DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large-scale integration of artificial atoms in hybrid photonic circuits

Abstract

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits. Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits because they enable on-demand remote entanglement, coherent control of over ten ancillae qubits with minute-long coherence times and memory-enhanced quantum communication. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearlymore » indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters and general-purpose quantum processors« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Laboratory of Electronics
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Army Research Laboratory (ARL); USDOD
OSTI Identifier:
1810391
Report Number(s):
SAND-2021-2883J
Journal ID: ISSN 0028-0836; 697265; TRN: US2213035
Grant/Contract Number:  
AC04-94AL85000; NA0003525; SC0019140; W911NF-15-2-0067; DMR-1747426; EFMA-1641064; PHY-1734011; DMR-1231319; FA8750-16-2-0141
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 583; Journal Issue: 7815; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 36 MATERIALS SCIENCE

Citation Formats

Wan, Noel H., Lu, Tsung-Ju, Chen, Kevin C., Walsh, Michael P., Trusheim, Matthew E., De Santis, Lorenzo, Bersin, Eric A., Harris, Isaac B., Mouradian, Sara L., Christen, Ian R., Bielejec, Edward S., and Englund, Dirk. Large-scale integration of artificial atoms in hybrid photonic circuits. United States: N. p., 2020. Web. doi:10.1038/s41586-020-2441-3.
Wan, Noel H., Lu, Tsung-Ju, Chen, Kevin C., Walsh, Michael P., Trusheim, Matthew E., De Santis, Lorenzo, Bersin, Eric A., Harris, Isaac B., Mouradian, Sara L., Christen, Ian R., Bielejec, Edward S., & Englund, Dirk. Large-scale integration of artificial atoms in hybrid photonic circuits. United States. https://doi.org/10.1038/s41586-020-2441-3
Wan, Noel H., Lu, Tsung-Ju, Chen, Kevin C., Walsh, Michael P., Trusheim, Matthew E., De Santis, Lorenzo, Bersin, Eric A., Harris, Isaac B., Mouradian, Sara L., Christen, Ian R., Bielejec, Edward S., and Englund, Dirk. Wed . "Large-scale integration of artificial atoms in hybrid photonic circuits". United States. https://doi.org/10.1038/s41586-020-2441-3. https://www.osti.gov/servlets/purl/1810391.
@article{osti_1810391,
title = {Large-scale integration of artificial atoms in hybrid photonic circuits},
author = {Wan, Noel H. and Lu, Tsung-Ju and Chen, Kevin C. and Walsh, Michael P. and Trusheim, Matthew E. and De Santis, Lorenzo and Bersin, Eric A. and Harris, Isaac B. and Mouradian, Sara L. and Christen, Ian R. and Bielejec, Edward S. and Englund, Dirk},
abstractNote = {A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits. Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits because they enable on-demand remote entanglement, coherent control of over ten ancillae qubits with minute-long coherence times and memory-enhanced quantum communication. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters and general-purpose quantum processors},
doi = {10.1038/s41586-020-2441-3},
journal = {Nature (London)},
number = 7815,
volume = 583,
place = {United States},
year = {Wed Jul 08 00:00:00 EDT 2020},
month = {Wed Jul 08 00:00:00 EDT 2020}
}

Works referenced in this record:

A single-photon transistor using nanoscale surface plasmons
journal, August 2007

  • Chang, Darrick E.; Sørensen, Anders S.; Demler, Eugene A.
  • Nature Physics, Vol. 3, Issue 11
  • DOI: 10.1038/nphys708

Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories
journal, November 2019


Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum
journal, January 2018

  • Lu, Tsung-Ju; Fanto, Michael; Choi, Hyeongrak
  • Optics Express, Vol. 26, Issue 9
  • DOI: 10.1364/OE.26.011147

Strain engineering of the silicon-vacancy center in diamond
journal, May 2018


A CMOS-integrated quantum sensor based on nitrogen–vacancy centres
journal, July 2019


A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters
journal, April 2017

  • Mouradian, Sara L.; Englund, Dirk
  • APL Photonics, Vol. 2, Issue 4
  • DOI: 10.1063/1.4978204

Multiple intrinsically identical single-photon emitters in the solid state
journal, August 2014

  • Rogers, L. J.; Jahnke, K. D.; Teraji, T.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5739

Rectangular photonic crystal nanobeam cavities in bulk diamond
journal, July 2017

  • Mouradian, Sara; Wan, Noel H.; Schröder, Tim
  • Applied Physics Letters, Vol. 111, Issue 2
  • DOI: 10.1063/1.4992118

Individual control and readout of qubits in a sub-diffraction volume
journal, May 2019


Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond
journal, September 2014


Optical frequency comb generation from aluminum nitride microring resonator
journal, January 2013

  • Jung, Hojoong; Xiong, Chi; Fong, King Y.
  • Optics Letters, Vol. 38, Issue 15
  • DOI: 10.1364/OL.38.002810

Atomic Source of Single Photons in the Telecom Band
journal, June 2018


Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond
journal, April 2018

  • Wan, Noel H.; Mouradian, Sara; Englund, Dirk
  • Applied Physics Letters, Vol. 112, Issue 14
  • DOI: 10.1063/1.5021349

Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers
journal, January 2016


Origin of Surface Conductivity in Diamond
journal, October 2000


Cryo-CMOS Circuits and Systems for Quantum Computing Applications
journal, January 2018

  • Patra, Bishnu; Incandela, Rosario M.; van Dijk, Jeroen P. G.
  • IEEE Journal of Solid-State Circuits, Vol. 53, Issue 1
  • DOI: 10.1109/JSSC.2017.2737549

Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip
journal, November 2017


Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout
journal, November 2017


Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip
journal, February 2019


SRIM – The stopping and range of ions in matter (2010)
journal, June 2010

  • Ziegler, James F.; Ziegler, M. D.; Biersack, J. P.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 268, Issue 11-12
  • DOI: 10.1016/j.nimb.2010.02.091

Spectral Alignment of Single-Photon Emitters in Diamond using Strain Gradient
journal, August 2018


Experimental demonstration of memory-enhanced quantum communication
journal, March 2020


Superconducting Nanowire Single-Photon Detector on Aluminum Nitride
conference, January 2016


Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures
journal, May 2017

  • Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15376

Linear programmable nanophotonic processors
journal, January 2018


Coherence Properties and Quantum Control of Silicon Vacancy Color Centers in Diamond (Phys. Status Solidi A 11∕2017)
journal, November 2017

  • Becker, Jonas Nils; Becher, Christoph
  • physica status solidi (a), Vol. 214, Issue 11
  • DOI: 10.1002/pssa.201770170

Measurement of subpicosecond time intervals between two photons by interference
journal, November 1987


Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing
journal, June 2012

  • Xiong, Chi; Pernice, Wolfram H. P.; Tang, Hong X.
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl3011885

Large-scale nanophotonic phased array
journal, January 2013

  • Sun, Jie; Timurdogan, Erman; Yaacobi, Ami
  • Nature, Vol. 493, Issue 7431
  • DOI: 10.1038/nature11727

Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide
journal, February 2018


Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics
journal, June 2017


Material platforms for spin-based photonic quantum technologies
journal, April 2018


Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
journal, February 2014


Optical and microwave control of germanium-vacancy center spins in diamond
journal, August 2017


On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes
journal, September 2016


Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector
journal, March 2018


Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
journal, July 2015

  • Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8833

Deterministic delivery of remote entanglement on a quantum network
journal, June 2018


Heralded entanglement between solid-state qubits separated by three metres
journal, April 2013


Quantum multiplexing
journal, February 2019


Piezoelectric coefficient of aluminum nitride and gallium nitride
journal, November 2000

  • Lueng, C. M.; Chan, H. L. W.; Surya, C.
  • Journal of Applied Physics, Vol. 88, Issue 9
  • DOI: 10.1063/1.1317244

Quantum technologies with optically interfaced solid-state spins
journal, August 2018


In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy
journal, June 2013

  • Gschrey, M.; Gericke, F.; Schüßler, A.
  • Applied Physics Letters, Vol. 102, Issue 25
  • DOI: 10.1063/1.4812343

Interfacing single photons and single quantum dots with photonic nanostructures
journal, May 2015

  • Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren
  • Reviews of Modern Physics, Vol. 87, Issue 2
  • DOI: 10.1103/RevModPhys.87.347

On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits
journal, August 2017


Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface
journal, October 2019


Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes
journal, May 2005


Bright solid-state sources of indistinguishable single photons
journal, February 2013

  • Gazzano, O.; Michaelis de Vasconcellos, S.; Arnold, C.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2434

Quantum internet: A vision for the road ahead
journal, October 2018


On-chip detection of non-classical light by scalable integration of single-photon detectors
journal, January 2015

  • Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6873

Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide
journal, May 2017


8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides
journal, January 2019

  • Taballione, Caterina; Wolterink, Tom A. W.; Lugani, Jasleen
  • Optics Express, Vol. 27, Issue 19
  • DOI: 10.1364/OE.27.026842

Quantum nanophotonics with group IV defects in diamond
journal, December 2019


Optically Addressing Single Rare-Earth Ions in a Nanophotonic Cavity
journal, October 2018


Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip
journal, April 2018