DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis

Abstract

Here, we present a density functional theory analysis of trends for the electrooxidation of formic acid (FAO) on a single Pt or Pd monolayer supported on the close-packed (111) facet of transition metals (Pt*/M or Pd*/M): Au, Ag, Cu, Pt, Pd, Ir, and Rh, the close-packed (0001) facet of Os, Ru, and Re, and the open (100) facet of Au, Ag, Pt, Pd, Ir, and Rh. We show that the deposition of Pt or Pd pseudomorphic monolayers on these single crystals modifies the electronic structure of the Pt or Pd monolayer. Specifically, we found a direct correlation between the d-band center of the Pt and Pd monolayer and the free energy of adsorbed CO*, the latter being a reactivity descriptor for FAO. Together with the free energy of adsorbed OH* as a second reactivity descriptor, we depict the thermochemistry of the reaction network as phase diagrams showing calculated free energies across regions of rate-determining steps. We found that FAO is structure-sensitive on most surfaces studied. Pt*/Au(111) is predicted to be the most active among all Pt*/M(111/0001) surfaces studied, despite binding CO*, the strongest among the close-packed facets. This is the case because of its superiority in activating water to OH*,more » thus removing CO* at lower potentials than other surfaces. On similar grounds, Pt*/Pd(100), Pd*/Re(0001), Pd*/Au(111), Pd*/Ag(111), and Pd*/Pt(111) are predicted to show higher FAO activity than the corresponding monometallic Pt and Pd surfaces.« less

Authors:
ORCiD logo [1];  [1];  [2];  [2]; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1835132
Grant/Contract Number:  
FG02-05ER15731; AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 11; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Formic acid electrooxidation; (111) facets; (100) facets; Pt monolayer; Pd monolayer; bimetallic

Citation Formats

Elnabawy, Ahmed O., Herron, Jeffrey A., Liang, Zhixiu, Adzic, Radoslav R., and Mavrikakis, Manos. Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis. United States: N. p., 2021. Web. doi:10.1021/acscatal.1c00017.
Elnabawy, Ahmed O., Herron, Jeffrey A., Liang, Zhixiu, Adzic, Radoslav R., & Mavrikakis, Manos. Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis. United States. https://doi.org/10.1021/acscatal.1c00017
Elnabawy, Ahmed O., Herron, Jeffrey A., Liang, Zhixiu, Adzic, Radoslav R., and Mavrikakis, Manos. Mon . "Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis". United States. https://doi.org/10.1021/acscatal.1c00017. https://www.osti.gov/servlets/purl/1835132.
@article{osti_1835132,
title = {Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis},
author = {Elnabawy, Ahmed O. and Herron, Jeffrey A. and Liang, Zhixiu and Adzic, Radoslav R. and Mavrikakis, Manos},
abstractNote = {Here, we present a density functional theory analysis of trends for the electrooxidation of formic acid (FAO) on a single Pt or Pd monolayer supported on the close-packed (111) facet of transition metals (Pt*/M or Pd*/M): Au, Ag, Cu, Pt, Pd, Ir, and Rh, the close-packed (0001) facet of Os, Ru, and Re, and the open (100) facet of Au, Ag, Pt, Pd, Ir, and Rh. We show that the deposition of Pt or Pd pseudomorphic monolayers on these single crystals modifies the electronic structure of the Pt or Pd monolayer. Specifically, we found a direct correlation between the d-band center of the Pt and Pd monolayer and the free energy of adsorbed CO*, the latter being a reactivity descriptor for FAO. Together with the free energy of adsorbed OH* as a second reactivity descriptor, we depict the thermochemistry of the reaction network as phase diagrams showing calculated free energies across regions of rate-determining steps. We found that FAO is structure-sensitive on most surfaces studied. Pt*/Au(111) is predicted to be the most active among all Pt*/M(111/0001) surfaces studied, despite binding CO*, the strongest among the close-packed facets. This is the case because of its superiority in activating water to OH*, thus removing CO* at lower potentials than other surfaces. On similar grounds, Pt*/Pd(100), Pd*/Re(0001), Pd*/Au(111), Pd*/Ag(111), and Pd*/Pt(111) are predicted to show higher FAO activity than the corresponding monometallic Pt and Pd surfaces.},
doi = {10.1021/acscatal.1c00017},
journal = {ACS Catalysis},
number = 9,
volume = 11,
place = {United States},
year = {Mon Apr 19 00:00:00 EDT 2021},
month = {Mon Apr 19 00:00:00 EDT 2021}
}

Works referenced in this record:

Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes
journal, October 2010

  • Sasaki, Kotaro; Naohara, Hideo; Cai, Yun
  • Angewandte Chemie International Edition, Vol. 49, Issue 46, p. 8602-8607
  • DOI: 10.1002/anie.201004287

The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells
journal, March 2016


Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications
journal, January 2014

  • Jiang, Kun; Zhang, Han-Xuan; Zou, Shouzhong
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 38
  • DOI: 10.1039/C4CP03151B

Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys
journal, September 2018

  • Darby, Matthew T.; Stamatakis, Michail; Michaelides, Angelos
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 18
  • DOI: 10.1021/acs.jpclett.8b01888

From HCOOH to CO at Pd Electrodes: A Surface-Enhanced Infrared Spectroscopy Study
journal, September 2011

  • Wang, Jin-Yi; Zhang, Han-Xuan; Jiang, Kun
  • Journal of the American Chemical Society, Vol. 133, Issue 38
  • DOI: 10.1021/ja205747j

Bifunctional anode catalysts for direct methanol fuel cells
journal, January 2012

  • Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios A.
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21455e

Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties
journal, September 2012


Near-surface alloys for hydrogen fuel cell applications
journal, January 2006


Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited
journal, January 2010

  • Bozell, Joseph J.; Petersen, Gene R.
  • Green Chemistry, Vol. 12, Issue 4, p. 539-554
  • DOI: 10.1039/b922014c

On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study
journal, September 2015

  • Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos
  • Topics in Catalysis, Vol. 58, Issue 18-20
  • DOI: 10.1007/s11244-015-0495-5

Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum
journal, June 2013

  • Joo, Jiyong; Uchida, Taro; Cuesta, Angel
  • Journal of the American Chemical Society, Vol. 135, Issue 27
  • DOI: 10.1021/ja403578s

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates
journal, March 2005

  • Zhang, Junliang; Vukmirovic, Miomir B.; Xu, Ye
  • Angewandte Chemie International Edition, Vol. 44, Issue 14, p. 2132-2135
  • DOI: 10.1002/anie.200462335

Comparative theoretical study of formic acid decomposition on PtAg(111) and Pt(111) surfaces
journal, January 2015

  • Qi, Yuanyuan; Gao, Jun; Zhang, Dongju
  • RSC Advances, Vol. 5, Issue 27
  • DOI: 10.1039/C5RA01925G

Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling
journal, March 2020

  • Bhandari, Saurabh; Rangarajan, Srinivas; Maravelias, Christos T.
  • ACS Catalysis, Vol. 10, Issue 7
  • DOI: 10.1021/acscatal.9b05424

Alloy catalysts designed from first principles
journal, October 2004

  • Greeley, Jeff; Mavrikakis, Manos
  • Nature Materials, Vol. 3, Issue 11
  • DOI: 10.1038/nmat1223

Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis
journal, January 2016

  • Engelbrekt, C.; Šešelj, N.; Poreddy, R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08922K

Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis
journal, September 2020

  • Bhandari, Saurabh; Rangarajan, Srinivas; Mavrikakis, Manos
  • Accounts of Chemical Research, Vol. 53, Issue 9
  • DOI: 10.1021/acs.accounts.0c00340

Theoretical Study of the Oxidation of Formic Acid on the PtAu(111) Surface in the Continuum Water Solution Phase
journal, November 2012

  • Zhong, Wenhui; Wang, Rongyue; Zhang, Dongju
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp307923x

On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces
journal, November 2013


The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies
journal, January 2008

  • Jin, J. M.; Lin, W. F.; Christensen, P. A.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 25
  • DOI: 10.1039/b802701c

Monodisperse AgPd Alloy Nanoparticles and Their Superior Catalysis for the Dehydrogenation of Formic Acid
journal, February 2013

  • Zhang, Sen; Metin, Önder; Su, Dong
  • Angewandte Chemie International Edition, Vol. 52, Issue 13
  • DOI: 10.1002/anie.201300276

Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts
journal, April 2018

  • Darby, Matthew T.; Réocreux, Romain; Sykes, E. Charles. H.
  • ACS Catalysis, Vol. 8, Issue 6
  • DOI: 10.1021/acscatal.8b00881

Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals
journal, January 2013

  • Calle-Vallejo, Federico; Koper, Marc T. M.; Bandarenka, Aliaksandr S.
  • Chemical Society Reviews, Vol. 42, Issue 12
  • DOI: 10.1039/c3cs60026b

Adsorption of bisulfate on the Ru(0001) single crystal electrode surface
journal, March 2001


Towards operating direct methanol fuel cells with highly concentrated fuel
journal, June 2010


Metal monolayer deposition by replacement of metal adlayers on electrode surfaces
journal, March 2001


Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments
journal, February 2014

  • Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald
  • AIChE Journal, Vol. 60, Issue 4
  • DOI: 10.1002/aic.14401

First-Principles Mechanistic Analysis of Dimethyl Ether Electro-Oxidation on Monometallic Single-Crystal Surfaces
journal, September 2014

  • Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp505919x

Density functional theory in surface chemistry and catalysis
journal, January 2011

  • Norskov, J. K.; Abild-Pedersen, F.; Studt, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 3
  • DOI: 10.1073/pnas.1006652108

Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition
journal, March 2014

  • Yoo, Jong Suk; Abild-Pedersen, Frank; Nørskov, Jens K.
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs400664z

High-temperature passive direct methanol fuel cells operating with concentrated fuels
journal, January 2015


Dipole correction for surface supercell calculations
journal, May 1999


Reactivity descriptors for direct methanol fuel cell anode catalysts
journal, November 2008


HCOOH oxidation on thin Pd layers on Au: Self-poisoning by the subsequent reaction of the reaction product
journal, January 2013


Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer
journal, March 2005

  • Kibler, Ludwig A.; El-Aziz, Ahmed M.; Hoyer, R�diger
  • Angewandte Chemie International Edition, Vol. 44, Issue 14
  • DOI: 10.1002/anie.200462127

Effect of Strain on the Reactivity of Metal Surfaces
journal, September 1998


Pd-Modified Shape-Controlled Pt Nanoparticles Towards Formic Acid Electrooxidation
journal, March 2012

  • Vidal-Iglesias, Francisco J.; López-Cudero, Ana; Solla-Gullón, José
  • Electrocatalysis, Vol. 3, Issue 3-4
  • DOI: 10.1007/s12678-012-0094-1

Kinetic Isolation between Turnovers on Au 18 Nanoclusters: Formic Acid Decomposition One Molecule at a Time
journal, September 2019

  • Chen, Benjamin W. J.; Stamatakis, Michail; Mavrikakis, Manos
  • ACS Catalysis, Vol. 9, Issue 10
  • DOI: 10.1021/acscatal.9b02167

Ligand effects in heterogeneous catalysis and electrochemistry
journal, May 2007


Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation
journal, April 2020


Formic Acid Oxidation at Ru@Pt Core-Shell Nanoparticles
journal, September 2016


Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys
journal, January 2009

  • Nilekar, Anand Udaykumar; Ruban, Andrei V.; Mavrikakis, Manos
  • Surface Science, Vol. 603, Issue 1
  • DOI: 10.1016/j.susc.2008.10.029

CRC Handbook of Chemistry and Physics
book, June 2014


Electrocatalytic Oxidation of Formaldehyde on Platinum under Galvanostatic and Potential Sweep Conditions Studied by Time-Resolved Surface-Enhanced Infrared Spectroscopy
journal, September 2007

  • Samjeské,, Gabor; Miki, Atsushi; Osawa, Masatoshi
  • The Journal of Physical Chemistry C, Vol. 111, Issue 41
  • DOI: 10.1021/jp0743020

Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols
journal, November 2012

  • Li, Meng; Liu, Ping; Adzic, Radoslav R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 23
  • DOI: 10.1021/jz3016155

Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals
journal, February 2010


Framework for Scalable Adsorbate–Adsorbate Interaction Models
journal, June 2016

  • Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas
  • The Journal of Physical Chemistry C, Vol. 120, Issue 24
  • DOI: 10.1021/acs.jpcc.6b03375

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy
journal, August 2006

  • Samjeské, Gabor; Miki, Atsushi; Ye, Shen
  • The Journal of Physical Chemistry B, Vol. 110, Issue 33
  • DOI: 10.1021/jp061891l

The Effect of Lattice Strain on the Catalytic Properties of Pd Nanocrystals
journal, September 2013

  • Kuo, Chun-Hong; Lamontagne, Leo K.; Brodsky, Casey N.
  • ChemSusChem, Vol. 6, Issue 10
  • DOI: 10.1002/cssc.201300447

The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction
journal, January 2016

  • Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping
  • Journal of The Electrochemical Society, Vol. 163, Issue 12
  • DOI: 10.1149/2.0061612jes

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Platinum Monolayer Electrocatalysts for O2 Reduction:  Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles
journal, July 2004

  • Zhang, J.; Mo, Y.; Vukmirovic, M. B.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 30, p. 10955-10964
  • DOI: 10.1021/jp0379953

The oxidation of formic acid at noble metal electrodes
journal, May 1973

  • Capon, Andrew; Parson, Roger
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 44, Issue 1
  • DOI: 10.1016/S0022-0728(73)80508-X

Structure Sensitivity of Methanol Electrooxidation on Transition Metals
journal, October 2009

  • Ferrin, Peter; Mavrikakis, Manos
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja904010u

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals
journal, January 2018

  • Ma, Xian-Yin; Chen, Yafeng; Wang, Han
  • Chemical Communications, Vol. 54, Issue 20
  • DOI: 10.1039/C7CC08793D

On the electrocatalysis of nanostructures: Monolayers of a foreign atom (Pd) on different substrates M(111)
journal, May 2010


Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study
journal, November 2014

  • Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter
  • ACS Catalysis, Vol. 4, Issue 12
  • DOI: 10.1021/cs500737p

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction
journal, April 2012

  • Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian
  • ACS Catalysis, Vol. 2, Issue 5
  • DOI: 10.1021/cs200592x

Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction
journal, December 2006


Tuning the Catalytic Activity of Ru@Pt Core–Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness
journal, January 2013

  • Yang, Lijun; Vukmirovic, Miomir B.; Su, Dong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 4
  • DOI: 10.1021/jp309990e

Theoretical study of the mechanism of formic acid decomposition on the PdAg(111) surface
journal, May 2016


Correlations in coverage-dependent atomic adsorption energies on Pd(111)
journal, May 2009


Structure Sensitivity of Formic Acid Electrooxidation on Transition Metal Surfaces: A First-Principles Study
journal, January 2018

  • Elnabawy, Ahmed O.; Herron, Jeffrey A.; Scaranto, Jessica
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0161815jes

Hydrogen evolution on platinum in the presence of lead, cadmium and thallium adatoms
journal, May 1979

  • Adžić, Radoslav R.; Spasojević, Miroslav D.; Despić, Aleksandar R.
  • Electrochimica Acta, Vol. 24, Issue 5
  • DOI: 10.1016/0013-4686(79)85034-3

Surface segregation energies in transition-metal alloys
journal, June 1999


Pt Monolayer on Electrodeposited Pd Nanostructures: Advanced Cathode Catalysts for PEM Fuel Cells
journal, January 2012

  • Bliznakov, S. T.; Vukmirovic, M. B.; Yang, L.
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.006209jes

Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction
journal, October 2007


Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)
journal, December 1992


Strain Effects on the Oxidation of CO and HCOOH on Au–Pd Core–Shell Nanoparticles
journal, February 2017


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy
journal, January 2008

  • Miyake, Hiroto; Okada, Tatsuhiro; Samjeské, Gabor
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 25
  • DOI: 10.1039/b805955a

Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst
journal, April 2011

  • Tedsree, Karaked; Li, Tong; Jones, Simon
  • Nature Nanotechnology, Vol. 6, Issue 5
  • DOI: 10.1038/nnano.2011.42

Platinum Monolayer Fuel Cell Electrocatalysts
journal, November 2007


Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C 2+ Oxygenate Production
journal, March 2016

  • Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan
  • Journal of the American Chemical Society, Vol. 138, Issue 11
  • DOI: 10.1021/jacs.5b12087

Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions
journal, January 2017

  • Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping
  • Croatica Chemica Acta, Vol. 90, Issue 2
  • DOI: 10.5562/cca3176

Direct liquid-feed fuel cells: Thermodynamic and environmental concerns
journal, June 2007


Theoretical surface science and catalysis—calculations and concepts
book, January 2000


The ensemble effect of formic acid oxidation on platinum–gold electrode studied by first-principles calculations
journal, March 2015


Controllable Modification of the Electronic Structure of Carbon-Supported Core–Shell Cu@Pd Catalysts for Formic Acid Oxidation
journal, June 2014

  • Ren, Mingjun; Zhou, Yi; Tao, Feifei
  • The Journal of Physical Chemistry C, Vol. 118, Issue 24
  • DOI: 10.1021/jp5033417