DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts

Abstract

In iridium oxide catalysts, the electronic states whose energies are in the range of energetics and charge transfer kinetics of the oxygen evolution reaction (OER) originate from the Ir 5d orbital states. However, the understanding of the atomic structures and orbital states underlying catalytic reactivity in amorphous iridium oxide oxygen evolving catalysts (Ir-OECs) is incomplete compared to that of crystalline oxides, owing to a lack of direct experimental verification. Here, we present experimental approaches using resonant inelastic X-ray scattering (RIXS) to directly access Ir 5d orbital excitations at the Ir L3 edge and atomic pair distribution function (PDF) measurements to characterize electronic and coordination structures at the atomic scale. The so-called iridium blue layer (IrBL) and IrOx were formed from the organometallic precursor complex [Cp*Ir(H2O)3]SO4 and the inorganic precursor IrCl3, respectively. Ex situ IrBL and IrOx films for RIXS and PDF measurements were prepared by conditioning electrodeposited films at a low voltage. The incident energy RIXS profile of IrOx exhibited extra weak resonantly enhanced excitation below 2 eV energy loss. The feature was clearly different from a single high-energy excitation above 3 eV of IrBL related to the interband transition between π- and σ-antibonding states. The atomic structure refinement basedmore » on PDF measurements revealed the atomic structure domains to have edge- and corner-shared IrO6 octahedra with trigonal-type distortion. Furthermore, density functional theory calculations guided by the refined atomic structures shed light on the electronic structure corresponding to experimental results, including insulating and metallic phases in ex situ IrBL and IrOx films, respectively. Our study establishes different Ir 5d orbital states and atomic structures in two amorphous Ir oxide OER catalysts in their reduction states.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [2];  [3];  [4];  [4];  [3];  [5]; ORCiD logo [5]; ORCiD logo [1];  [6];  [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [1]; ORCiD logo [11]; ORCiD logo [11]; ORCiD logo [10] more »; ORCiD logo [6] « less
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  2. Chung-Ang Univ., Seoul (South Korea)
  3. Pohang Univ. of Science and Technology (POSTECH) (South Korea); Inst. for Basic Science (IBS), Pohang (South Korea). Center for Artificial Low Dimensional Electronic Systems
  4. Pohang Accelerator Lab. (PAL) (Korea, Republic of)
  5. Ulsan National Inst. of Science and Technology (UNIST), Ulsan (South Korea)
  6. Argonne National Lab. (ANL), Lemont, IL (United States). Advanced Photon Source (APS)
  7. Stony Brook Univ., NY (United States). Joint Photon Sciences Inst.
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  10. Argonne National Lab. (ANL), Lemont, IL (United States)
  11. Yale Univ., New Haven, CT (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Research Foundation of Korea (NRF)
OSTI Identifier:
1818935
Alternate Identifier(s):
OSTI ID: 1813059
Report Number(s):
BNL-222053-2021-JAAM
Journal ID: ISSN 2155-5435
Grant/Contract Number:  
SC0012704; AC02-06CH11357; FG02-07ER15909; 2019K1A3A7A09033393; 2020R1C1C1012424
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 11; Journal Issue: 15; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Amorphous iridum oxide; Oxygen evolution reaction; Resonant inelastic x-ray scattering; Iridium oxide; Iridium blue layer; Water oxidation; Water splitting; Pair distribution

Citation Formats

Kwon, Gihan, Chang, Seo Hyoung, Heo, Jin Eun, Lee, Kyeong Jun, Kim, Jin-Kwang, Cho, Byeong-Gwan, Koo, Tae Yeong, Kim, B. J., Kim, Chanseok, Lee, Jun Hee, Bak, Seong-Min, Beyer, Kevin A., Zhong, Hui, Koch, Robert J., Hwang, Sooyeon, Utschig, Lisa M., Huang, Xiaojing, Hu, Gongfang, Brudvig, Gary W., Tiede, David M., and Kim, Jungho. Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. United States: N. p., 2021. Web. doi:10.1021/acscatal.1c00818.
Kwon, Gihan, Chang, Seo Hyoung, Heo, Jin Eun, Lee, Kyeong Jun, Kim, Jin-Kwang, Cho, Byeong-Gwan, Koo, Tae Yeong, Kim, B. J., Kim, Chanseok, Lee, Jun Hee, Bak, Seong-Min, Beyer, Kevin A., Zhong, Hui, Koch, Robert J., Hwang, Sooyeon, Utschig, Lisa M., Huang, Xiaojing, Hu, Gongfang, Brudvig, Gary W., Tiede, David M., & Kim, Jungho. Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. United States. https://doi.org/10.1021/acscatal.1c00818
Kwon, Gihan, Chang, Seo Hyoung, Heo, Jin Eun, Lee, Kyeong Jun, Kim, Jin-Kwang, Cho, Byeong-Gwan, Koo, Tae Yeong, Kim, B. J., Kim, Chanseok, Lee, Jun Hee, Bak, Seong-Min, Beyer, Kevin A., Zhong, Hui, Koch, Robert J., Hwang, Sooyeon, Utschig, Lisa M., Huang, Xiaojing, Hu, Gongfang, Brudvig, Gary W., Tiede, David M., and Kim, Jungho. Thu . "Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts". United States. https://doi.org/10.1021/acscatal.1c00818. https://www.osti.gov/servlets/purl/1818935.
@article{osti_1818935,
title = {Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts},
author = {Kwon, Gihan and Chang, Seo Hyoung and Heo, Jin Eun and Lee, Kyeong Jun and Kim, Jin-Kwang and Cho, Byeong-Gwan and Koo, Tae Yeong and Kim, B. J. and Kim, Chanseok and Lee, Jun Hee and Bak, Seong-Min and Beyer, Kevin A. and Zhong, Hui and Koch, Robert J. and Hwang, Sooyeon and Utschig, Lisa M. and Huang, Xiaojing and Hu, Gongfang and Brudvig, Gary W. and Tiede, David M. and Kim, Jungho},
abstractNote = {In iridium oxide catalysts, the electronic states whose energies are in the range of energetics and charge transfer kinetics of the oxygen evolution reaction (OER) originate from the Ir 5d orbital states. However, the understanding of the atomic structures and orbital states underlying catalytic reactivity in amorphous iridium oxide oxygen evolving catalysts (Ir-OECs) is incomplete compared to that of crystalline oxides, owing to a lack of direct experimental verification. Here, we present experimental approaches using resonant inelastic X-ray scattering (RIXS) to directly access Ir 5d orbital excitations at the Ir L3 edge and atomic pair distribution function (PDF) measurements to characterize electronic and coordination structures at the atomic scale. The so-called iridium blue layer (IrBL) and IrOx were formed from the organometallic precursor complex [Cp*Ir(H2O)3]SO4 and the inorganic precursor IrCl3, respectively. Ex situ IrBL and IrOx films for RIXS and PDF measurements were prepared by conditioning electrodeposited films at a low voltage. The incident energy RIXS profile of IrOx exhibited extra weak resonantly enhanced excitation below 2 eV energy loss. The feature was clearly different from a single high-energy excitation above 3 eV of IrBL related to the interband transition between π- and σ-antibonding states. The atomic structure refinement based on PDF measurements revealed the atomic structure domains to have edge- and corner-shared IrO6 octahedra with trigonal-type distortion. Furthermore, density functional theory calculations guided by the refined atomic structures shed light on the electronic structure corresponding to experimental results, including insulating and metallic phases in ex situ IrBL and IrOx films, respectively. Our study establishes different Ir 5d orbital states and atomic structures in two amorphous Ir oxide OER catalysts in their reduction states.},
doi = {10.1021/acscatal.1c00818},
journal = {ACS Catalysis},
number = 15,
volume = 11,
place = {United States},
year = {Thu Jul 29 00:00:00 EDT 2021},
month = {Thu Jul 29 00:00:00 EDT 2021}
}

Works referenced in this record:

IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting
journal, January 2014

  • Nong, Hong Nhan; Gan, Lin; Willinger, Elena
  • Chem. Sci., Vol. 5, Issue 8
  • DOI: 10.1039/C4SC01065E

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation
journal, May 2017

  • Spöri, Camillo; Kwan, Jason Tai Hong; Bonakdarpour, Arman
  • Angewandte Chemie International Edition, Vol. 56, Issue 22
  • DOI: 10.1002/anie.201608601

Domain structure for an amorphous iridium-oxide water-oxidation catalyst characterized by X-ray pair distribution function analysis
journal, January 2014

  • Huang, Jier; Blakemore, James D.; Fazi, Diego
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 5
  • DOI: 10.1039/C3CP54878C

XANES and EXAFS Studies on the Ir-O Bond Covalency in Ionic Iridium Perovskites
journal, August 1995

  • Choy, Jin-Ho; Kim, Dong-Kuk; Hwang, Sung-Ho
  • Journal of the American Chemical Society, Vol. 117, Issue 33
  • DOI: 10.1021/ja00138a010

Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species
journal, January 2014

  • Reier, T.; Teschner, D.; Lunkenbein, T.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0411409jes

Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
journal, November 2017


In Situ Dispersive EXAFS in Electrocatalysis: The Investigation of the Local Structure of IrO x in Chronoamperometric Conditions as a Case Study
journal, January 2014

  • Achilli, Elisabetta; Minguzzi, Alessandro; Lugaresi, Ottavio
  • Journal of Spectroscopy, Vol. 2014
  • DOI: 10.1155/2014/480102

LIII-Edge XANES Study on Unusually High Valent Iridium in a Perovskite Lattice
journal, June 1994

  • Choy, Jin-Ho; Kim, Dong-Kuk; Demazeau, Gerard
  • The Journal of Physical Chemistry, Vol. 98, Issue 25
  • DOI: 10.1021/j100076a005

Calculating the Electrochemically Active Surface Area of Iridium Oxide in Operating Proton Exchange Membrane Electrolyzers
journal, January 2015

  • Zhao, Shuai; Yu, Haoran; Maric, Radenka
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0211512jes

A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts
journal, October 2018


Novel J eff = 1 / 2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr 2 IrO 4
journal, August 2008


Revisiting the Redox Properties of Hydrous Iridium Oxide Films in the Context of Oxygen Evolution
journal, September 2013

  • Steegstra, Patrick; Busch, Michael; Panas, Itai
  • The Journal of Physical Chemistry C, Vol. 117, Issue 40
  • DOI: 10.1021/jp407030r

Operando Observation of Chemical Transformations of Iridium Oxide During Photoelectrochemical Water Oxidation
journal, January 2019

  • Li, Lin; Yang, Jinhui; Ali-Löytty, Harri
  • ACS Applied Energy Materials, Vol. 2, Issue 2
  • DOI: 10.1021/acsaem.8b01945

MERIX—Next generation medium energy resolution inelastic X-ray scattering instrument at the APS
journal, June 2013

  • Shvyd’ko, Yu. V.; Hill, J. P.; Burns, C. A.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 188
  • DOI: 10.1016/j.elspec.2012.09.003

Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
journal, July 2012

  • Reier, Tobias; Oezaslan, Mehtap; Strasser, Peter
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3003098

High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction
journal, July 2015

  • Irshad, Ahamed; Munichandraiah, Nookala
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 29
  • DOI: 10.1021/acsami.5b02601

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction
journal, May 2014

  • Sanchez Casalongue, Hernan G.; Ng, May Ling; Kaya, Sarp
  • Angewandte Chemie International Edition, Vol. 53, Issue 28
  • DOI: 10.1002/anie.201402311

Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction
journal, September 2016

  • Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b07199

Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications
journal, December 2018

  • Jayashree, Swaminathan; Ashokkumar, Meiyazhagan
  • Catalysts, Vol. 8, Issue 12
  • DOI: 10.3390/catal8120601

Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
journal, September 2015

  • Reier, Tobias; Pawolek, Zarina; Cherevko, Serhiy
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b07788

Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors
journal, January 2013

  • Blakemore, James D.; Mara, Michael W.; Kushner-Lenhoff, Maxwell N.
  • Inorganic Chemistry, Vol. 52, Issue 4
  • DOI: 10.1021/ic301968j

Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts
journal, January 2014

  • Minguzzi, Alessandro; Lugaresi, Ottavio; Achilli, Elisabetta
  • Chemical Science, Vol. 5, Issue 9
  • DOI: 10.1039/C4SC00975D

Preparation of Solid Solution and Layered IrO x –Ni(OH) 2 Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER
journal, November 2020

  • Ruiz Esquius, Jonathan; Algara-Siller, Gerardo; Spanos, Ioannis
  • ACS Catalysis, Vol. 10, Issue 24
  • DOI: 10.1021/acscatal.0c03866

In Situ Iridium L III -Edge X-ray Absorption and Surface Enhanced Raman Spectroscopy of Electrodeposited Iridium Oxide Films in Aqueous Electrolytes
journal, April 2002

  • Mo, Yibo; Stefan, Ionel C.; Cai, Wen-Bin
  • The Journal of Physical Chemistry B, Vol. 106, Issue 14
  • DOI: 10.1021/jp014452p

Electronic structure of RuO 2 , OsO 2 , and IrO 2
journal, March 1976


Anodic Deposition of Colloidal Iridium Oxide Thin Films from Hexahydroxyiridate(IV) Solutions
journal, June 2011

  • Zhao, Yixin; Vargas-Barbosa, Nella M.; Hernandez-Pagan, Emil A.
  • Small, Vol. 7, Issue 14
  • DOI: 10.1002/smll.201100485

Operando XAS Study of the Surface Oxidation State on a Monolayer IrO x on RuO x and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media
journal, October 2017

  • Pedersen, Anders F.; Escudero-Escribano, Maria; Sebok, Bela
  • The Journal of Physical Chemistry B, Vol. 122, Issue 2
  • DOI: 10.1021/acs.jpcb.7b06982

Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis
journal, June 2012

  • Du, Pingwu; Kokhan, Oleksandr; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja303826a

Spherical analyzers and monochromators for resonant inelastic hard X-ray scattering: a compilation of crystals and reflections
journal, November 2012

  • Gog, Thomas; Casa, Diego M.; Said, Ayman H.
  • Journal of Synchrotron Radiation, Vol. 20, Issue 1
  • DOI: 10.1107/S0909049512043154

X-Ray spectroscopy of electrochemically deposited iridium oxide films: detection of multiple sites through structural disorder
journal, January 2011

  • Hillman, A. Robert; Skopek, Magdalena A.; Gurman, Stephen J.
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 12
  • DOI: 10.1039/C0CP01472A

Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors
journal, April 2012

  • Blakemore, James D.; Schley, Nathan D.; Kushner-Lenhoff, Maxwell N.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic300764f

Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation Catalysis
journal, February 2014

  • Smith, Rodney D. L.; Sporinova, Barbora; Fagan, Randal D.
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm4041715

Easy Accommodation of Different Oxidation States in Iridium Oxide Nanoparticles with Different Hydration Degree as Water Oxidation Electrocatalysts
journal, August 2015

  • Minguzzi, Alessandro; Locatelli, Cristina; Lugaresi, Ottavio
  • ACS Catalysis, Vol. 5, Issue 9
  • DOI: 10.1021/acscatal.5b01281

Valency and Structure of Iridium in Anodic Iridium Oxide Films
journal, January 1993

  • Hüppauff, Martin
  • Journal of The Electrochemical Society, Vol. 140, Issue 3
  • DOI: 10.1149/1.2056127

Identifying Key Structural Features of IrO x Water Splitting Catalysts
journal, August 2017

  • Willinger, Elena; Massué, Cyriac; Schlögl, Robert
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b07079

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Shaped Ir–Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction
journal, January 2016

  • Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon
  • Chemical Communications, Vol. 52, Issue 32
  • DOI: 10.1039/C6CC00053C