DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability

Abstract

Relativistic electron (RE) beams at high current density (low safety factor, qa) yet very low free-electron density accessed with D2 secondary injection in the DIII-D and JET tokamak are found to exhibit large-scale MHD instabilities that benignly terminate the RE beam. In JET, this technique has enabled termination of MA-level RE currents without measurable first-wall heating. This scenario thus offers an unexpected alternate pathway to achieve RE mitigation without collisional dissipation. Benign termination is explained by two synergistic effects. First, during the MHD-driven RE loss events both experiment and MHD orbit-loss modeling supports a significant increase in the wetted area of the RE loss. Second, as previously identified at JET and DIII-D, the fast kink loss timescale precludes RE beam regeneration and the resulting dangerous conversion of magnetic to RE kinetic energy. During the termination, the RE kinetic energy is lost to the wall, but the current fully transfers to the cold bulk thus enabling benign Ohmic dissipation of the magnetic energy on longer timescales via a conventional current quench. Hydrogenic (D2) secondary injection is found to be the only injected species that enables access to the benign termination. D2 injection: 1) facilitates access to low qa in existing devicesmore » (via reduced collisionality & resistivity), 2) minimizes the RE avalanche by ‘purging’ the high-Z atoms from the RE beam, 3) drives recombination of the background plasma, reducing the density and Alfven time, thus accelerating the MHD growth. Furthermore, this phenomenon is found to be accessible when crossing the low qa stability boundary with rising current, falling toroidal field, or contracting minor radius - the latter being the expected scenario for vertically unstable RE beams in ITER. While unexpected, this path scales favorably to fusion-grade tokamaks and offers a novel RE mitigation scenario in principle accessible with the day-one disruption mitigation system (DMS) of ITER.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [9];  [7];  [6];  [10]; ORCiD logo [11]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [12];  [9]; ORCiD logo [13] more »;  [10];  [14]; ORCiD logo [15];  [16];  [17]; ORCiD logo [18]; ORCiD logo [12];  [19]; ORCiD logo [20];  [21];  [10];  [22];  [6];  [23]; ORCiD logo [6];  [24];  [22];  [25] « less
  1. Columbia Univ., New York, NY (United States)
  2. CEA, Saint-Paul-lez-Durance (France)
  3. Max-Planck-Inst. für Plasmaphysik Teilinstitut Greifswald (Germany)
  4. Max-Planck-Inst. fur Plasmaphysik, Greifswald (Germany)
  5. Max-Planck-Inst. fur Plasmaphysics, Garching (Germany)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. General Atomics, San Diego, CA (United States)
  8. Princeton Univ., NJ (United States)
  9. Culham Centre for Fusion Energy, Abingdon (United Kingdom of Great Britain and Northern Ireland)
  10. Univ. of California San Diego, La Jolla, CA (United States)
  11. Univ. of Rome (Italy)
  12. Akademie Ved Ceske Republiky Ustav Fyziky Plazmatu, Praha (Czech Republic)
  13. Max-Planck-Inst. Plasmaphysik, Garching (Germany)
  14. Forschungszentrum Julich, Nordrhein-Westfalen (Germany)
  15. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  16. CEA-Cadarache, St Paul lez Durance (France)
  17. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  18. ITER Organization, St Paul Lez Durance (France)
  19. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Madrid (Spain)
  20. Max Planck Inst. for Plasma Physics, Bavaria (Germany)
  21. Max-Planck-Inst. fur Plasmaphysik, Bayern (Germany)
  22. Culham Centre for Fusion Energy, Oxfordshire (United Kingdom of Great Britain and Northern Ireland)
  23. EPFL, Lausanne (Switzerland)
  24. CEA-IFRM, Saint Paul Lez Durance (France)
  25. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States). Princeton Univ.
Publication Date:
Research Org.:
General Atomics, San Diego, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
EUROfusion Consortium; Swiss National Science Foundation (SNSF); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1823475
Alternate Identifier(s):
OSTI ID: 1828768; OSTI ID: 1860591; OSTI ID: 1867543
Report Number(s):
LLNL-JRNL-835135
Journal ID: ISSN 0029-5515; 633053; TA C18TD38FU; TRN: US2215629
Grant/Contract Number:  
FC02-04ER54698; SC0020299; FG02-07ER54917; SC0022270; 633053; AC05-00OR22725; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 61; Journal Issue: 11; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics - Plasma physics

Citation Formats

Paz-Soldan, Carlos, Reux, Cedric, Aleynikova, Ksenia, Aleynikov, Pavel, Bandaru, Vinodh, Beidler, Matthew, Eidietis, Nicholas W., Liu, Chang, Liu, Yueqiang, Lvovskiy, Andrey, Silburn, Scott Alan, Bardoczi, Laszlo, Baylor, Larry R., Bykov, Igor, Carnevale, Daniele, del-Castillo-Negrete, Diego, Du, Xiaodi, Ficker, Ondřej, Gerasimov, Sergei, Hoelzl, Matthias, Hollmann, Eric M., Jachmich, Stefan, Jardin, Stephen C., Joffrin, Emmanuel Henri, Lasnier, Charles, Lehnen, Michael, Macusova, Eva, Manzanares, Ana, Papp, Gergely, Pautasso, Gabriella, Popovic, Zana, Rimini, Fernanda, Shiraki, Daisuke, Sommariva, Cristian, Spong, Donald A., Sridhar, Sundaresan, Szepesi, Gabor, and Zhao, Chen. A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability. United States: N. p., 2021. Web. doi:10.1088/1741-4326/ac2a69.
Paz-Soldan, Carlos, Reux, Cedric, Aleynikova, Ksenia, Aleynikov, Pavel, Bandaru, Vinodh, Beidler, Matthew, Eidietis, Nicholas W., Liu, Chang, Liu, Yueqiang, Lvovskiy, Andrey, Silburn, Scott Alan, Bardoczi, Laszlo, Baylor, Larry R., Bykov, Igor, Carnevale, Daniele, del-Castillo-Negrete, Diego, Du, Xiaodi, Ficker, Ondřej, Gerasimov, Sergei, Hoelzl, Matthias, Hollmann, Eric M., Jachmich, Stefan, Jardin, Stephen C., Joffrin, Emmanuel Henri, Lasnier, Charles, Lehnen, Michael, Macusova, Eva, Manzanares, Ana, Papp, Gergely, Pautasso, Gabriella, Popovic, Zana, Rimini, Fernanda, Shiraki, Daisuke, Sommariva, Cristian, Spong, Donald A., Sridhar, Sundaresan, Szepesi, Gabor, & Zhao, Chen. A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability. United States. https://doi.org/10.1088/1741-4326/ac2a69
Paz-Soldan, Carlos, Reux, Cedric, Aleynikova, Ksenia, Aleynikov, Pavel, Bandaru, Vinodh, Beidler, Matthew, Eidietis, Nicholas W., Liu, Chang, Liu, Yueqiang, Lvovskiy, Andrey, Silburn, Scott Alan, Bardoczi, Laszlo, Baylor, Larry R., Bykov, Igor, Carnevale, Daniele, del-Castillo-Negrete, Diego, Du, Xiaodi, Ficker, Ondřej, Gerasimov, Sergei, Hoelzl, Matthias, Hollmann, Eric M., Jachmich, Stefan, Jardin, Stephen C., Joffrin, Emmanuel Henri, Lasnier, Charles, Lehnen, Michael, Macusova, Eva, Manzanares, Ana, Papp, Gergely, Pautasso, Gabriella, Popovic, Zana, Rimini, Fernanda, Shiraki, Daisuke, Sommariva, Cristian, Spong, Donald A., Sridhar, Sundaresan, Szepesi, Gabor, and Zhao, Chen. Thu . "A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability". United States. https://doi.org/10.1088/1741-4326/ac2a69. https://www.osti.gov/servlets/purl/1823475.
@article{osti_1823475,
title = {A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability},
author = {Paz-Soldan, Carlos and Reux, Cedric and Aleynikova, Ksenia and Aleynikov, Pavel and Bandaru, Vinodh and Beidler, Matthew and Eidietis, Nicholas W. and Liu, Chang and Liu, Yueqiang and Lvovskiy, Andrey and Silburn, Scott Alan and Bardoczi, Laszlo and Baylor, Larry R. and Bykov, Igor and Carnevale, Daniele and del-Castillo-Negrete, Diego and Du, Xiaodi and Ficker, Ondřej and Gerasimov, Sergei and Hoelzl, Matthias and Hollmann, Eric M. and Jachmich, Stefan and Jardin, Stephen C. and Joffrin, Emmanuel Henri and Lasnier, Charles and Lehnen, Michael and Macusova, Eva and Manzanares, Ana and Papp, Gergely and Pautasso, Gabriella and Popovic, Zana and Rimini, Fernanda and Shiraki, Daisuke and Sommariva, Cristian and Spong, Donald A. and Sridhar, Sundaresan and Szepesi, Gabor and Zhao, Chen},
abstractNote = {Relativistic electron (RE) beams at high current density (low safety factor, qa) yet very low free-electron density accessed with D2 secondary injection in the DIII-D and JET tokamak are found to exhibit large-scale MHD instabilities that benignly terminate the RE beam. In JET, this technique has enabled termination of MA-level RE currents without measurable first-wall heating. This scenario thus offers an unexpected alternate pathway to achieve RE mitigation without collisional dissipation. Benign termination is explained by two synergistic effects. First, during the MHD-driven RE loss events both experiment and MHD orbit-loss modeling supports a significant increase in the wetted area of the RE loss. Second, as previously identified at JET and DIII-D, the fast kink loss timescale precludes RE beam regeneration and the resulting dangerous conversion of magnetic to RE kinetic energy. During the termination, the RE kinetic energy is lost to the wall, but the current fully transfers to the cold bulk thus enabling benign Ohmic dissipation of the magnetic energy on longer timescales via a conventional current quench. Hydrogenic (D2) secondary injection is found to be the only injected species that enables access to the benign termination. D2 injection: 1) facilitates access to low qa in existing devices (via reduced collisionality & resistivity), 2) minimizes the RE avalanche by ‘purging’ the high-Z atoms from the RE beam, 3) drives recombination of the background plasma, reducing the density and Alfven time, thus accelerating the MHD growth. Furthermore, this phenomenon is found to be accessible when crossing the low qa stability boundary with rising current, falling toroidal field, or contracting minor radius - the latter being the expected scenario for vertically unstable RE beams in ITER. While unexpected, this path scales favorably to fusion-grade tokamaks and offers a novel RE mitigation scenario in principle accessible with the day-one disruption mitigation system (DMS) of ITER.},
doi = {10.1088/1741-4326/ac2a69},
journal = {Nuclear Fusion},
number = 11,
volume = 61,
place = {United States},
year = {Thu Oct 14 00:00:00 EDT 2021},
month = {Thu Oct 14 00:00:00 EDT 2021}
}

Works referenced in this record:

Study of argon assimilation into the post-disruption runaway electron plateau in DIII-D and comparison with a 1D diffusion model
journal, August 2019


Separation of β̄ p and ℓ i in tokamaks of non-circular cross-section
journal, October 1985


MHD stable regime of the Tokamak
journal, March 1987

  • Cheng, C. Z.; Furth, H. P.; Boozer, A. H.
  • Plasma Physics and Controlled Fusion, Vol. 29, Issue 3
  • DOI: 10.1088/0741-3335/29/3/006

A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions
journal, October 2007


Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod
journal, October 2018

  • Tinguely, R. A.; Granetz, R. S.; Hoppe, M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 12
  • DOI: 10.1088/1361-6587/aae6ba

Runaway generation during disruptions in JET and TEXTOR
journal, June 2009


Runaway electron seed formation at reactor-relevant temperature
journal, April 2020


Interpretation of runaway electron synchrotron and bremsstrahlung images
journal, June 2018


Structure and overstability of resistive modes with runaway electrons
journal, September 2020

  • Liu, Chang; Zhao, Chen; Jardin, Stephen C.
  • Physics of Plasmas, Vol. 27, Issue 9
  • DOI: 10.1063/5.0018559

Shattered pellet injection technology design and characterization for disruption mitigation experiments
journal, April 2019


Study of argon expulsion from the post-disruption runaway electron plateau following low-Z massive gas injection in DIII-D
journal, April 2020

  • Hollmann, E. M.; Bykov, I.; Eidietis, N. W.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/5.0003299

Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation
journal, March 2015


Disruptions in ITER and strategies for their control and mitigation
journal, August 2015


Macroscopic kink instabilities in toroidal relativistic beams
journal, September 1977


MHD Equilibrium Reconstruction in the DIII-D Tokamak
journal, October 2005

  • Lao, L. L.; John, H. E. St.; Peng, Q.
  • Fusion Science and Technology, Vol. 48, Issue 2
  • DOI: 10.13182/fst48-968

The ITER blanket system design challenge
journal, February 2014


On the avalanche generation of runaway electrons during tokamak disruptions
journal, August 2015

  • Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4927773

Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
journal, October 2020

  • Liu, Yueqiang; Paz-Soldan, C.; Macusova, E.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0021154

Space dependent, full orbit effects on runaway electron dynamics in tokamak plasmas
journal, April 2017

  • Carbajal, L.; del-Castillo-Negrete, D.; Spong, D.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4981209

Physics of runaway electrons in tokamaks
journal, June 2019

  • Breizman, Boris N.; Aleynikov, Pavel; Hollmann, Eric M.
  • Nuclear Fusion, Vol. 59, Issue 8
  • DOI: 10.1088/1741-4326/ab1822

Recent DIII-D advances in runaway electron measurement and model validation
journal, May 2019


Loss of relativistic electrons when magnetic surfaces are broken
journal, October 2016

  • Boozer, Allen H.; Punjabi, Alkesh
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4966046

Simulation of MHD instabilities with fluid runaway electron model in M3D-C1
journal, May 2020


Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D
journal, June 2017

  • Hollmann, E. M.; Commaux, N.; Eidietis, N. W.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4985086

Influence of massive material injection on avalanche runaway generation during tokamak disruptions
journal, June 2019


Studies of Plasma Equilibrium and Transport in a Tokamak Fusion Device with the Inverse-Variable Technique
journal, December 1993

  • Khayrutdinov, R. R.; Lukash, V. E.
  • Journal of Computational Physics, Vol. 109, Issue 2
  • DOI: 10.1006/jcph.1993.1211

Hydromagnetic stability of tokamaks
journal, January 1978


Runaway electron beam generation and mitigation during disruptions at JET-ILW
journal, August 2015


Status of research toward the ITER disruption mitigation system
journal, November 2014

  • Hollmann, E. M.; Aleynikov, P. B.; Fülöp, T.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4901251

Spatially dependent modeling and simulation of runaway electron mitigation in DIII-D
journal, November 2020

  • Beidler, M. T.; del-Castillo-Negrete, D.; Baylor, L. R.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0022072

Model of vertical plasma motion during the current quench
journal, October 2017

  • Kiramov, D. I.; Breizman, B. N.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4993071

Generation of runaway electrons during the thermal quench in tokamaks
journal, February 2017


Kink instabilities of the post-disruption runaway electron beam at low safety factor
journal, March 2019

  • Paz-Soldan, C.; Eidietis, N. W.; Liu, Y. Q.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 5
  • DOI: 10.1088/1361-6587/aafd15

Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D
journal, May 2006

  • Garofalo, A. M.; Doyle, E. J.; Ferron, J. R.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2185010

Magnetohydrodynamic simulations of runaway electron beam termination in JET
journal, January 2021

  • Bandaru, V.; Hoelzl, M.; Reux, C.
  • Plasma Physics and Controlled Fusion, Vol. 63, Issue 3
  • DOI: 10.1088/1361-6587/abdbcf

MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D
journal, October 2019


Runaway electron dynamics in tokamak plasmas with high impurity content
journal, September 2015

  • Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4931166

Understanding the reduction of the edge safety factor during hot VDEs and fast edge cooling events
journal, March 2020

  • Artola, F. J.; Lackner, K.; Huijsmans, G. T. A.
  • Physics of Plasmas, Vol. 27, Issue 3
  • DOI: 10.1063/1.5140230

Runaway beam studies during disruptions at JET-ILW
journal, August 2015


Runaway electron synchrotron radiation in a vertically translated plasma
journal, August 2020


Force-free motion of a cold plasma during the current quench
journal, September 2018

  • Kiramov, D. I.; Breizman, B. N.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5046517

Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. I. Electromagnetic model
journal, September 2000

  • Liu, Y. Q.; Bondeson, A.; Fransson, C. M.
  • Physics of Plasmas, Vol. 7, Issue 9
  • DOI: 10.1063/1.1287744

Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
journal, March 2018