DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation

Abstract

Infrasound data are routinely used to detect and locate volcanic and other explosions, using both arrays and single sensor networks. However, at local distances (< km) topography often complicates acoustic propagation, resulting in inaccurate acoustic travel times leading to biased source locations when assuming straight-line propagation. Here we present a new method, termed Reverse Time Migration-Finite-Difference Time Domain (RTM-FDTD), that integrates numerical modeling into the standard RTM back-projection process. Travel time information is computed across the entire potential source grid via FDTD modeling to incorporate the effects of topography. The waveforms are then back-projected and stacked at each grid point, with the stack maximum corresponding to the likely source. We apply our method to three volcanoes with different network configurations, source-receiver distances, and topography. At Yasur Volcano, Vanuatu, RTM-FDTD locates explosions within ~20 m of the source and differentiates between multiple vents. RTM-FDTD produces a more accurate location for the two Yasur subcraters than standard RTM and doubles the number of detected events. At Sakurajima Volcano, Japan, RTM-FDTD locates the source within 50 m of the active vent despite notable topographic blocking. The RTM-FDTD location is similar to that from the Time Reversal Mirror method, but is more computationally efficient. Lastly, at Shishaldinmore » Volcano, Alaska, RTM and RTM-FDTD both produce realistic source locations (<50 m) for ground-coupled airwaves recorded on a four-station seismic network. We show that RTM is an effective method to detect and locate infrasonic sources across a variety of scenarios, and by integrating numerical modeling, RTM-FDTD produces more accurate source locations and increases the detection capability.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [7]
  1. Univ. of Alaska, Fairbanks, AK (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of California, Santa Barbara, CA (United States)
  4. Univ. of Alaska, Fairbanks, AK (United States); Univ. of California, Santa Barbara, CA (United States)
  5. Univ. of Liverpool (United Kingdom)
  6. GNS Science, Lower Hutt (New Zealand)
  7. US Geological Survey, Anchorage, AK (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
OSTI Identifier:
1804857
Report Number(s):
LLNL-JRNL-823967
Journal ID: ISSN 2296-6463; 1037190
Grant/Contract Number:  
AC52-07NA27344; EAR-1614323; EAR-1614855; EAR-1847736
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Earth Science
Additional Journal Information:
Journal Volume: 9; Journal ID: ISSN 2296-6463
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; infrasound; location; explosion; volcano; ground-coupled airwaves; numerical modeling

Citation Formats

Fee, David, Toney, Liam, Kim, Keehoon, Sanderson, Richard W., Iezzi, Alexandra M., Matoza, Robin S., De Angelis, Silvio, Jolly, Arthur D., Lyons, John J., and Haney, Matthew M. Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation. United States: N. p., 2021. Web. doi:10.3389/feart.2021.620813.
Fee, David, Toney, Liam, Kim, Keehoon, Sanderson, Richard W., Iezzi, Alexandra M., Matoza, Robin S., De Angelis, Silvio, Jolly, Arthur D., Lyons, John J., & Haney, Matthew M. Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation. United States. https://doi.org/10.3389/feart.2021.620813
Fee, David, Toney, Liam, Kim, Keehoon, Sanderson, Richard W., Iezzi, Alexandra M., Matoza, Robin S., De Angelis, Silvio, Jolly, Arthur D., Lyons, John J., and Haney, Matthew M. Wed . "Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation". United States. https://doi.org/10.3389/feart.2021.620813. https://www.osti.gov/servlets/purl/1804857.
@article{osti_1804857,
title = {Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation},
author = {Fee, David and Toney, Liam and Kim, Keehoon and Sanderson, Richard W. and Iezzi, Alexandra M. and Matoza, Robin S. and De Angelis, Silvio and Jolly, Arthur D. and Lyons, John J. and Haney, Matthew M.},
abstractNote = {Infrasound data are routinely used to detect and locate volcanic and other explosions, using both arrays and single sensor networks. However, at local distances (< km) topography often complicates acoustic propagation, resulting in inaccurate acoustic travel times leading to biased source locations when assuming straight-line propagation. Here we present a new method, termed Reverse Time Migration-Finite-Difference Time Domain (RTM-FDTD), that integrates numerical modeling into the standard RTM back-projection process. Travel time information is computed across the entire potential source grid via FDTD modeling to incorporate the effects of topography. The waveforms are then back-projected and stacked at each grid point, with the stack maximum corresponding to the likely source. We apply our method to three volcanoes with different network configurations, source-receiver distances, and topography. At Yasur Volcano, Vanuatu, RTM-FDTD locates explosions within ~20 m of the source and differentiates between multiple vents. RTM-FDTD produces a more accurate location for the two Yasur subcraters than standard RTM and doubles the number of detected events. At Sakurajima Volcano, Japan, RTM-FDTD locates the source within 50 m of the active vent despite notable topographic blocking. The RTM-FDTD location is similar to that from the Time Reversal Mirror method, but is more computationally efficient. Lastly, at Shishaldin Volcano, Alaska, RTM and RTM-FDTD both produce realistic source locations (<50 m) for ground-coupled airwaves recorded on a four-station seismic network. We show that RTM is an effective method to detect and locate infrasonic sources across a variety of scenarios, and by integrating numerical modeling, RTM-FDTD produces more accurate source locations and increases the detection capability.},
doi = {10.3389/feart.2021.620813},
journal = {Frontiers in Earth Science},
number = ,
volume = 9,
place = {United States},
year = {Wed Feb 24 00:00:00 EST 2021},
month = {Wed Feb 24 00:00:00 EST 2021}
}

Works referenced in this record:

Imaging volcanic infrasound sources using time reversal mirror algorithm
journal, July 2015

  • Kim, Keehoon; Lees, Jonathan M.
  • Geophysical Journal International, Vol. 202, Issue 3
  • DOI: 10.1093/gji/ggv237

Mapping complex vent eruptive activity at Santiaguito, Guatemala using network infrasound semblance
journal, January 2011


Characterizing complex eruptive activity at Santiaguito, Guatemala using infrasound semblance in networked arrays
journal, January 2011


Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation
journal, February 2005

  • Ostashev, Vladimir E.; Wilson, D. Keith; Liu, Lanbo
  • The Journal of the Acoustical Society of America, Vol. 117, Issue 2
  • DOI: 10.1121/1.1841531

Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array
journal, January 2007

  • Ishii, Miaki; Shearer, Peter M.; Houston, Heidi
  • Journal of Geophysical Research, Vol. 112, Issue B11
  • DOI: 10.1029/2006JB004700

Three‐Dimensional Acoustic Multipole Waveform Inversion at Yasur Volcano, Vanuatu
journal, August 2019

  • Iezzi, A. M.; Fee, D.; Kim, K.
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 8
  • DOI: 10.1029/2018JB017073

Acoustic source inversion to estimate volume flux from volcanic explosions: ACOUTIC SOURCE INVERSION
journal, July 2015

  • Kim, Keehoon; Fee, David; Yokoo, Akihiko
  • Geophysical Research Letters, Vol. 42, Issue 13
  • DOI: 10.1002/2015GL064466

ObsPy: A Python Toolbox for Seismology
journal, May 2010

  • Beyreuther, M.; Barsch, R.; Krischer, L.
  • Seismological Research Letters, Vol. 81, Issue 3
  • DOI: 10.1785/gssrl.81.3.530

Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling
journal, January 2013


Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network
journal, April 2017

  • Matoza, Robin S.; Green, David N.; Le Pichon, Alexis
  • Journal of Geophysical Research: Solid Earth, Vol. 122, Issue 4
  • DOI: 10.1002/2016JB013356

Seismic Envelope‐Based Detection and Location of Ground‐Coupled Airwaves from Volcanoes in Alaska
journal, April 2016

  • Fee, David; Haney, Matt; Matoza, Robin
  • Bulletin of the Seismological Society of America, Vol. 106, Issue 3
  • DOI: 10.1785/0120150244

Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan
journal, December 2017


Volcanic ballistic projectile deposition from a continuously erupting volcano: Yasur Volcano, Vanuatu
journal, January 2020


Local Volcano Infrasound and Source Localization Investigated by 3D Simulation
journal, October 2014

  • Kim, K.; Lees, J. M.
  • Seismological Research Letters, Vol. 85, Issue 6
  • DOI: 10.1785/0220140029

The spatial coherence structure of infrasonic waves: analysis of data from International Monitoring System arrays
journal, February 2015

  • Green, David N.
  • Geophysical Journal International, Vol. 201, Issue 1
  • DOI: 10.1093/gji/ggu495

Modeling the Acoustic Flux Inside the Magmatic Conduit by 3D‐FDTD Simulation
journal, June 2020

  • Lacanna, G.; Ripepe, M.
  • Journal of Geophysical Research: Solid Earth, Vol. 125, Issue 6
  • DOI: 10.1029/2019JB018849

A method for detecting and locating geophysical events using groups of arrays
journal, September 2015

  • de Groot-Hedlin, Catherine D.; Hedlin, Michael A. H.
  • Geophysical Journal International, Vol. 203, Issue 2
  • DOI: 10.1093/gji/ggv345

Array tracking of infrasonic sources at Stromboli volcano: ARRAY TRACKING OF INFRASONIC SOURCES AT STROMBOLI VOLCANO
journal, November 2002

  • Ripepe, Maurizio; Marchetti, Emanuele
  • Geophysical Research Letters, Vol. 29, Issue 22
  • DOI: 10.1029/2002gl015452

Introduction to an Open Community Infrasound Dataset from the Actively Erupting Sakurajima Volcano, Japan
journal, October 2014

  • Fee, D.; Yokoo, A.; Johnson, J. B.
  • Seismological Research Letters, Vol. 85, Issue 6
  • DOI: 10.1785/0220140051

Explosion localization via infrasound
journal, November 2009

  • Szuberla, Curt A. L.; Olson, John V.; Arnoult, Kenneth M.
  • The Journal of the Acoustical Society of America, Vol. 126, Issue 5
  • DOI: 10.1121/1.3216742

Lahar infrasound associated with Volcán Villarrica's 3 March 2015 eruption
journal, August 2015

  • Johnson, Jeffrey B.; Palma, Jose L.
  • Geophysical Research Letters, Vol. 42, Issue 15
  • DOI: 10.1002/2015GL065024

Capturing the Acoustic Radiation Pattern of Strombolian Eruptions using Infrasound Sensors Aboard a Tethered Aerostat, Yasur Volcano, Vanuatu
journal, October 2017

  • Jolly, Arthur D.; Matoza, Robin S.; Fee, David
  • Geophysical Research Letters, Vol. 44, Issue 19
  • DOI: 10.1002/2017GL074971

Localization of microbarom sources using the IMS infrasound network: LOCALIZATION OF MICROBAROM SOURCES
journal, March 2012

  • Landès, Matthieu; Ceranna, Lars; Le Pichon, Alexis
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016684

Tracking eruptive phenomena by infrasound: May 13, 2008 eruption at Mt. Etna
journal, January 2009

  • Cannata, A.; Montalto, P.; Privitera, E.
  • Geophysical Research Letters, Vol. 36, Issue 5
  • DOI: 10.1029/2008GL036738

A Bayesian framework for infrasound location
journal, April 2010


Remote Detection and Location of Explosive Volcanism in Alaska With the EarthScope Transportable Array
journal, April 2020

  • Sanderson, Richard W.; Matoza, Robin S.; Fee, David
  • Journal of Geophysical Research: Solid Earth, Vol. 125, Issue 4
  • DOI: 10.1029/2019jb018347

Theoretical Acoustics
journal, May 1970

  • Morse, P. M.; Ingard, K. U.; Stumpf, F. B.
  • American Journal of Physics, Vol. 38, Issue 5
  • DOI: 10.1119/1.1976432

Semblance and Other Coherency Measures for Multichannel data
journal, June 1971

  • Neidell, N. S.; Taner, M. Turhan
  • GEOPHYSICS, Vol. 36, Issue 3
  • DOI: 10.1190/1.1440186

Source location of the 19 February 2008 Oregon bolide using seismic networks and infrasound arrays
journal, January 2010

  • Walker, Kristoffer T.; Hedlin, Michael A. H.; de Groot-Hedlin, Catherine
  • Journal of Geophysical Research, Vol. 115, Issue B12
  • DOI: 10.1029/2010JB007863

Network-Based Evaluation of the Infrasonic Source Location at Sakurajima Volcano, Japan
journal, October 2014

  • McKee, K.; Fee, D.; Rowell, C.
  • Seismological Research Letters, Vol. 85, Issue 6
  • DOI: 10.1785/0220140119

Blast waves from violent explosive activity at Yasur Volcano, Vanuatu: BLAST WAVES AT YASUR VOLCANO
journal, November 2013

  • Marchetti, E.; Ripepe, M.; Delle Donne, D.
  • Geophysical Research Letters, Vol. 40, Issue 22
  • DOI: 10.1002/2013GL057900

Three-dimensional volcano-acoustic source localization at Karymsky Volcano, Kamchatka, Russia
journal, August 2014


Western U.S. Infrasonic Catalog: Illuminating infrasonic hot spots with the USArray
journal, January 2011

  • Walker, Kristoffer T.; Shelby, Richard; Hedlin, Michael A. H.
  • Journal of Geophysical Research, Vol. 116, Issue B12
  • DOI: 10.1029/2011JB008579