DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots

Abstract

Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction-limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential for an improved understanding of the plasmon–emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas by cathodoluminescence microscopy. Furthermore, we explore the distinction between optical and electron beam spectroscopies of coupled plasmon–exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. Overall, these results provide a fundamentally new understanding of near-field plasmon–exciton interactions in nanopatch antennas, which is essential for myriad emerging quantum photonic devices.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [6]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  2. University of Georgia, Athens, GA (United States)
  3. Univ. of Nebraska, Lincoln, NE (United States)
  4. Univ. of Memphis, TN (United States)
  5. Duke Univ., Durham, NC (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Science Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Office of Naval Research (ONR); National Science Foundation (NSF)
OSTI Identifier:
1830129
Alternate Identifier(s):
OSTI ID: 1826957
Grant/Contract Number:  
AC05-00OR22725; N00014-19-1-2384; DMR1709612
Resource Type:
Accepted Manuscript
Journal Name:
APL Photonics
Additional Journal Information:
Journal Volume: 6; Journal Issue: 10; Journal ID: ISSN 2378-0967
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Purcell enhancement; Excitons; Luminescence; Plasmonics; Selection rule; Cathodoluminescence spectroscopy; Quantum dots; Optical spectroscopy

Citation Formats

Iyer, Vasudevan, Phang, Yoong Sheng, Butler, Andrew, Chen, Jiyang, Lerner, Brian, Argyropoulos, Christos, Hoang, Thang, and Lawrie, Benjamin. Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots. United States: N. p., 2021. Web. doi:10.1063/5.0065524.
Iyer, Vasudevan, Phang, Yoong Sheng, Butler, Andrew, Chen, Jiyang, Lerner, Brian, Argyropoulos, Christos, Hoang, Thang, & Lawrie, Benjamin. Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots. United States. https://doi.org/10.1063/5.0065524
Iyer, Vasudevan, Phang, Yoong Sheng, Butler, Andrew, Chen, Jiyang, Lerner, Brian, Argyropoulos, Christos, Hoang, Thang, and Lawrie, Benjamin. Fri . "Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots". United States. https://doi.org/10.1063/5.0065524. https://www.osti.gov/servlets/purl/1830129.
@article{osti_1830129,
title = {Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots},
author = {Iyer, Vasudevan and Phang, Yoong Sheng and Butler, Andrew and Chen, Jiyang and Lerner, Brian and Argyropoulos, Christos and Hoang, Thang and Lawrie, Benjamin},
abstractNote = {Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction-limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential for an improved understanding of the plasmon–emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas by cathodoluminescence microscopy. Furthermore, we explore the distinction between optical and electron beam spectroscopies of coupled plasmon–exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. Overall, these results provide a fundamentally new understanding of near-field plasmon–exciton interactions in nanopatch antennas, which is essential for myriad emerging quantum photonic devices.},
doi = {10.1063/5.0065524},
journal = {APL Photonics},
number = 10,
volume = 6,
place = {United States},
year = {Fri Oct 22 00:00:00 EDT 2021},
month = {Fri Oct 22 00:00:00 EDT 2021}
}

Works referenced in this record:

Plasmon Mapping in Au@Ag Nanocube Assemblies
journal, July 2014

  • Goris, Bart; Guzzinati, Giulio; Fernández-López, Cristina
  • The Journal of Physical Chemistry C, Vol. 118, Issue 28
  • DOI: 10.1021/jp502584t

In situ electron-beam processing and cathodoluminescence microscopy for quantum nanophotonics
conference, March 2021

  • Rajagopal Iyer, Vasudevan; Retterer, Scott T.; Fowlkes, Jason
  • Synthesis and Photonics of Nanoscale Materials XVIII
  • DOI: 10.1117/12.2578528

Cathodoluminescence of Ultrathin Twisted Ge 1– x Sn x S van der Waals Nanoribbon Waveguides
journal, December 2020

  • Sutter, Peter; Khorashad, Larousse Khosravi; Argyropoulos, Christos
  • Advanced Materials, Vol. 33, Issue 3
  • DOI: 10.1002/adma.202006649

Review of Super-Resolution Fluorescence Microscopy for Biology
journal, September 2011

  • Leung, Bonnie O.; Chou, Keng C.
  • Applied Spectroscopy, Vol. 65, Issue 9
  • DOI: 10.1366/11-06398

Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides
journal, March 2003

  • Maier, Stefan A.; Kik, Pieter G.; Atwater, Harry A.
  • Nature Materials, Vol. 2, Issue 4
  • DOI: 10.1038/nmat852

Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam
journal, August 2021


Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy
journal, February 2019


Broad electrical tuning of plasmonic nanoantennas at visible frequencies
journal, May 2016

  • Hoang, Thang B.; Mikkelsen, Maiken H.
  • Applied Physics Letters, Vol. 108, Issue 18
  • DOI: 10.1063/1.4948588

Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons
journal, December 2019


Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature
journal, November 2017

  • Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01398-3

Ultrafast spontaneous emission source using plasmonic nanoantennas
journal, July 2015

  • Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8788

Antibunching dynamics of plasmonically mediated entanglement generation
journal, November 2017


Enhanced photoluminescence of CdSe quantum dots by the coupling of Ag nanocube and Ag film
journal, July 2014


Single-molecule strong coupling at room temperature in plasmonic nanocavities
journal, June 2016

  • Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix
  • Nature, Vol. 535, Issue 7610
  • DOI: 10.1038/nature17974

Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators
journal, March 2019

  • Hachtel, Jordan A.; Cho, Sang-Yeon; Davidson, Roderick B.
  • Light: Science & Applications, Vol. 8, Issue 1
  • DOI: 10.1038/s41377-019-0136-z

Reduction of Gas CO 2 to CO with High Selectivity by Ag Nanocube-Based Membrane Cathodes in a Photoelectrochemical System
journal, February 2020

  • Lu, Weiwei; Zhang, Yuan; Zhang, Jinjin
  • Industrial & Engineering Chemistry Research, Vol. 59, Issue 13
  • DOI: 10.1021/acs.iecr.9b06052

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering
journal, February 1997


Nano-optics of surface plasmon polaritons
journal, March 2005


Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities
journal, December 2015


Tailored Emission Spectrum of 2D Semiconductors Using Plasmonic Nanocavities
journal, November 2017


Near-Field Imaging of Surface Plasmons from the Bulk and Surface State of Topological Insulator Bi 2 Te 2 Se
journal, September 2019


Bright Plasmons with Cubic Nanometer Mode Volumes through Mode Hybridization
journal, January 2021


Extreme nanophotonics from ultrathin metallic gaps
journal, April 2019

  • Baumberg, Jeremy J.; Aizpurua, Javier; Mikkelsen, Maiken H.
  • Nature Materials, Vol. 18, Issue 7
  • DOI: 10.1038/s41563-019-0290-y

Quantum Plasmonic Sensors
journal, March 2021


Plexcitonic Nanoparticles: Plasmon−Exciton Coupling in Nanoshell−J-Aggregate Complexes
journal, October 2008

  • Fofang, Nche T.; Park, Tae-Ho; Neumann, Oara
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl8024278

Plasmon–Exciton Hybridization in ZnO Quantum-Well Al Nanodisc Heterostructures
journal, February 2012

  • Lawrie, B. J.; Kim, K. -W.; Norton, D. P.
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl3029784

Direct-Write 3D Nanoprinting of Plasmonic Structures
journal, December 2016

  • Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 9
  • DOI: 10.1021/acsami.6b13062

Single-molecule optomechanics in “picocavities”
journal, November 2016

  • Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander
  • Science, Vol. 354, Issue 6313
  • DOI: 10.1126/science.aah5243

Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities
journal, October 2018

  • Luo, Yue; Shepard, Gabriella D.; Ardelean, Jenny V.
  • Nature Nanotechnology, Vol. 13, Issue 12
  • DOI: 10.1038/s41565-018-0275-z

Sub-Diffraction-Limited Optical Imaging with a Silver Superlens
journal, April 2005


Noninvasive Cathodoluminescence-Activated Nanoimaging of Dynamic Processes in Liquids
journal, September 2017


High spatial and energy resolution electron energy loss spectroscopy of the magnetic and electric excitations in plasmonic nanorod oligomers
journal, January 2021

  • Pakeltis, Grace; Rotunno, Enzo; Khorassani, Siamak
  • Optics Express, Vol. 29, Issue 3
  • DOI: 10.1364/oe.416046

Tailoring ZnO Spontaneous Emission with Plasmonic Radiative Local Density of States Using Cathodoluminescence Microscopy
journal, June 2020

  • Jiang, Meiling; Zheng, Liheng; Li, Yu
  • The Journal of Physical Chemistry C, Vol. 124, Issue 25
  • DOI: 10.1021/acs.jpcc.0c02825

Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions
journal, February 2020


Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas
journal, July 2018


Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas
journal, October 2014

  • Akselrod, Gleb M.; Argyropoulos, Christos; Hoang, Thang B.
  • Nature Photonics, Vol. 8, Issue 11
  • DOI: 10.1038/nphoton.2014.228

Plasmonic Gas Sensing Using Nanocube Patch Antennas
journal, January 2016

  • Powell, Alexander W.; Coles, David M.; Taylor, Robert A.
  • Advanced Optical Materials, Vol. 4, Issue 4
  • DOI: 10.1002/adom.201500602

Optoelectronics and Nanophotonics of Vapor–Liquid–Solid Grown GaSe van der Waals Nanoribbons
journal, May 2021


Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas
journal, September 2016


Five-dimensional optical recording mediated by surface plasmons in gold nanorods
journal, May 2009

  • Zijlstra, Peter; Chon, James W. M.; Gu, Min
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08053

Ultrafast Plasmonic Control of Second Harmonic Generation
journal, June 2016


Broadband Plasmonic Photocurrent Enhancement from Photosystem I Assembled with Tailored Arrays of Au and Ag Nanodisks
journal, January 2021

  • Pamu, Ravi; Lawrie, Benjamin J.; Khomami, Bamin
  • ACS Applied Nano Materials, Vol. 4, Issue 2
  • DOI: 10.1021/acsanm.0c02709

Spatiotemporal Organization of Biofilm Matrix Revealed by Confocal Raman Mapping Integrated with Non-negative Matrix Factorization Analysis
journal, November 2019


Split ring resonator sensors for infrared detection of single molecular monolayers
journal, July 2009

  • Cubukcu, Ertugrul; Zhang, Shuang; Park, Yong-Shik
  • Applied Physics Letters, Vol. 95, Issue 4
  • DOI: 10.1063/1.3194154

Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells
journal, February 2017

  • Stelling, Christian; Singh, Chetan R.; Karg, Matthias
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42530

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151