DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic charge propagation upon a 3D artificial spin-ice

Abstract

Magnetic charge propagation in spin-ice materials has yielded a paradigm-shift in science, allowing the symmetry between electricity and magnetism to be studied. Recent work is now suggesting the spin-ice surface may be important in mediating the ordering and associated phase space in such materials. Here, we detail a 3D artificial spin-ice, which captures the exact geometry of bulk systems, allowing magnetic charge dynamics to be directly visualized upon the surface. Using magnetic force microscopy, we observe vastly different magnetic charge dynamics along two principal directions. For a field applied along the surface termination, local energetics force magnetic charges to nucleate over a larger characteristic distance, reducing their magnetic Coulomb interaction and producing uncorrelated monopoles. In contrast, applying a field transverse to the surface termination yields highly correlated monopole-antimonopole pairs. Detailed simulations suggest it is the difference in effective chemical potential as well as the energy landscape experienced during dynamics that yields the striking differences in monopole transport.

Authors:
 [1];  [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Cardiff Univ. (United Kingdom)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Nonlinear Studies (CNLS)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1822810
Report Number(s):
LA-UR-21-22700
Journal ID: ISSN 2041-1723; TRN: US2214513
Grant/Contract Number:  
89233218CNA000001; EP/R009147/1/
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ferromagnetism; magnetic properties and materials

Citation Formats

May, A., Saccone, M., van den Berg, A., Askey, J., Hunt, M., and Ladak, S. Magnetic charge propagation upon a 3D artificial spin-ice. United States: N. p., 2021. Web. doi:10.1038/s41467-021-23480-7.
May, A., Saccone, M., van den Berg, A., Askey, J., Hunt, M., & Ladak, S. Magnetic charge propagation upon a 3D artificial spin-ice. United States. https://doi.org/10.1038/s41467-021-23480-7
May, A., Saccone, M., van den Berg, A., Askey, J., Hunt, M., and Ladak, S. Fri . "Magnetic charge propagation upon a 3D artificial spin-ice". United States. https://doi.org/10.1038/s41467-021-23480-7. https://www.osti.gov/servlets/purl/1822810.
@article{osti_1822810,
title = {Magnetic charge propagation upon a 3D artificial spin-ice},
author = {May, A. and Saccone, M. and van den Berg, A. and Askey, J. and Hunt, M. and Ladak, S.},
abstractNote = {Magnetic charge propagation in spin-ice materials has yielded a paradigm-shift in science, allowing the symmetry between electricity and magnetism to be studied. Recent work is now suggesting the spin-ice surface may be important in mediating the ordering and associated phase space in such materials. Here, we detail a 3D artificial spin-ice, which captures the exact geometry of bulk systems, allowing magnetic charge dynamics to be directly visualized upon the surface. Using magnetic force microscopy, we observe vastly different magnetic charge dynamics along two principal directions. For a field applied along the surface termination, local energetics force magnetic charges to nucleate over a larger characteristic distance, reducing their magnetic Coulomb interaction and producing uncorrelated monopoles. In contrast, applying a field transverse to the surface termination yields highly correlated monopole-antimonopole pairs. Detailed simulations suggest it is the difference in effective chemical potential as well as the energy landscape experienced during dynamics that yields the striking differences in monopole transport.},
doi = {10.1038/s41467-021-23480-7},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Fri May 28 00:00:00 EDT 2021},
month = {Fri May 28 00:00:00 EDT 2021}
}

Works referenced in this record:

Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
journal, March 2007

  • Wang, R. F.; Nisoli, C.; Freitas, R. S.
  • Nature, Vol. 446, Issue 7131
  • DOI: 10.1038/nature05607

Crystallites of magnetic charges in artificial spin ice
journal, August 2013

  • Zhang, Sheng; Gilbert, Ian; Nisoli, Cristiano
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12399

Disorder-independent control of magnetic monopole defect population in artificial spin-ice honeycombs
journal, April 2012


Direct observation of magnetic monopole defects in an artificial spin-ice system
journal, April 2010

  • Ladak, S.; Read, D. E.; Perkins, G. K.
  • Nature Physics, Vol. 6, Issue 5
  • DOI: 10.1038/nphys1628

Phase transitions in few-monolayer spin ice films
journal, March 2019


Thermal ground-state ordering and elementary excitations in artificial magnetic square ice
journal, November 2010

  • Morgan, Jason P.; Stein, Aaron; Langridge, Sean
  • Nature Physics, Vol. 7, Issue 1
  • DOI: 10.1038/nphys1853

Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7
journal, September 2009


Emerging Chirality in Artificial Spin Ice
journal, March 2012


Creation and measurement of long-lived magnetic monopole currents in spin ice
journal, February 2011

  • Giblin, S. R.; Bramwell, S. T.; Holdsworth, P. C. W.
  • Nature Physics, Vol. 7, Issue 3
  • DOI: 10.1038/nphys1896

Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice
journal, November 2016

  • Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas
  • Nature, Vol. 540, Issue 7633
  • DOI: 10.1038/nature20155

Three-dimensional magnetization structures revealed with X-ray vector nanotomography
journal, July 2017

  • Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23006

Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays
journal, October 2009


Rewritable artificial magnetic charge ice
journal, May 2016


Magnetic Charge Propagation upon a 3D Artificial Spin-ice - data
collection, January 2021


Monopole defects and magnetic Coulomb blockade
journal, February 2011


Magnetic Domain-Wall Racetrack Memory
journal, April 2008


Signature of magnetic monopole and Dirac string dynamics in spin ice
journal, March 2009

  • Jaubert, L. D. C.; Holdsworth, P. C. W.
  • Nature Physics, Vol. 5, Issue 4
  • DOI: 10.1038/nphys1227

Spin Ice State in Frustrated Magnetic Pyrochlore Materials
journal, November 2001


Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure
journal, January 2018

  • Sahoo, Sourav; Mondal, Sucheta; Williams, Gwilym
  • Nanoscale, Vol. 10, Issue 21
  • DOI: 10.1039/C7NR07843A

Two-photon lithography for 3D magnetic nanostructure fabrication
journal, July 2017


Memory on the racetrack
journal, March 2015


Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale
journal, February 2020

  • Hunt, Matthew; Taverne, Mike; Askey, Joseph
  • Materials, Vol. 13, Issue 3
  • DOI: 10.3390/ma13030761

Sub-100-nm negative bend resistance ballistic sensors for high spatial resolution magnetic field detection
journal, February 2011

  • Gilbertson, A. M.; Benstock, D.; Fearn, M.
  • Applied Physics Letters, Vol. 98, Issue 6
  • DOI: 10.1063/1.3554427

High pressure route to generate magnetic monopole dimers in spin ice
journal, September 2011

  • Zhou, H. D.; Bramwell, S. T.; Cheng, J. G.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1483

Magnetic monopoles in spin ice
journal, January 2008

  • Castelnovo, C.; Moessner, R.; Sondhi, S. L.
  • Nature, Vol. 451, Issue 7174
  • DOI: 10.1038/nature06433

Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice
journal, February 2019

  • Farhan, Alan; Saccone, Michael; Petersen, Charlotte F.
  • Science Advances, Vol. 5, Issue 2
  • DOI: 10.1126/sciadv.aav6380

Realisation of a frustrated 3D magnetic nanowire lattice
journal, February 2019


Creation and measurement of long-lived magnetic monopole currents in spin ice
journal, February 2011

  • Giblin, S. R.; Bramwell, S. T.; Holdsworth, P. C. W.
  • Nature Physics, Vol. 7, Issue 3
  • DOI: 10.1038/nphys1896

Phase transitions in few-monolayer spin ice films
journal, March 2019


Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects
journal, May 2017