DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical examination of covalency in berkelium(IV) carbonate complexes

Abstract

Abstract Experimental studies on the speciation of berkelium in carbonate media have shown that complexation of berkelium(III) by carbonate results in spontaneous oxidation to berkelium(IV) and that multiple species can be present in solution. We studied two proposed structures present in solution based on theoretical comparisons with spectroscopic data previously reported for Bk(IV) carbonate solutions. The multiconfigurational character of the ground and low‐lying excited states in both complexes is demonstrated to result from the strong spin‐orbit coupling. Although bonding in Bk(IV) carbonate and carbonate‐hydroxide complexes is dominated by strong Coulombic forces, the presence of non‐negligible covalent character is supported by ligand‐field theory, natural localized orbitals, topological studies of the electron density, and energy transition state natural orbitals for chemical valence. Bond orders based on natural localized molecular orbitals show that BkOH bonds possess enhanced orbital overlap, which is reflected in the bond strength. This is also observed in the decomposition of the orbital interaction energy into individual deformation density pairs.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Florida State Univ., Tallahassee, FL (United States)
  2. Universidad Andres Bello (Chile)
Publication Date:
Research Org.:
Florida State Univ., Tallahassee, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1802141
Alternate Identifier(s):
OSTI ID: 1615952
Grant/Contract Number:  
SC0010677; DE‐FG02‐13ER16414
Resource Type:
Accepted Manuscript
Journal Name:
International Journal of Quantum Chemistry
Additional Journal Information:
Journal Volume: 120; Journal Issue: 15; Journal ID: ISSN 0020-7608
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Mathematics; Physics; Actinides; CASSCF; NLMO; Relativistic effects; Electronic structure; Bonding; Ligand-field theory

Citation Formats

Albrecht‐Schmitt, Thomas E., Hobart, David E., Páez‐Hernández, Dayan, and Celis‐Barros, Cristian. Theoretical examination of covalency in berkelium(IV) carbonate complexes. United States: N. p., 2020. Web. doi:10.1002/qua.26254.
Albrecht‐Schmitt, Thomas E., Hobart, David E., Páez‐Hernández, Dayan, & Celis‐Barros, Cristian. Theoretical examination of covalency in berkelium(IV) carbonate complexes. United States. https://doi.org/10.1002/qua.26254
Albrecht‐Schmitt, Thomas E., Hobart, David E., Páez‐Hernández, Dayan, and Celis‐Barros, Cristian. Thu . "Theoretical examination of covalency in berkelium(IV) carbonate complexes". United States. https://doi.org/10.1002/qua.26254. https://www.osti.gov/servlets/purl/1802141.
@article{osti_1802141,
title = {Theoretical examination of covalency in berkelium(IV) carbonate complexes},
author = {Albrecht‐Schmitt, Thomas E. and Hobart, David E. and Páez‐Hernández, Dayan and Celis‐Barros, Cristian},
abstractNote = {Abstract Experimental studies on the speciation of berkelium in carbonate media have shown that complexation of berkelium(III) by carbonate results in spontaneous oxidation to berkelium(IV) and that multiple species can be present in solution. We studied two proposed structures present in solution based on theoretical comparisons with spectroscopic data previously reported for Bk(IV) carbonate solutions. The multiconfigurational character of the ground and low‐lying excited states in both complexes is demonstrated to result from the strong spin‐orbit coupling. Although bonding in Bk(IV) carbonate and carbonate‐hydroxide complexes is dominated by strong Coulombic forces, the presence of non‐negligible covalent character is supported by ligand‐field theory, natural localized orbitals, topological studies of the electron density, and energy transition state natural orbitals for chemical valence. Bond orders based on natural localized molecular orbitals show that BkOH bonds possess enhanced orbital overlap, which is reflected in the bond strength. This is also observed in the decomposition of the orbital interaction energy into individual deformation density pairs.},
doi = {10.1002/qua.26254},
journal = {International Journal of Quantum Chemistry},
number = 15,
volume = 120,
place = {United States},
year = {Thu Apr 23 00:00:00 EDT 2020},
month = {Thu Apr 23 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spectroscopic and Redox Properties of Berkelium in Complexing Aqueous Carbonate and Citrate Solutions
journal, January 1990


A Combined Charge and Energy Decomposition Scheme for Bond Analysis
journal, March 2009

  • Mitoraj, Mariusz P.; Michalak, Artur; Ziegler, Tom
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 4
  • DOI: 10.1021/ct800503d

Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy
journal, December 2016

  • Formanuik, Alasdair; Ariciu, Ana-Maria; Ortu, Fabrizio
  • Nature Chemistry, Vol. 9, Issue 6
  • DOI: 10.1038/nchem.2692

A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation
journal, March 1976

  • Kitaura, Kazuo; Morokuma, Keiji
  • International Journal of Quantum Chemistry, Vol. 10, Issue 2
  • DOI: 10.1002/qua.560100211

Uncovering Heavy Actinide Covalency: Implications for Minor Actinide Partitioning
journal, February 2019


Improving the calculation of magnetic coupling constants in MRPT methods
journal, July 2014

  • Spivak, Mariano; Angeli, Celestino; Calzado, Carmen J.
  • Journal of Computational Chemistry, Vol. 35, Issue 23
  • DOI: 10.1002/jcc.23672

Natural localized molecular orbitals
journal, August 1985

  • Reed, Alan E.; Weinhold, Frank
  • The Journal of Chemical Physics, Vol. 83, Issue 4
  • DOI: 10.1063/1.449360

Unusual structure, bonding and properties in a californium borate
journal, March 2014

  • Polinski, Matthew J.; Garner, Edward B.; Maurice, Rémi
  • Nature Chemistry, Vol. 6, Issue 5
  • DOI: 10.1038/nchem.1896

The Chemistry of the Actinide and Transactinide Elements
book, January 2011


GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package
journal, April 2019


Calculation of Dipole-Forbidden 5f Absorption Spectra of Uranium(V) Hexa-Halide Complexes
journal, February 2018

  • Heit, Yonaton N.; Gendron, Frédéric; Autschbach, Jochen
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 4
  • DOI: 10.1021/acs.jpclett.7b03441

Voltammetric Investigation of the Berkelium(IV/III) Couple in Concentrated Aqueous Carbonate Solutions
journal, January 1990


Computational analysis of M–O covalency in M(OC 6 H 5 ) 4 (M = Ti, Zr, Hf, Ce, Th, U)
journal, January 2019

  • Berryman, Victoria E. J.; Whalley, Zoë J.; Shephard, Jacob J.
  • Dalton Transactions, Vol. 48, Issue 9
  • DOI: 10.1039/C8DT05094E

Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory
journal, April 2016


Software update: the ORCA program system, version 4.0: Software update
journal, July 2017

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 8, Issue 1
  • DOI: 10.1002/wcms.1327

Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides
journal, January 2015

  • Kovács, Attila; Konings, Rudy J. M.; Gibson, John K.
  • Chemical Reviews, Vol. 115, Issue 4
  • DOI: 10.1021/cr500426s

Chemistry with ADF
journal, January 2001

  • te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.
  • Journal of Computational Chemistry, Vol. 22, Issue 9, p. 931-967
  • DOI: 10.1002/jcc.1056

Experimental and Theoretical Comparison of Actinide and Lanthanide Bonding in M[N(EPR 2 ) 2 ] 3 Complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, i Pr, H)
journal, January 2008

  • Gaunt, Andrew J.; Reilly, Sean D.; Enriquez, Alejandro E.
  • Inorganic Chemistry, Vol. 47, Issue 1
  • DOI: 10.1021/ic701618a

Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities
journal, March 1998


From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems
journal, September 2002

  • Espinosa, Enrique; Alkorta, Ibon; Elguero, José
  • The Journal of Chemical Physics, Vol. 117, Issue 12
  • DOI: 10.1063/1.1501133

Topological Study of Bonding in Aquo and Bis(triazinyl)pyridine Complexes of Trivalent Lanthanides and Actinides: Does Covalency Imply Stability?
journal, August 2016


Quantification of f-element covalency through analysis of the electron density: insights from simulation
journal, January 2017


Analysis of the crystal‐field spectra of the actinide tetrafluorides. II. AmF 4 , CmF 4 , Cm 4+ :CeF 4 , and Bk 4+ :CeF 4
journal, November 1994

  • Liu, G. K.; Carnall, W. T.; Jursich, G.
  • The Journal of Chemical Physics, Vol. 101, Issue 10
  • DOI: 10.1063/1.468093

NBO 6.0 : Natural bond orbital analysis program
journal, March 2013

  • Glendening, Eric D.; Landis, Clark R.; Weinhold, Frank
  • Journal of Computational Chemistry, Vol. 34, Issue 16
  • DOI: 10.1002/jcc.23266

Chemical Bonds without Bonding Electron Density ? Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond?
journal, August 1984

  • Cremer, Dieter; Kraka, Elfi
  • Angewandte Chemie International Edition in English, Vol. 23, Issue 8
  • DOI: 10.1002/anie.198406271

Covalency in Americium(III) Hexachloride
journal, June 2017

  • Cross, Justin N.; Su, Jing; Batista, Enrique R.
  • Journal of the American Chemical Society, Vol. 139, Issue 25
  • DOI: 10.1021/jacs.7b03755

Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes
journal, July 2017


Evaluating f-Element Bonding from Structure and Thermodynamics
journal, September 2011

  • Minasian, Stefan G.; Krinsky, Jamin L.; Arnold, John
  • Chemistry - A European Journal, Vol. 17, Issue 44
  • DOI: 10.1002/chem.201101447

Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules
journal, November 2005

  • Blanco, M. A.; Martín Pendás, A.; Francisco, E.
  • Journal of Chemical Theory and Computation, Vol. 1, Issue 6
  • DOI: 10.1021/ct0501093

A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
journal, July 2004

  • Yanai, Takeshi; Tew, David P.; Handy, Nicholas C.
  • Chemical Physics Letters, Vol. 393, Issue 1-3, p. 51-57
  • DOI: 10.1016/j.cplett.2004.06.011

Ab initio calculations of heavy-actinide hexahalide compounds: do these heavy actinides behave like their isoelectronic lanthanide analogues?
journal, January 2018

  • Celis-Barros, Cristian; Páez-Hernández, Dayán; Beltrán-Leiva, María J.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 6
  • DOI: 10.1039/C7CP06585J

On the Origin of Covalent Bonding in Heavy Actinides
journal, July 2017

  • Kelley, Morgan P.; Su, Jing; Urban, Matthew
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b03251

Assessment of Tuned Range Separated Exchange Functionals for Spectroscopies and Properties of Uranium Complexes
journal, July 2017

  • Duignan, Thomas J.; Autschbach, Jochen; Batista, Enrique
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 8
  • DOI: 10.1021/acs.jctc.7b00526

Ligand field density functional theory calculation of the 4f2 → 4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+
journal, January 2013

  • Ramanantoanina, Harry; Urland, Werner; Cimpoesu, Fanica
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 33
  • DOI: 10.1039/c3cp51344k

Chelation and stabilization of berkelium in oxidation state +IV
journal, April 2017

  • Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.
  • Nature Chemistry, Vol. 9, Issue 9
  • DOI: 10.1038/nchem.2759