DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals

Abstract

Mechanically robust, thermo-responsive, ion-conducting nanocomposite films are prepared from poly(2-phenylethyl methacrylate) grafted cellulose nanocrystals (MxG-CNC-g-PPMA). One-component nanocomposite films of the polymer grafted nanoparticle (PGN) MxG-CNC-g-PPMA are imbibed with 30 wt% imidazolium-based ionic liquid, to produce flexible ion-conducting films. These films with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[H]) not only displays remarkable improvements in toughness (>25 times) and tensile strength (>70 times) relative to the corresponding nanocomposites consisting of the ionic liquid imbibed in the two component CNC/PPMA nanocomposite, but also shows higher ionic conductivity than the corresponding neat PPMA with the same wt.% of ionic liquid. Notably, the one-component film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[E]) exhibits temperature responsive ionic conduction. The ionic conductivity decreases at around 60°C as a consequence of the lower critical solution temperature (LCST) phase transition of the grafted polymer in the ionic liquid, which leads to phase separation. Moreover, holding the MxG-CNC-g-PPMA/[E] film at room temperature for 24 hours returns the film to its original homogenous state. These materials exhibit properties relevant to thermal cutoff safety devices (e.g., thermal fuse) where a reduction in conductivity above a critical temperature is needed.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [3]
  1. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States). Joint Center for Energy Storage Research (JCESR)
  2. Univ. of Chicago, IL (United States)
  3. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States). Joint Center for Energy Storage Research (JCESR); Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Army Research Office (ARO); National Science Foundation (NSF)
OSTI Identifier:
1810546
Grant/Contract Number:  
AC02-06CH11357; W911NF-15-1- 0190; W911NF-18-1-0287; DMR-1420709; DMR2011854
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 48; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; thermal-responsive polymers; polymer-grafted nanoparticles; cellulose nanocrystals; smart materials; nanocomposites; polymer films; salts; ionic conductivity; solvents; polymers

Citation Formats

Kato, Ryo, Lettow, James H., Patel, Shrayesh N., and Rowan, Stuart J. Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals. United States: N. p., 2020. Web. doi:10.1021/acsami.0c16059.
Kato, Ryo, Lettow, James H., Patel, Shrayesh N., & Rowan, Stuart J. Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals. United States. https://doi.org/10.1021/acsami.0c16059
Kato, Ryo, Lettow, James H., Patel, Shrayesh N., and Rowan, Stuart J. Tue . "Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals". United States. https://doi.org/10.1021/acsami.0c16059. https://www.osti.gov/servlets/purl/1810546.
@article{osti_1810546,
title = {Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals},
author = {Kato, Ryo and Lettow, James H. and Patel, Shrayesh N. and Rowan, Stuart J.},
abstractNote = {Mechanically robust, thermo-responsive, ion-conducting nanocomposite films are prepared from poly(2-phenylethyl methacrylate) grafted cellulose nanocrystals (MxG-CNC-g-PPMA). One-component nanocomposite films of the polymer grafted nanoparticle (PGN) MxG-CNC-g-PPMA are imbibed with 30 wt% imidazolium-based ionic liquid, to produce flexible ion-conducting films. These films with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[H]) not only displays remarkable improvements in toughness (>25 times) and tensile strength (>70 times) relative to the corresponding nanocomposites consisting of the ionic liquid imbibed in the two component CNC/PPMA nanocomposite, but also shows higher ionic conductivity than the corresponding neat PPMA with the same wt.% of ionic liquid. Notably, the one-component film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[E]) exhibits temperature responsive ionic conduction. The ionic conductivity decreases at around 60°C as a consequence of the lower critical solution temperature (LCST) phase transition of the grafted polymer in the ionic liquid, which leads to phase separation. Moreover, holding the MxG-CNC-g-PPMA/[E] film at room temperature for 24 hours returns the film to its original homogenous state. These materials exhibit properties relevant to thermal cutoff safety devices (e.g., thermal fuse) where a reduction in conductivity above a critical temperature is needed.},
doi = {10.1021/acsami.0c16059},
journal = {ACS Applied Materials and Interfaces},
number = 48,
volume = 12,
place = {United States},
year = {Tue Nov 17 00:00:00 EST 2020},
month = {Tue Nov 17 00:00:00 EST 2020}
}

Works referenced in this record:

Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers
journal, September 2009


Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties
journal, December 2019

  • Wei, Peiling; Chen, Tao; Chen, Guoyin
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 2
  • DOI: 10.1021/acsami.9b20254

Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices
journal, July 2016


High-Performance Flexible Supercapacitors Based on Ionogel Electrolyte with an Enhanced Ionic Conductivity
journal, February 2018

  • Kim, Donggun; Kannan, Padmanathan Karthick; Chung, Chan-Hwa
  • ChemistrySelect, Vol. 3, Issue 7
  • DOI: 10.1002/slct.201702711

Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices
journal, January 2018


pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites
journal, July 2012

  • Way, Amanda E.; Hsu, Lorraine; Shanmuganathan, Kadhiravan
  • ACS Macro Letters, Vol. 1, Issue 8
  • DOI: 10.1021/mz3003006

Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage
journal, November 2018


Preparation of cellulose nanofibers from Miscanthus x. Giganteus by ammonium persulfate oxidation
journal, May 2019


Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires
journal, November 2016


Amino acid ionic liquid-based facilitated transport membranes for CO2 separation
journal, January 2012

  • Kasahara, Shohei; Kamio, Eiji; Ishigami, Toru
  • Chemical Communications, Vol. 48, Issue 55
  • DOI: 10.1039/c2cc17380h

Modulation of Cellulose Nanocrystals Amphiphilic Properties to Stabilize Oil/Water Interface
journal, December 2011

  • Kalashnikova, Irina; Bizot, Hervé; Cathala, Bernard
  • Biomacromolecules, Vol. 13, Issue 1
  • DOI: 10.1021/bm201599j

Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells
journal, June 2012


High temperature electrical energy storage: advances, challenges, and frontiers
journal, January 2016

  • Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy
  • Chemical Society Reviews, Vol. 45, Issue 21
  • DOI: 10.1039/C6CS00012F

Polymer-Grafted Nanoparticles
journal, July 2020

  • Hore, Michael J. A.; Korley, LaShanda T. J.; Kumar, Sanat K.
  • Journal of Applied Physics, Vol. 128, Issue 3
  • DOI: 10.1063/5.0019326

Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions
journal, March 2015


3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors
journal, August 2019

  • Wong, Jitkanya; Gong, Alex T.; Defnet, Peter A.
  • Advanced Materials Technologies, Vol. 4, Issue 9
  • DOI: 10.1002/admt.201900452

Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto Cellulose Microcrystals
journal, April 2011

  • Harrisson, Simon; Drisko, Glenna L.; Malmström, Eva
  • Biomacromolecules, Vol. 12, Issue 4
  • DOI: 10.1021/bm101506j

Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites
journal, July 2017


Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications
journal, March 2009

  • Kodama, Koichi; Nanashima, Hideyuki; Ueki, Takeshi
  • Langmuir, Vol. 25, Issue 6
  • DOI: 10.1021/la803945n

Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation
journal, June 2010

  • Okita, Yusuke; Saito, Tsuguyuki; Isogai, Akira
  • Biomacromolecules, Vol. 11, Issue 6
  • DOI: 10.1021/bm100214b

Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids
journal, September 2016


Thermophysical Properties of Imidazolium-Based Ionic Liquids
journal, July 2004

  • Fredlake, Christopher P.; Crosthwaite, Jacob M.; Hert, Daniel G.
  • Journal of Chemical & Engineering Data, Vol. 49, Issue 4
  • DOI: 10.1021/je034261a

A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid
journal, January 2007

  • He, Yiyong; Lodge, Timothy P.
  • Chemical Communications, Issue 26
  • DOI: 10.1039/b704490a

Dimension control of ionic liquids
journal, January 2019

  • Ichikawa, Takahiro; Kato, Takashi; Ohno, Hiroyuki
  • Chemical Communications, Vol. 55, Issue 57
  • DOI: 10.1039/C9CC04280F

Mechanical properties of PNIPAM based hydrogels: A review
journal, January 2017


Energy applications of ionic liquids
journal, January 2014

  • MacFarlane, Douglas R.; Tachikawa, Naoki; Forsyth, Maria
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42099J

Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals
journal, January 2017


Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid
journal, January 2015

  • Ueki, Takeshi; Nakamura, Yutaro; Usui, Ryoji
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201411526

Effect of Polymer Chemistry on Chain Conformations in Hairy Nanoparticle Assemblies
journal, September 2019


Development, processing and applications of bio-sourced cellulose nanocrystal composites
journal, April 2020


Temperature- and light-responsive smart polymer materials
journal, January 2013

  • Jochum, Florian D.; Theato, Patrick
  • Chem. Soc. Rev., Vol. 42, Issue 17
  • DOI: 10.1039/C2CS35191A

Deformation Behavior of Polystyrene-Grafted Nanoparticle Assemblies with Low Grafting Density
journal, September 2018


Dehalogenation of polymers prepared by atom transfer radical polymerization
journal, February 1999


Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes
journal, January 2015

  • Kelly, Jesse C.; Degrood, Nicholas L.; Roberts, Mark E.
  • Chemical Communications, Vol. 51, Issue 25
  • DOI: 10.1039/C4CC10282G

Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents
journal, April 2002


One-Component Nanocomposites Based on Polymer-Grafted Cellulose Nanocrystals
journal, January 2020


Building thermally stable supercapacitors using temperature-responsive separators
journal, January 2019

  • Jiang, Han; Emmett, Robert K.; Roberts, Mark E.
  • Journal of Applied Electrochemistry, Vol. 49, Issue 3
  • DOI: 10.1007/s10800-018-1278-z

Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes
journal, June 2003


Development of a Molecular Recognition Ion Gating Membrane and Estimation of Its Pore Size Control
journal, June 2002

  • Ito, Taichi; Hioki, Takanobu; Yamaguchi, Takeo
  • Journal of the American Chemical Society, Vol. 124, Issue 26
  • DOI: 10.1021/ja012648x

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges
journal, March 2013

  • Fernandes, Nikhil J.; Koerner, Hilmar; Giannelis, Emmanuel P.
  • MRS Communications, Vol. 3, Issue 1
  • DOI: 10.1557/mrc.2013.9

Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes
journal, April 2017

  • Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo
  • Advanced Materials, Vol. 29, Issue 23
  • DOI: 10.1002/adma.201606109

Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices
journal, January 2017


Nanocomposites with Polymer Grafted Nanoparticles
journal, April 2013

  • Kumar, Sanat K.; Jouault, Nicolas; Benicewicz, Brian
  • Macromolecules, Vol. 46, Issue 9
  • DOI: 10.1021/ma4001385

Unusual and Superfast Temperature-Triggered Actuators
journal, July 2015


Unusual Lower Critical Solution Temperature Phase Behavior of Poly(ethylene oxide) in Ionic Liquids
journal, April 2012

  • Lee, Hau-Nan; Newell, Nakisha; Bai, Zhifeng
  • Macromolecules, Vol. 45, Issue 8
  • DOI: 10.1021/ma300335p

Lower Critical Solution Temperature (LCST) Phase Behavior of Poly(ethylene oxide) in Ionic Liquids
journal, June 2010

  • Lee, Hau-Nan; Lodge, Timothy P.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 13
  • DOI: 10.1021/jz100617t

Mechano-Activated Objects with Multidirectional Shape Morphing Programmed via 3D Printing
journal, June 2020

  • Wong, Jitkanya; Basu, Amrita; Wende, Maximilian
  • ACS Applied Polymer Materials, Vol. 2, Issue 7
  • DOI: 10.1021/acsapm.0c00588

Nanocomposite polymer hydrogels
journal, October 2008


Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine
journal, June 2020

  • Mostafavi, Ebrahim; Medina-Cruz, David; Kalantari, Katayoon
  • Bioelectricity, Vol. 2, Issue 2
  • DOI: 10.1089/bioe.2020.0021

Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces
journal, January 2011

  • Pasparakis, George; Vamvakaki, Maria
  • Polymer Chemistry, Vol. 2, Issue 6
  • DOI: 10.1039/c0py00424c

Tough Al-alginate/Poly( N -isopropylacrylamide) Hydrogel with Tunable LCST for Soft Robotics
journal, January 2015

  • Zheng, Wen Jiang; An, Ning; Yang, Jian Hai
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am507339r

Recent advances in supported ionic liquid membrane technology
journal, July 2011


Mimosa inspired bilayer hydrogel actuator functioning in multi-environments
journal, January 2018

  • Zheng, Jing; Xiao, Peng; Le, Xiaoxia
  • Journal of Materials Chemistry C, Vol. 6, Issue 6
  • DOI: 10.1039/C7TC04879C

Lower Critical Solution Temperature Behavior in Polyelectrolyte Complex Coacervates
journal, August 2019