DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating

Abstract

Electron velocity distribution functions driven by inverse bremsstrahlung heating were measured to be non-Maxwellian using a novel angularly resolved Thomson-scattering instrument and the corresponding reduction of electrons at slow velocities resulted in a ~40% measured reduction in inverse bremsstrahlung absorption. The distribution functions were measured to be super-Gaussian in the bulk (v=vth < 3) and Maxwellian in the tail (v=vth > 3) when the laser heating rate dominated over the electron-electron thermalization rate. Simulations with the particle code Quartz showed the shape of the tail was dictated by the uniformity of the laser heating.

Authors:
 [1];  [2];  [2];  [2];  [3];  [4]; ORCiD logo [5]
  1. Univ. of Rochester, NY (United States); Lab. for Laser Energetics, Rochester, NY (United States)
  2. Lab. for Laser Energetics, Rochester, NY (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Alberta, Edmonton, AB (Canada)
  5. Lab. for Laser Energetics, Rochester, NY (United States); Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1827514
Alternate Identifier(s):
OSTI ID: 1829730
Report Number(s):
LLNL-JRNL-815359
Journal ID: ISSN 0031-9007; 1023301; TRN: US2215960
Grant/Contract Number:  
AC52-07NA27344; NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 127; Journal Issue: 1; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Laser-plasma interactions; Plasma production & heating by laser beams; laser-foil; laser-cluster; Light scattering; Optical plasma measurements

Citation Formats

Milder, A. L., Katz, J., Boni, R., Palastro, J. P., Sherlock, M., Rozmus, W., and Froula, D. H. Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating. United States: N. p., 2021. Web. doi:10.1103/physrevlett.127.015001.
Milder, A. L., Katz, J., Boni, R., Palastro, J. P., Sherlock, M., Rozmus, W., & Froula, D. H. Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating. United States. https://doi.org/10.1103/physrevlett.127.015001
Milder, A. L., Katz, J., Boni, R., Palastro, J. P., Sherlock, M., Rozmus, W., and Froula, D. H. Tue . "Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating". United States. https://doi.org/10.1103/physrevlett.127.015001. https://www.osti.gov/servlets/purl/1827514.
@article{osti_1827514,
title = {Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating},
author = {Milder, A. L. and Katz, J. and Boni, R. and Palastro, J. P. and Sherlock, M. and Rozmus, W. and Froula, D. H.},
abstractNote = {Electron velocity distribution functions driven by inverse bremsstrahlung heating were measured to be non-Maxwellian using a novel angularly resolved Thomson-scattering instrument and the corresponding reduction of electrons at slow velocities resulted in a ~40% measured reduction in inverse bremsstrahlung absorption. The distribution functions were measured to be super-Gaussian in the bulk (v=vth < 3) and Maxwellian in the tail (v=vth > 3) when the laser heating rate dominated over the electron-electron thermalization rate. Simulations with the particle code Quartz showed the shape of the tail was dictated by the uniformity of the laser heating.},
doi = {10.1103/physrevlett.127.015001},
journal = {Physical Review Letters},
number = 1,
volume = 127,
place = {United States},
year = {Tue Jun 29 00:00:00 EDT 2021},
month = {Tue Jun 29 00:00:00 EDT 2021}
}

Works referenced in this record:

Ultrafast optical field–ionized gases—A laboratory platform for studying kinetic plasma instabilities
journal, September 2019

  • Zhang, Chaojie; Huang, Chen-Kang; Marsh, Ken A.
  • Science Advances, Vol. 5, Issue 9
  • DOI: 10.1126/sciadv.aax4545

On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER
journal, July 2011


Electronic structure measurements of dense plasmas
journal, May 2004

  • Gregori, G.; Glenzer, S. H.; Rogers, F. J.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1689664

Thermal heat-flux reduction in laser-produced plasmas
journal, October 1982


Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics
journal, January 2017


Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions
journal, April 1994


A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion
journal, August 2017

  • Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4986095

Non-Maxwellian electron velocity distributions observed with Thomson scattering in the TORTUR tokamak
journal, April 1992


Radiative Jet Experiments of Astrophysical Interest Using Intense Lasers
journal, September 1999


Formation of Maxwellian Tails
journal, May 1976


Measurement of non‐Maxwellian electron energy distributions in an inductively coupled plasma
journal, December 1996

  • Hori, T.; Bowden, M. D.; Uchino, K.
  • Applied Physics Letters, Vol. 69, Issue 24
  • DOI: 10.1063/1.117188

Fast-Ion Velocity Distributions in JET Measured by Collective Thomson Scattering
journal, October 1999


Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas
journal, November 1988


Impact of the Langdon effect on crossed-beam energy transfer
journal, December 2019


A binary collision model for plasma simulation with a particle code
journal, November 1977


The formation of reverse shocks in magnetized high energy density supersonic plasma flows
journal, May 2014

  • Lebedev, S. V.; Suttle, L.; Swadling, G. F.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874334

Thomson Scattering from High- Z Laser-Produced Plasmas
journal, January 1999


Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited)
journal, October 2010

  • Ross, J. S.; Glenzer, S. H.; Palastro, J. P.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3478975

Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3
journal, November 1969

  • Peacock, N. J.; Robinson, D. C.; Forrest, M. J.
  • Nature, Vol. 224, Issue 5218
  • DOI: 10.1038/224488a0

Observation of Nonlocal Heat Flux Using Thomson Scattering
journal, September 2018


The effect of resonance absorption in OMEGA direct-drive designs and experiments
journal, September 2007

  • Igumenshchev, I. V.; Goncharov, V. N.; Seka, W.
  • Physics of Plasmas, Vol. 14, Issue 9
  • DOI: 10.1063/1.2768515

Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering
journal, March 2011

  • Beausang, K. V.; Prunty, S. L.; Scannell, R.
  • Review of Scientific Instruments, Vol. 82, Issue 3
  • DOI: 10.1063/1.3567785

Measurement of temperature and density using non-collective X-ray Thomson scattering in pulsed power produced warm dense plasmas
journal, May 2018


Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter
journal, May 2020


Fully relativistic form factor for Thomson scattering
journal, March 2010


A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA
journal, October 2012

  • Katz, J.; Boni, R.; Sorce, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733551

The upgrade to the OMEGA laser system
journal, January 1995

  • Boehly, T. R.; Craxton, R. S.; Hinterman, T. H.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146333

Anomalous heating by ion sound turbulence
journal, January 1978


A transmitted-beam diagnostic for the wavelength-tunable UV drive beam on OMEGA
journal, March 2021

  • Katz, J.; Turnbull, D.; Kruschwitz, B. E.
  • Review of Scientific Instruments, Vol. 92, Issue 3
  • DOI: 10.1063/5.0042877

Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams
journal, November 2001

  • Garnier, J.; Videau, L.
  • Physics of Plasmas, Vol. 8, Issue 11
  • DOI: 10.1063/1.1405127

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Observation of a Transition from Fluid to Kinetic Nonlinearities for Langmuir Waves Driven by Stimulated Raman Backscatter
journal, May 2005


Scattering of light from the electrons in a plasma
journal, February 1964


Simulations of electron transport in laser hot spots
journal, March 2002


Effects of non-Maxwellian (super-Gaussian) electron velocity distribution on the spectrum of Thomson scattering
journal, July 1997

  • Zheng, Jian; Yu, C. X.; Zheng, Z. J.
  • Physics of Plasmas, Vol. 4, Issue 7
  • DOI: 10.1063/1.872141

Characterization of plasma and laser conditions for single hot spot experiments
journal, July 1999


Impact of non-Maxwellian electron velocity distribution functions on inferred plasma parameters in collective Thomson scattering
journal, February 2019

  • Milder, A. L.; Ivancic, S. T.; Palastro, J. P.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5085664

Supersonic gas-jet characterization with interferometry and Thomson scattering on the OMEGA Laser System
journal, October 2018

  • Hansen, A. M.; Haberberger, D.; Katz, J.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5036645

Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas
journal, January 2016

  • Rozmus, W.; Chapman, T.; Brantov, A.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939603

Modelling of collective Thomson scattering from collisional plasmas
journal, May 2003

  • Iv, T. E. Tierney; Montgomery, D. S.; Benage, J. F.
  • Journal of Physics A: Mathematical and General, Vol. 36, Issue 22
  • DOI: 10.1088/0305-4470/36/22/320

Electron distribution function in laser heated plasmas
journal, February 2001

  • Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1334611

Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)
journal, July 2016

  • Follett, R. K.; Delettrez, J. A.; Edgell, D. H.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959160

Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation
journal, February 2006

  • Bell, A. R.; Robinson, A. P. L.; Sherlock, M.
  • Plasma Physics and Controlled Fusion, Vol. 48, Issue 3
  • DOI: 10.1088/0741-3335/48/3/R01