DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions

Abstract

Electron–positron pairs, produced in intense laser–solid interactions, are diagnosed using magnetic spectrometers with image plates, such as the National Ignition Facility Electron–Positron–Proton Spectrometers (EPPSs). Although modeling can help infer the quantitative value, the accuracy of the models needs to be verified to ensure measurement quality. The dispersion of low-energy electrons and positrons may be affected by fringe magnetic fields near the entrance of the EPPS. We have calibrated the EPPS with six electron beams from a Siemens Oncor linear accelerator (linac) ranging in energy from 2.7 MeV to 15.2 MeV as they enter the spectrometer. A Geant4 Tool for Particle Simulation Monte Carlo simulation was set up to match depth dose curves and lateral profiles measured in water at 100 cm source–surface distance. An accurate relationship was established between the bending magnet current setting and the energy of the electron beam at the exit window. The simulations and measurements were used to determine the energy distributions of the six electron beams at the EPPS slit. Furthermore, analysis of the scanned image plates together with the determined energy distribution arriving in the spectrometer provides improved dispersion curves for the EPPS.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [4]; ORCiD logo [6]; ORCiD logo [5]; ORCiD logo [5]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Max Planck Society, Garching (Germany). Max Planck Institute for Plasma Physics
  2. Univ. of California, San Francisco, CA (United States)
  3. Columbia Univ., New York, NY (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1806410
Alternate Identifier(s):
OSTI ID: 1769447
Report Number(s):
LLNL-JRNL-817275
Journal ID: ISSN 0034-6748; 1027215; TRN: US2213123
Grant/Contract Number:  
AC52-07NA27344; 20-LW-021
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 92; Journal Issue: 3; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; particle beams; Monte Carlo methods; particle accelerators; calibration methods; pair production; lasers; electron positron interactions; linear accelerators

Citation Formats

von der Linden, Jens, Ramos-Méndez, José, Faddegon, Bruce, Massin, Devan, Fiksel, Gennady, Holder, Joe P., Willingale, Louise, Peebles, Jonathan, Edwards, Matthew R., and Chen, Hui. Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions. United States: N. p., 2021. Web. doi:10.1063/5.0040624.
von der Linden, Jens, Ramos-Méndez, José, Faddegon, Bruce, Massin, Devan, Fiksel, Gennady, Holder, Joe P., Willingale, Louise, Peebles, Jonathan, Edwards, Matthew R., & Chen, Hui. Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions. United States. https://doi.org/10.1063/5.0040624
von der Linden, Jens, Ramos-Méndez, José, Faddegon, Bruce, Massin, Devan, Fiksel, Gennady, Holder, Joe P., Willingale, Louise, Peebles, Jonathan, Edwards, Matthew R., and Chen, Hui. Fri . "Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions". United States. https://doi.org/10.1063/5.0040624. https://www.osti.gov/servlets/purl/1806410.
@article{osti_1806410,
title = {Dispersion calibration for the National Ignition Facility electron–positron–proton spectrometers for intense laser matter interactions},
author = {von der Linden, Jens and Ramos-Méndez, José and Faddegon, Bruce and Massin, Devan and Fiksel, Gennady and Holder, Joe P. and Willingale, Louise and Peebles, Jonathan and Edwards, Matthew R. and Chen, Hui},
abstractNote = {Electron–positron pairs, produced in intense laser–solid interactions, are diagnosed using magnetic spectrometers with image plates, such as the National Ignition Facility Electron–Positron–Proton Spectrometers (EPPSs). Although modeling can help infer the quantitative value, the accuracy of the models needs to be verified to ensure measurement quality. The dispersion of low-energy electrons and positrons may be affected by fringe magnetic fields near the entrance of the EPPS. We have calibrated the EPPS with six electron beams from a Siemens Oncor linear accelerator (linac) ranging in energy from 2.7 MeV to 15.2 MeV as they enter the spectrometer. A Geant4 Tool for Particle Simulation Monte Carlo simulation was set up to match depth dose curves and lateral profiles measured in water at 100 cm source–surface distance. An accurate relationship was established between the bending magnet current setting and the energy of the electron beam at the exit window. The simulations and measurements were used to determine the energy distributions of the six electron beams at the EPPS slit. Furthermore, analysis of the scanned image plates together with the determined energy distribution arriving in the spectrometer provides improved dispersion curves for the EPPS.},
doi = {10.1063/5.0040624},
journal = {Review of Scientific Instruments},
number = 3,
volume = 92,
place = {United States},
year = {Fri Mar 05 00:00:00 EST 2021},
month = {Fri Mar 05 00:00:00 EST 2021}
}

Works referenced in this record:

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams
journal, September 1999

  • Almond, Peter R.; Biggs, Peter J.; Coursey, B. M.
  • Medical Physics, Vol. 26, Issue 9
  • DOI: 10.1118/1.598691

High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams
journal, August 2016

  • Alejo, A.; Kar, S.; Tebartz, A.
  • Review of Scientific Instruments, Vol. 87, Issue 8
  • DOI: 10.1063/1.4961028

High e+/e− Ratio Dense Pair Creation with 1021W.cm−2 Laser Irradiating Solid Targets
journal, September 2015

  • Liang, E.; Clarke, T.; Henderson, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13968

Application of imaging plates to x-ray imaging and spectroscopy in laser plasma experiments (invited)
journal, October 2006

  • Izumi, N.; Snavely, R.; Gregori, G.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2351924

A ten-inch manipulator (TIM) based fast-electron spectrometer with multiple viewing angles (OU-ESM)
journal, June 2019

  • Habara, H.; Iwawaki, T.; Gong, T.
  • Review of Scientific Instruments, Vol. 90, Issue 6
  • DOI: 10.1063/1.5088529

Functional equation for the fading correction of imaging plates
journal, August 2000

  • Ohuchi, Hiroko; Yamadera, Akira; Nakamura, Takashi
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 450, Issue 2-3
  • DOI: 10.1016/s0168-9002(00)00300-4

Improved large-energy-range magnetic electron-positron spectrometer for experiments with the Texas Petawatt Laser
journal, March 2019


Absolute response of Fuji imaging plate detectors to picosecond-electron bunches
journal, January 2010

  • Zeil, K.; Kraft, S. D.; Jochmann, A.
  • Review of Scientific Instruments, Vol. 81, Issue 1
  • DOI: 10.1063/1.3284524

Treatment head disassembly to improve the accuracy of large electron field simulation: Treatment head disassembly to improve electron field simulation
journal, September 2009

  • Faddegon, Bruce A.; Sawkey, Daren; O’Shea, Tuathan
  • Medical Physics, Vol. 36, Issue 10
  • DOI: 10.1118/1.3218764

Absolute calibration of image plates for electrons at energy between 100keV and 4MeV
journal, March 2008

  • Chen, Hui; Back, Norman L.; Bartal, Teresa
  • Review of Scientific Instruments, Vol. 79, Issue 3
  • DOI: 10.1063/1.2885045

Calibration of proton dispersion for the NIF electron positron proton spectrometer (NEPPS) for short-pulse laser experiments on the NIF ARC
journal, October 2018

  • Mariscal, D.; Williams, G. J.; Chen, H.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039388

Review of progress in Fast Ignition
journal, May 2005

  • Tabak, M.; Clark, D. S.; Hatchett, S. P.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1871246

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions
journal, October 2008

  • Chen, Hui; Link, Anthony J.; van Maren, Roger
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2953679

Short pulse laser produced energetic electron and positron measurements
journal, October 2006

  • Chen, Hui; Wilks, Scott C.; Patel, Parvesh K.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2220141

Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator
journal, June 2012

  • Cha, H. J.; Choi, I. W.; Kim, H. T.
  • Review of Scientific Instruments, Vol. 83, Issue 6
  • DOI: 10.1063/1.4725530

An electron/ion spectrometer with the ability of low energy electron measurement for fast ignition experiments
journal, November 2014

  • Ozaki, T.; Kojima, S.; Arikawa, Y.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4891043

Absolute charge calibration of scintillating screens for relativistic electron detection
journal, March 2010

  • Buck, A.; Zeil, K.; Popp, A.
  • Review of Scientific Instruments, Vol. 81, Issue 3
  • DOI: 10.1063/1.3310275

Calibration of imaging plate for high energy electron spectrometer
journal, January 2005

  • Tanaka, Kazuo A.; Yabuuchi, Toshinori; Sato, Takashi
  • Review of Scientific Instruments, Vol. 76, Issue 1
  • DOI: 10.1063/1.1824371

Laser–plasma interactions for fast ignition
journal, April 2014


A new frontier in laboratory physics: magnetized electron–positron plasmas
journal, November 2020

  • Stoneking, M. R.; Pedersen, T. Sunn; Helander, P.
  • Journal of Plasma Physics, Vol. 86, Issue 6
  • DOI: 10.1017/s0022377820001385

Experimental and Monte Carlo absolute characterization of a medical electron beam using a magnetic spectrometer
journal, March 2016


Electron beam charge diagnostics for laser plasma accelerators
journal, June 2011

  • Nakamura, K.; Gonsalves, A. J.; Lin, C.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 14, Issue 6
  • DOI: 10.1103/physrevstab.14.062801

Absolute calibration for a broad range single shot electron spectrometer
journal, October 2006

  • Glinec, Y.; Faure, J.; Guemnie-Tafo, A.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2360988