt (green line), and dw/dt (red line) with dt=60 s and Vis time
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593 series (blue line) are shown in (d). Note that during fog conditions these wind speed changes become
594 comparable low versus fog free conditions.

595 4.2 The 29 September case (Battery site)

596 4.2.1 Time Series of Meteorological Parameters

597  Time series of Vis, PR, and precipitation types are shown in Fig. 9a, similar to the 28 Sep
598  case, representing PWD measurements at 1-min sampling rate. Fog and mist are seen
599  mainly between 0000 UTC and 1200 UTC early morning (segment 1) and mist and
600 drizzle mainly later in the day (segment 2; 1300-0000 UTC). A drizzle event is seen

601  during segment 2. During fog segment 1, Vis is a few hundred meters.

602
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604  Fig. 8 Time series of Ng colored by LWC (a), Nq colored by log(Vis) (b), and MVD versus Nq with points
605  colored by LWC (LWC=0.001:0.01:0.1 solid lines and LWC=0.1:0.05:0.3 dashed lines) (c) with theoretical
606 lines calculated from Eq. 13. Vis parameterization as a function of fog index (FI along x axis) with

607 statistical parameters and fit equation overlaid on observations are shown in (d) for 28 Sep 2018.
608

24 |Page



609
610
611
‘612
613
‘614
615
616
617
618
619
620
621

639
|640

The calculation for ¢ is similar to the 28 Sep case, utilizing 1-min and 5-min

running averages (Fig. 9b). The values for € are found to fluctuate more during the foggy
segment 1 (0000-1000 UTC), than segment 2 (1400-2300 UTC) fog and misty

conditions. The values for & change between 1x102 m? s and 1x107 m? s during the

foggy segment 1, where uy is highly variable between +1 and -1 m s (Fig. 9c and 9d).

Overall, eqis is less than 10° m? s for both fog segments. Figure 9d shows 3D wind

components and Vis, where stronger wind fluctuations likely play an important role,

leading to increasing Vis values during segment 2 (light fog).
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Fig. 9 Vis, PR, and NWS hydrometeor code time series on 29 Sep 2018 for Battery site (a) with fog regions
shown with light blue data points, e4is (FH<E-dissipation—rate) time series for _1 min and 5 min running
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641 averages are shown in (b), 1-min averaged 3D wind components of u, v, and w, as well as Vis time series
642  are shown in (c) with fog regions indicated as blue colored horizontal bars, and (c), and acceleration terms
643 du/dt (black line), dv/dt (green line), and dw/dt (red line) with dt=60 s and Vis time series (blue line) are
644  shown in (d). Note that during fog conditions these wind speed changes become comparable low versus fog

645 free conditions.
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648 Fig. 10 Time series of microphysical parameters Nq versus LWC (a), Ng versus log(Vis) (b), and MVD
649 versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
650  function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
651  are shown in (d) for 04 October 2018.

652

653 In summary, most of the ¢ data points are found below the dissipation rate of
654  3x10°° m? s during fog segments. The wa fluctuations in segment 1 are smaller compared
655 to drizzle and fog conditions seen in segment 2. Note that wetting of the sonic
656  anemometer transmitter/receiver may occasionally cause large fluctuations of wind
657  components during heavy fog conditions. Results suggest that, based on 1-min averages,
658  minimum (max) ¢ is about 1x10% m? s (3x102 m? s%) in foggy segment 1, compared to
659  3x10°° m? s® during mist and drizzle conditions (segment 2). Another point is that
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660  southerly wind fluctuations (wind coming from south) are likely responsible for warm
661  and moist advection over the region, leading to fog formation similar to 28 Sep case.

662

663  4.2.2 Vis parameterization and microphysical parameters

664  Results and parameterizations for this case are obtained similar to that of 28 Sep case
665  (Fig. 10). MVD and Nq are found to be comparatively larger on this day (Fig. 10a,b,c).
666  For example, the maximum MVD reaches 40 um compared to 30 um on 28 Sep. The
667 maximum Ng is about 60 cm™ compared to a maximum for Ng of 70 cm™ on 28 Sep.
668  Finally, the Vis fit equation is shown in Fig. 10d. Overall, the slope of the best fit line is
669  very similar to the 28 Sep case but with relatively lower values of observed Vis.

670

671 4.3 The 28 September Case (RV Sharp)

672  4.3.1 Time Series of Vis and RV Wind Components

673  Time series of R/V Sharp’s navigation parameters obtained from the VectorNav VN100
674 IMU and Trimble BX982 Dual GNSS receiver (Fernando et al 2020) are reported here at
675  1-min intervals (Fig. 11a). This figure shows the R/V Sharp’s speed with respect to the
676  ground (Urv), true wind speed (Unt), wind speed with respect to ground (Unr) and
677  smoothed values of Unr over 10 mins intervals. During the fog event between 1000 UTC
678 and 1600 UTC, the R/V Sharp was heading 250 deg (SW) until 1300 UTC, then changed
679  to 50 deg NE with Ury at about 5-8 m s, Low Vis was observed between 1000 UTC and
680 1600 UTC, during which Vis improved from 1 km to 5 km after R/V Sharp changed
681  direction. After 1600 UTC, Vis increased up to 15 km. Low Vis and haze conditions (Fig.
682  11b) before 1000 UTC likely played an important role later on for drizzle conditions after
683 1000 UTC. Thereafter, drizzle just before fog formation likely led to moistening of the
684  BL and resulted in fog occurrence at about 1200 UTC.

685

686

687

688
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Fig. 11 Time series of Ury, Unt, Unr, and Ungs for 1 min and 10 min running averages are shown in (a) and
Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 (b) with fog regions shown with light

blue data points.

4.3.2Vis parameterization and microphysical parameters from the gondola

In this subsection, fog droplet spectral characteristics obtained from the CDP and BCP
housed in the gondola (Fig. 2) are investigated. Both CDP and BCP plots were obtained
similar to the Battery plots. Note that BCP (Fig. 12) measurement starts at 5 pm
compared to CDP at 2 um (Fig. 13) and had the capability for measurements up to 75 pm.
Measurements of Ng, MVD, and LWC are less than 60 cm®, 40 um, and 40 cm,
respectively. A parameterization is obtained with a power-law form similar to Eqg. 12 and
is shown in the figure. The best fit line indicates that increasing fog index (FI
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=1/(LWC*Ng)) results in increasing Vis, which is found to be similar to the fit line
obtained for the Battery site. FI increases with increasing values of either Ng or LWC.
Note that N4 can be replaced with MVD using Eqg. 14.
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Fig. 12 Time series of microphysical parameters Nq versus LWC (a), Ng versus log(Vis) (b), and MVD
versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
are shown in (d) for RV CDP on 28 Sep 2018.

Fog-droplet spectral characteristics obtained from the BCP measurements are
shown in Fig. 13. Note that because of missing the first 2 channels in BCP compared to
CDP, Ng¢, LWC, and MVD cannot have the same values for both probes. Ng and LWC are
based on BCP measurements and therefore, are expected to be less; but MVD is higher
than CDP parameters. Results suggest that max values for Ng are about 15 cm®, for LWC
about 0.07-0.08 g m, and for MVD~60 pum.
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722 Fig. 13 Time series of microphysical parameters Nq versus LWC (a), Ng versus log(Vis) (b), and MVD
723 versus Nq as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
724  function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
725  are shown in (d) for RV BCP on 28 Sep 2018.

726

727 4.4 The 4 October Case (RV Sharp)

728  4.4.1 Time Series of Vis and RV Wind Components

729  Time series of R/V Sharp’s navigation parameters are given in Fig. 14a. This figure also
730  shows Urv, UnT, Unr, and smoothed values of Unr over 10-minute intervals. Fog occurred
731  between 1900 and 2300 UTC. Before the fog event at 1900 UTC, the ship was headed
732 250 deg (SW), and Urv changed from about 4 m s to 8 m sX. Unr was from north during
733 the fog event (not shown). Low Vis (1 km) was observed between 1900 and 2300 UTC
734 and Vis improved to 5 km at 2300 UTC. Before 1900 UTC, Vis increased to 15-20 km.
735  Thereafter, the cloud base lowered to the surface and Vis decreased to <300 m. During
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736  low Vis conditions (Fig. 14b) near the end of fog event, drizzle was observed around
737 2300 UTC. After 1930 UTC, Vis improved significantly.
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741 Fig. 14 Time series of Ury, Unt, Unr, and Ungs for 1 min and 10 min running averages are shown in (a) and
742 Vis, PR, and NWS hydrometeor code time series on 28 Sep 2018 (b) with fog regions shown with light
743 blue data points.

744  4.4.2 Vis Parameterization and Microphysical Parameters from the Gondola

745  Fog droplet spectral characteristics obtained from the CDP and BCP during the 29 Oct
746  case are shown in Fig. 15 and Fig. 16, respectively. Note that max CDP Ng (Fig. 15a,b) is
747  about 75 cm™ and LWC reaches 0.4 g m3. Low Vis, representing fog conditions, is
748  found between 2000 and 2200 UTC. MVD (Fig. 16¢) ranged from a few pum up to 40 pm
749  at low LWC and Ng but was at about 22 um when Ng reached a maximum at 70 cm®,
750 CDP measurements of MVD and LWC were less than 40 pm and 0.45 g m?
751  respectively. The parameterization obtained based on CDP measurements are shown in
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752 Fig. 16d. Similar to previous cases, Vis also increases with increasing values of fog index
753 (FI = 1/(LWC*Ng) but decreases with increasing LWC and Ng (with decreasing MVD).
754  The best fit line indicates that increasing FI values result in similar increasing Vis
755  conditions that represent the Battery site.

756

757
758 Fig. 15 Time series of microphysical parameters Ng versus LWC (a), Ng versus log(Vis) (b), and MVD

759  versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
760  function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
761  are shown in (d) for RV CDP on 04 October 2018.

762 Fog droplet spectral characteristics based on BCP are shown in Fig. 16. Again,
763  due to missing the first 2 channels of CDP in BCP measurements, CDP, Ng, LWC, and
764  MVD cannot be directly compared to those of CDP measurements. As suggested
765  previously, if there is no drizzle, Ng and LWC based on BCP measurements are expected
766  to be less compared to CDP parameters; but MVD is expected to be higher because of
767  larger droplets. Results suggest that max Ng was about 25 cm®, LWC about 0.4 g m?,
768 and MVD~40 pm. The parameterization for this case based on BCP measurements is

769  shown in Fig. 16d. Similar to previous cases, Vis increases with increasing Fl.
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771 Fig. 16 Time series of microphysical parameters Nq versus LWC (a), Ng versus log(Vis) (b), and MVD
772 versus Ng as a function of LWC (c) with theoretical lines calculated from Eq. 13. Vis parameterization as a
773 function of fog index (FI along x axis) with statistical parameters and fit equation overly on observations
774  are shown in (d) for RV BCP on 04 October 2018.

775 4.5 Summary of Vis Parameterizations

776  Vis parameterizations are obtained for each platform (R/V Sharp or Battery supersite)
777 using FM100, CDP, and BCP probes and are summarized in Table 34. The Vis-RHw
778  relationships are also provided to emphasize that they are used only as a threshold for fog
779  formation (e.g. RHw>95% in Fig. 6). Then, fog intensity (e.g. Vis) can be estimated based
780  on model-predicted values for LWC and Ng (or MVD) (see Eq. 14). Note that the G2007
781  parameterization (Gultepe et al 2007) was obtained using FSSP measurements based on
782 low-level flying aircraft observations over the Bay of Fundy, NS taken during the RACE
783  (Regional Aerosol and Cloud Experiment) campaign. These parameterizations are
784  discussed in the next section.

785

786

787
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Table 34 Summary of C-FOG Vis parameterizations and previous work. The FI (fog index) is defined as
1/(LWCeNg) with units of [g* m® cm?].

Case Parameterization FMD Platform location

28 Sep - Vis=0.7531(FI)°4828 FM10 Ground-C-FOG
Battery 0
29 Sep - Vis=0.7280(F1)0471 FM10 Ground-C-FOG
Battery 0

28 Sep -RV Vis=0.4765(F1)05568 CDP Sharp RV-C-FOG

28 Sep -RV Vis=0.4506(F1)05206 BCP Sharp RV-C-FOG

04 Oct -RV Vis=0.4012(FI)°-54° CDP Sharp RV-C-FOG

04 Oct -RV Vis=0.5009(FI)°-4%82 BCP Sharp RV-C-FOG
28 Sep - Vis=-0.009RH3+0.437RH? PWD Ground-C-FOG
Battery -2.459RH+817.062

Gultepe et Vis=1.002(F1)%6473 FSSP Aircraft Obs. RACE
al 2007

5 Discussion

5.1 Overview of Fog Forecasting

Fog prediction cannot be done accurately because of rapid changes in its intensity (Vis)
over short time and space scales, as well as non-linear relationships between surface and
atmospheric conditions. There are several methods for fog prediction. These methods
include rule-based techniques (Toth et al 2007, Zhou and Du 2010), statistical methods
(Claxton 2008, Miao et al 2012), numerical forecast models (Gultepe and Milbrandt
2010; Bott et al. 1990; Muller et al. 2007, 2010; Bott and Trautmann 2002; Clark et al.
2008; Shi et al. 2012) and integrated nowcasting methods (Golding, 1993; Golden, 1998;
Wright and Thomas, 1998; Haiden et al 2014). If no persistence exists and turbulence
becomes more dominant, prediction usually fails, unless very short-term data assimilation
techniques are performed. More detailed information on fog modeling issues can be
found in the works of Gultepe et al (2007a), Wilfried et al (2008), Croft et al (1997) and
Fernando et al. (2020).

5.2 NWP and Microphysical Schemes

Prognostic fog forecasting is usually done using model-based prediction of LWC and Ng,
and that uses detailed droplet nucleation processes described above. In general, a regional
forecast model uses boundary conditions from a global model. As described in Section 1,

assuming a gamma size distribution, visibility can be diagnosed from the size distribution

34|Page



813  parameters such as No (intercept parameter), u (spectral shape parameter), and A (slope
814  parameter), or either Ngt or LWC or both (Gultepe and Milbrandt 2007b, Milbrandt and
815  Yau 2005a,b). If both LWC and Nq are available as prognostic variables, Vis estimation
816  can be obtained using NWP simulations.

817 Microphysical schemes are used to evaluate fog prediction conditions using NWP
818  models. Cloud-droplet and fog-droplet size distributions are usually represented by a
819  modified-gamma size distribution in NWP models. The parameters used in a modified
820 gamma size distribution are the Nt (total droplet number concentration), and shape and
821  slope parameters. N is obtained either from empirical relationships as a function of
822  aerosol number concentrations (Na) or from a prognostic equation for Ng with assumed
823  size distribution parameters. The microphysical schemes (MPS) such as MY (Milbrandt
824  and Yau 2005a,b), MG (Morrison and Gettelman 2008), and TO (Thompson et al. 2008,
825  2014) use modified-gamma size distributions and microphysical parameters based on
826  DSD parameters.

827 The Nq can be obtained directly from N, diagnostically, as stated, or based on Sw
828  (supersaturation) which is function of vertical air velocity (was) and Na as well as its
829  composition (Twomey 1959; Chen 1994; Kohler 1934). The Kohler curve provides a
830  general equilibrium relationship between an aqueous salt solution droplet size and water
831  vapor. Sw can be calculated as a function of both wa and Ng and that is directly related to
832  size distribution and the composition and mixing state of aerosols. A similar relationship
833 to Twomey (1959) is also suggested by Ghan et al. (1993, 1997) for large-scale cloud
834  formation. Cohard et al. (1998) extended Twomey’s power law expression by using a
835  more realistic four parameter CCN activation spectrum with physiochemical properties of
836 aerosols. The most important parameter to estimate Ng is Sw that is obtained using 3
837  methods (Schwenkel and Maronga 2019): 1) saturation adjustment scheme, 2) diagnostic
838  scheme where Sy is diagnosed by the prognostic fields of T and qv, and 3) a prognostic
839  method (Clark 1973; Morrison and Grabowski 2007; Lebo et al. 2012). These methods
840  are not discussed here, but are listed to emphasize the importance of ws, CCN, and Ng on
841  Sw.

842 In microphysical schemes, Nq is usually represented with a complete gamma size

843  distribution function as

35|Page



844

845
846
847
848

849

850
851
852
853
854

855

856

857

858
859
860
861
862
863
864
865
866
867
868
869
870

Ny(D) = N,D#e=*P, (156)

where D is the diameter, and No, p, and As should also be known to obtain an accurate
droplet spectra. The p parameter is obtained as a function of CCN (Wilkinson et al.,
2013) or as u = 1/n? -1 with n the dispersion of radius (sd/mean), which is given by
Morrison and Gettelman (2008) as

n = 0.0005714N, + 0.2714, (167)

where Nq can be obtained as a function of aerosol number concentration (Na) (Jones et al.
1994; Martin et al. 1994; Gultepe and Isaac, 1999; Gultepe et al. 2015). But Ng versus Na
relationships are not unique, and their variability can be large. In Eq. 15, No and A are
usually obtained using a fixed p and predicted value of total droplet number

concentration (Nat) and water vapor mixing ratio (qw) as

1/3

_ |mpwNael (u+4)
As _l 6qwl(u+1) (187)
and
th)_,u+1
o=y (189)

When models use a single-moment scheme, qw (e.9. LWC) is predicted but Nt
and p are fixed. In double-moment schemes, usually both gw and Ng: are prognostic
variables. Ng prediction is an important step in NWP models for accurate fog Vis
estimation.

In the MPS, CCN concentration is assumed to be a function of Sw, and Na for the
ocean (Nao) and land (NaL) air masses set as fixed values. The values for CCN
concentration as a function of supersaturation are also given in Fletcher (1966). The CCN
parameterization, given as CCN=cSX Sk where ¢~1000 cm and k~1 (a unitless constant),
are for continental air masses and ~100 cm and ~0.5 for maritime air masses (Feingold
et al 1998). Sometimes, Ng is fixed as 100 cm™ over ocean and 300 cm™ over land
(Wilkinson et al 2013). In reality, as stated in Cohard et al. (1998), the coefficients ¢ and
k change with high Sw. They suggested that this happens especially in maritime

environments. Therefore, ¢ and k should be matched locally to the activated CN. This
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871  suggests that parameterization of Sw and both ¢ and k are critical to improve fog Vis

872  predictions

873

874 5.3 Scale Issues

875  Fog usually happens over small areas and dissipates quickly; therefore, NWP models can
876  have difficulty predicting short lived fog conditions. Although fog models can resolve the
877  smaller scales, most of the physics developed for the NWP model cannot be used for high
878  resolution fog models. Due to cloud coverage over the large scales (1-100 km), some dry
879  air pockets result in lower values of RHw, LWC, and Ng (Gultepe and Isaac, 1999; 2004)
880 and these need to be extrapolated to fog occurrence scales (usually less than 1 km)
881  (Wilkinson et al 2013). The latter study clearly recognizes the issues for better fog
882  prediction on various grid areas. This suggests that further improvement of fog
883  microphysical parameterizations is required for better fog prediction.

884

885 5.4 Variability in Vis

886  Visibility calculation based on observations and NWP model outputs may include large
887  uncertainties due to fog microphysical and BL processes. Variability in Vis based on
888  measurements of PWD located at Battery, Downs, Blackhead, and Judges Hill sites for
889  28-29 Sep is shown in Fig. 17. Figure 17a shows mean Vis from all these sites with a
890 standard deviation. Overall, Vis at Judges Hill had the lowest values compared to the
891  other stations, likely due to its elevation of 129 m (Fig. 17b). The second lowest Vis
892  values are found at The Downs site, at 32 m above sea level. Blackhead and Battery Vis
893  follow, with the next highest values. During dense fog conditions, Vis from Blackhead
894  was much higher than others, likely due to the distance between the Blackhead and
895  Ferryland sites. Vis, representing a scale of about 1.5 km, ranged from 0.2 km up to 1 km
896 for any given time (Fig. 17); therefore, NWPs should be capable of simulating fog
897  conditions at 1 min time intervals and 100 m spatial scales.

898

899

900

901
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Fig. 17 Time series of mean— (red filled circles) and sd (gray colored regions) of Vis based on
measurements of PWDs (indicated in (b)) are shown in (a). Time series of Vis representing Battery (Visg),
Downs (Visp), Blackhead (Visgw), and Jack Hill (Vis;4) for 28-29 Sep 2018 are shown in (b). Fog regions

are shown for Vis<1 km (yellow colored area).

5.5 Variability in sonic anemometer wind components

The 3-D wind component time series of mean and sd obtained from the (20Hz)
measurements of sonic anemometers located at 1, 2, 5, 8, and 15 m levels of the Battery
supersite tower are shown in Fig. 18a for 28-29 Sep cases. Figure 18b shows 3D wind
components and Vis from each of the 5 levels. The Usq values (3-D wind speed) between
0600-1200 UTC indicate some noise in the data and should be ignored because of heavy
condensation on the prongs of the sonic anemometers. The largest Usq fluctuations are
seen at 5, 8, and 15 m levels but these were reduced to lower values during fog events on
May 28 (Fig. 18b). Vertical air velocities (wa) in Fig. 18c are obtained at the same levels
as in Fig. 18b. Figure 18c shows the mean and standard deviation of wa obtained from
measurements, representing all levels from 1 m up to 15 m. Clearly, w, fluctuations were
higher in the fog-free layers compared to foggy layers, indicating greater turbulent heat,
moisture and momentum fluxes in the vertical direction. Note that large fluctuations of
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Wa at 15 m from 0600 to 1200 UTC in Fig. 18d were likely noise, as noted previously.
The wa fluctuations within the fog layers were found generally between +0.3 and -0.3 m
s, but were more than -0.7 m s and +0.7 m s in fog-free layers. These suggest that
without estimating 3D wind fluctuations accurately, NWP models cannot properly handle
the fog life cycle.

Sep 28-29 2018 3D-Wind

o

3D wind speed [m/s]
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Fig. 18 Wind components obtained from the sonic anemometers located at 1, 2, 5, 8, and 15 meters levels
of a tower and Vis at 2 m (purple line) are shown in (a) for mean and sd of Usq (3D wind component) and
in (b) for Usq for each level, representing 28-29 Sep cases at the Battery supersite. Mean (red filled circles)
and sd (gray lines) of vertical air velocity (wa.) are shown in (c) and w, measurements at each level are
shown in (d). Fog layers indicated by red double arrow are obtained from PWD Vis shown in (d) and
previous plots.
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932 5.5 Ng Uncertainty and Droplet Spectra

933  Droplet spectra from CDP, BCP, and FM120 probes include uncertainties related to the
934 calculations of TAS, turbulence, wind speed and ship direction. The aspirator used in
935  FM100 pulls in air at about 5 m s but winds coming directly into the inlet can increase
936  (or decrease) the aspirator wind speed. Usually, using a higher TAS compared to a fixed
937 TAS at 5 ms? set up in FM120 results in a significant decrease (~50-100%) in Ng. For
938  ship measurements, these errors can be much larger. For example, a ship heading north (0
939  degrees) at 8 m s plus a wind from NE can result in

‘940 TAS = Ugy + Uycosb. (2019)
941  Therefore, the error in TAS estimation, applying a derivative of TAS with respect to
942  time, can be written as

dTAS _ dUgy dcos6 dup

943 Eras = - Fr Uy, o Tcos (219)

944  The Lh.s of Eq. 20, er4 represents an error in TAS per unit time [(m s™)/s]. Assuming
945 that error in the first term of the r.h.s of Eq. 20 is approximately 1 m s? per unit time
946  (e.g., dt=1s) at Urv=8 m s, and Un has an error of 10% say at 0.5 m s and wind
947  directional error is about 10 degrees (second term on the rhs), then using Un=10 m s,
948  eras=1 m s+ 10 m s* (cos30-cos40) +cos(30)*0.5 m s1=1.0+1.0+0.43=2.43 m s,
949  Absolute error in TAS~18 m s can then be calculated at about 15%. This means that Ng
950 uncertainty is also about 15%, but likely increases with decreasing TAS. Following
951  works can be suggested for further evaluation of errors related to TAS calculations;
952  Moffat (1982) and Kline and McClintock (1953).

953 Figure 19 shows fog droplet spectra obtained from the CDP and BCP probes for
954  Sep 28 (a and b) and Oct 04 (c and d) cases. The mean (black line) and standard deviation
955  (red line) of each bin during fog events of Sep 28 and Oct 4 are shown. Each colored line
956  represents 1 s spectra. Clearly, Sep 28 droplet spectrum is much different from the Oct 04
957  droplet spectra, based on both probes. Multi-modes in DSD indicate the various fog
958  regimes that were likely related to droplet fall velocities (Vr) and wa. For both cases, DSD
959  did not indicate drizzle droplet sizes > 50 um. MVD for the Oct 04 was much larger than
960  for the Sep 28 case. Note that the mean DSD can shift upward if a lower threshold of Ng

961 is chosen to have a higher value (e.g. 1 # cm™ instead of 0.1 # cm®. In BCP
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measurements, having a large value for Ng at about 25 pm, may indicate some cooling

processes leading to increasing values for Ng.
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Fig. 19 Fshews-fog droplet spectra obtained from CDP and BCP probes for 28 Sep (a and b) and Oct 04 (c
and d) cases. The mean (black line) and sd (red line) values of each bin during time periods representing

fog events of 28 Sep and 4 Oct 2018 are also shown on the plots. Each line with a color represents 1 s

spectra.

Sea spray particles can also affect Ng spectra (at 10m) significantly because of
breaking waves, especially at small size ranges because of their low settling rates. In the
marine environment, droplets can be generated by wave breaking processes, which can
then be counted as fog droplets. Entrainment of air at breaking wave crests leads to the
formation of a large number of bubbles, which emerge at the ocean surface because of
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their positive buoyancy and then burst into droplets at the water surface (Troitskaya et al
2018). The spray production due to the bursting of bubbles with sizes smaller than <10
um has been studied by Blanchard (1963) and Spiel (1995, 1997, 1998). All of these
studies suggest that bursting bubbles are the main source of the ocean spray process,

generating droplets with radii less than 50 pm (Wu, 1981).

5.6 Impact of TKE Dissipation Rate on Vis

Fog occurs usually at the end of a dynamically unstable environment along coastlines and
marine environments and is augmented sometimes by thermal inversions, keeping
moisture trapped below a stable layer. Thereafter, when the mature fog stage has
developed under dynamically stable conditions, fog dissipates as a result of droplet
growth, increasing turbulence, entrainment, and solar heating. All these factors play an
important role for fog dissipation without considering direct impact of a larger scale
event such as pressure systems and associated fronts systems. In this work, calculated
dissipation rates suggest that higher & values result in improved Vis conditions. Accuracy
of ¢ will not be discussed here, except in its usage in a fog prediction scheme. TKE
dissipation rate is calculated in NWP models using TKE based on various turbulence
prediction schemes (Mellor and Yamada 1982; Castelli et al 2005; Duynkerke 1988);

therefore, it can be used to improve fog prediction.

segments based on a 10-min filtering method for Sep 28 and Sep 29 2018 cases. Sep 29 case did not have

wind measurements during heavy fog conditions,

Method Sep 28 Sep 28 Sep 29 Sep 29
Mean g4 [m?s3] | Std eqis [Mm? s3] Mean gqis [m? s3] Std €41 [M?s7]

Using Eq. 3 1.23x107 1.73 x107? 1.65 x107 1.19x107

Foggy

Using Eq. 26 8.73 x107? 24.94 x107 7.53 x107? 9.21x10?

Fogqgy

Using Eq. 3 7.76 x10 10.3 x10%? - -

Clear

Using Eq. 26 20.00x107? 25.59 x10°? - -

Clear.
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Table 5 is prepared using Eq. 3 and Eq. 26 for mean and std of e4ist during foggy and fog

free conditions, representing means of 1 hr time intervals. It shows that for both Sep 28

and 29, foggy conditions had much smaller &qis than fog free conditions (excluding Sep 29

case). For fog free conditions, Sep 29 had larger values of eqgis that likely was contributed

by wetting of the 3D sonic anemometer optics. It is shown based on Table 5 that fog
occurs usually when e<1x10%° m? s and dissipates for e>1x102* m? s (see-figuresfor

time-series-of-¢). Between these two limits, intermediate fog intensity can likely occur. A
conversion equation between € and TKE (Scully et al 2011) can be obtained using,

3/2
3 TKE3/

L=ci™—, (22)

where L and Cy are turbulent length scale (kz=0.41*2) where k is the Von Karman

constant and z is the height (m), and the nondimensional stability function, respectively,

that is assumed as a constant (0.447). Then, Eq. 25 becomes approximately as

TKE = 0.8763¢2, (23)

Note that ¢ and TKE are function of scales that need to be further evaluated and

developed to improve NWP models based fog Vis predictions.
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80% < RH,, <95% & ¢ <>10"**m?s™3 &
Vis = —0.0094RHJ + 0.437RHZ — 32.459RH,, + 817.062 (252)
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1030
1031
1032
1033
1034
1035
1036

1037

RH,, > 95% & 10~* < e <> 10752m?2s3 & Vis = 1.002(LWCNd)_°'6473. (
236)

The thresholds for TKE corresponding & thresholds is estimated as <4.06x102 m? s,

>1.88x102 m? s%. and between them for Egs. 24, 25, and 26, respectively. These values

are calculated using Eq. 23. Nete—that-these—criteria—need—to—be—further—checked—and
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BA-Sep 28 FM100 | -
—— BA-Sep 29 FM100
——RV-Sep 28 CDP
mm— RV._Sep 28 BCP
s RY_O ct 04 CDP
| s— RV_Oct 04 BCP
s 2007 FSSP

T T T 1T

FI=1/(LWC*N ) [g"! m® cm™]

1038

1039
1040 Fig. 20 Vis parameterizations obtained for all the cases based on Table 34. LWC was fixed at 0.1 g m3

1041  while Ng changed from 1 to 300 cm™. RV represents research vessel, BA Battery, G2007 Gultepe et al
1042  (2007) and FI fog index. FM100, CDP, BCP, and FSSP probes are used for droplet spectral measurements.

45| Page



1043
1044
1045
1046
1047
1048
1049

1050
1051
1052
1053
1054
1055

056

057
1058
1059
1060
1061
1062
1063
1064
1065

066

067

068
1069
1070
1071

6 Conclusions

In this paper, Vis associated with fog environmental parameters such as RHw, 3D wind
components, and microphysical parameters, including LWC, Ng, and MVD were studied
for four cases. Results representing two IOPs from the Battery supersite and two I0OPs
from the R/V Sharp are used in Vis parameterization development and to verify the
previous parameterizations. Based on the results of this work, the following points can be

drawn:

1. Synoptic weather conditions and ocean-atmosphere interactions are the larger-
scale factors that affect coastal fog microphysics and visibility. The cold ocean
surface off the coast of Ferryland was usually a major reason for fog formation
observed there.

2. The main synoptic weather systems that affected fog were usually related to a
high-pressure system located to the NE, a low-pressure system along W-NW, and
a chain of tropical cyclonic motions. This may not be valid early in the fog season

and usually can be valid during the Fall transition period-

3. Vis is found to be less than 1 km when RHy, is greater than 95%, and this suggests
that the Ta-Tq difference is an important variable indicating fog regions, but not
intensity.

4. By decreasing dynamic activity, indicated by smaller 3D wind fluctuations and
lifting, the eddy dissipation rate decreases during mature fog conditions that can
be used for a threshold for prediction of mature fog conditions. Wind
components; u, v, and wa are relatively smaller in fog-developed regions than in
fog-free regions.

5. The w, fluctuations were 0.1 m s during mature fog conditions compared to >0.3
m s for fog-free regions. Note that these values can be much larger at the time
scale of 16Hz or 32Hz.

6. The TKE dissipation rate was usually <10° m? s during mature fog events
compared to >10* m? s for fog—free regions and can be used for fog predictions

criteria based on NWP models.
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7. Vis parameterizations that we constructed suggest that the slopes of the Vis versus
fog index (FI) relationships are consistent with each other; but found to be
comparably smaller in magnitude. This can be related to the nature of the
measurement platform, fog season, as well as cloud versus fog measurements.

8. Vis is found to be function of LWC and Ng and this can be replaced with LWC
and MVD without involvement of a 3rd parameter; this can be more generally
applicable for NWP models.

9. Vis < 1km observations showed a large variability, covering few km? (1.5 km?)
up to 20 km?, and the difference was very high between a station at height 129 m
(Judges’ Hill) compared to one at the sea level, 2 m, (Battery station) although the
horizontal separation distance was only about 1.0 km.

10. BCP droplet number concentration is found to be at least half of the CDP Nq and
this is likely due to BCP’s higher threshold of 5 um; there were no droplets larger
than 50 pum.

11. There were double and triple peaks for fog DSDs and this can affect the NWP’s

fog prediction algorithms and needs to be further researched.

Based on these points, it is suggested that Vis parameterizations can be obtained
using both dynamical and microphysical parameters, but fog droplet spectra
representation for various fog conditions need to be further investigated. Specifically, the
turbulence impact on droplet spectra and the nucleation processes are very critical for the
fog life cycle in low vertical air velocity situations. Moreover, this is the most important

parameter affecting the auto-conversion of fog droplets to drizzle formation.
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