DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment

Abstract

Abstract Permafrost thaw is typically measured with active layer thickness, or the maximum seasonal thaw measured from the ground surface. However, previous work has shown that this measurement alone fails to account for ground subsidence and therefore underestimates permafrost thaw. To determine the impact of subsidence on observed permafrost thaw and thawed soil carbon stocks, we quantified subsidence using high‐accuracy GPS and identified its environmental drivers in a permafrost warming experiment near the southern limit of permafrost in Alaska. With permafrost temperatures near 0°C, 10.8 cm of subsidence was observed in control plots over 9 years. Experimental air and soil warming increased subsidence by five times and created inundated microsites. Across treatments, ice and soil loss drove 85–91% and 9–15% of subsidence, respectively. Accounting for subsidence, permafrost thawed between 19% (control) and 49% (warming) deeper than active layer thickness indicated, and the amount of newly thawed carbon within the active layer was between 37% (control) and 113% (warming) greater. As additional carbon thaws as the active layer deepens, carbon fluxes to the atmosphere and lateral transport of carbon in groundwater could increase. The magnitude of this impact is uncertain at the landscape scale, though, due to limited subsidence measurements. Therefore, to determinemore » the full extent of permafrost thaw across the circumpolar region and its feedback on the carbon cycle, it is necessary to quantify subsidence more broadly across the circumpolar region.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [1]; ORCiD logo [5];  [1]; ORCiD logo [6]; ORCiD logo [1];  [1]
  1. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society
  2. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society; Univ. of Alaska, Fairbanks, AK (United States). Bonanza Creek Long Term Ecological Research Site
  3. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society; Univ. of Texas at El Paso, TX (United States)
  4. Woods Hole Research Center, Falmouth, MA (United States)
  5. Institute of Agricultural Sciences, Madrid (Spain)
  6. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society and School of Informatics, Computing, and Cyber Systems
Publication Date:
Research Org.:
Univ. of Florida, Gainesville, FL (United States); Northern Arizona Univ., Flagstaff, AZ (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1801748
Alternate Identifier(s):
OSTI ID: 1633843
Grant/Contract Number:  
SC0006982; SC0014085; DE‐SC0014085; DE‐SC0006982
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Biogeosciences
Additional Journal Information:
Journal Volume: 125; Journal Issue: 6; Journal ID: ISSN 2169-8953
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Environmental Sciences & Ecology; Geology

Citation Formats

Rodenhizer, Heidi, Ledman, Justin, Mauritz, Marguerite, Natali, Susan M., Pegoraro, Elaine, Plaza, César, Romano, Emily, Schädel, Christina, Taylor, Meghan, and Schuur, Edward. Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment. United States: N. p., 2020. Web. doi:10.1029/2019jg005528.
Rodenhizer, Heidi, Ledman, Justin, Mauritz, Marguerite, Natali, Susan M., Pegoraro, Elaine, Plaza, César, Romano, Emily, Schädel, Christina, Taylor, Meghan, & Schuur, Edward. Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment. United States. https://doi.org/10.1029/2019jg005528
Rodenhizer, Heidi, Ledman, Justin, Mauritz, Marguerite, Natali, Susan M., Pegoraro, Elaine, Plaza, César, Romano, Emily, Schädel, Christina, Taylor, Meghan, and Schuur, Edward. Thu . "Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment". United States. https://doi.org/10.1029/2019jg005528. https://www.osti.gov/servlets/purl/1801748.
@article{osti_1801748,
title = {Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment},
author = {Rodenhizer, Heidi and Ledman, Justin and Mauritz, Marguerite and Natali, Susan M. and Pegoraro, Elaine and Plaza, César and Romano, Emily and Schädel, Christina and Taylor, Meghan and Schuur, Edward},
abstractNote = {Abstract Permafrost thaw is typically measured with active layer thickness, or the maximum seasonal thaw measured from the ground surface. However, previous work has shown that this measurement alone fails to account for ground subsidence and therefore underestimates permafrost thaw. To determine the impact of subsidence on observed permafrost thaw and thawed soil carbon stocks, we quantified subsidence using high‐accuracy GPS and identified its environmental drivers in a permafrost warming experiment near the southern limit of permafrost in Alaska. With permafrost temperatures near 0°C, 10.8 cm of subsidence was observed in control plots over 9 years. Experimental air and soil warming increased subsidence by five times and created inundated microsites. Across treatments, ice and soil loss drove 85–91% and 9–15% of subsidence, respectively. Accounting for subsidence, permafrost thawed between 19% (control) and 49% (warming) deeper than active layer thickness indicated, and the amount of newly thawed carbon within the active layer was between 37% (control) and 113% (warming) greater. As additional carbon thaws as the active layer deepens, carbon fluxes to the atmosphere and lateral transport of carbon in groundwater could increase. The magnitude of this impact is uncertain at the landscape scale, though, due to limited subsidence measurements. Therefore, to determine the full extent of permafrost thaw across the circumpolar region and its feedback on the carbon cycle, it is necessary to quantify subsidence more broadly across the circumpolar region.},
doi = {10.1029/2019jg005528},
journal = {Journal of Geophysical Research. Biogeosciences},
number = 6,
volume = 125,
place = {United States},
year = {Thu Jun 18 00:00:00 EDT 2020},
month = {Thu Jun 18 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study
journal, February 2019


Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5
journal, January 2019

  • Ekici, Altug; Lee, Hanna; Lawrence, David M.
  • Geoscientific Model Development, Vol. 12, Issue 12
  • DOI: 10.5194/gmd-12-5291-2019

Tundra is a consistent source of CO 2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements : Tundra CO
journal, June 2017

  • Celis, Gerardo; Mauritz, Marguerite; Bracho, Rosvel
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 6
  • DOI: 10.1002/2016JG003671

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Advances in Thermokarst Research: Recent Advances in Research Investigating Thermokarst Processes
journal, April 2013

  • Kokelj, S. V.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 24, Issue 2
  • DOI: 10.1002/ppp.1779

Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra
journal, May 2017

  • Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1618567114

Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services
journal, November 2018


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Responses of Arctic Tundra to Experimental and Observed Changes in Climate
journal, April 1995

  • Chapin, F. Stuart; Shaver, Gaius R.; Giblin, Anne E.
  • Ecology, Vol. 76, Issue 3
  • DOI: 10.2307/1939337

Spatio-Temporal Interpolation using gstat
journal, January 2016

  • Gräler, Benedikt; Pebesma, Edzer; Heuvelink, Gerard
  • The R Journal, Vol. 8, Issue 1
  • DOI: 10.32614/RJ-2016-014

Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

Adding Depth to Our Understanding of Nitrogen Dynamics in Permafrost Soils
journal, August 2018

  • Salmon, Verity G.; Schädel, Christina; Bracho, Rosvel
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 8
  • DOI: 10.1029/2018JG004518

Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska
journal, January 2013


Soil CO 2 production in upland tundra where permafrost is thawing
journal, January 2010

  • Lee, Hanna; Schuur, Edward A. G.; Vogel, Jason G.
  • Journal of Geophysical Research, Vol. 115, Issue G1
  • DOI: 10.1029/2008JG000906

Permafrost carbon: Stock and decomposability of a globally significant carbon pool
journal, January 2006

  • Zimov, S. A.; Davydov, S. P.; Zimova, G. M.
  • Geophysical Research Letters, Vol. 33, Issue 20
  • DOI: 10.1029/2006GL027484

Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden
journal, August 2013

  • Johansson, Margareta; Callaghan, Terry V.; Bosiö, Julia
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035025

Response of CO 2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development
journal, January 2009

  • Vogel, Jason; Schuur, Edward A. G.; Trucco, Christian
  • Journal of Geophysical Research, Vol. 114, Issue G4
  • DOI: 10.1029/2008JG000901

Subsidence risk from thawing permafrost
journal, April 2001

  • Nelson, Frederick E.; Anisimov, Oleg A.; Shiklomanov, Nikolay I.
  • Nature, Vol. 410, Issue 6831
  • DOI: 10.1038/35073746

Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming
journal, October 2018

  • Schädel, Christina; Koven, Charles D.; Lawrence, David M.
  • Environmental Research Letters, Vol. 13, Issue 10
  • DOI: 10.1088/1748-9326/aae0ff

Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Tundra ecosystems observed to be CO 2 sources due to differential amplification of the carbon cycle
journal, August 2013

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Ecology Letters, Vol. 16, Issue 10
  • DOI: 10.1111/ele.12164

Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska
journal, July 2009

  • Osterkamp, T. E.; Jorgenson, M. T.; Schuur, E. A. G.
  • Permafrost and Periglacial Processes, Vol. 20, Issue 3
  • DOI: 10.1002/ppp.656

Ground ice and soluble cations in near-surface permafrost, Inuvik, Northwest Territories, Canada
journal, July 2003

  • Kokelj, S. V.; Burn, C. R.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 3
  • DOI: 10.1002/ppp.458

Holocene Carbon Stocks and Carbon Accumulation Rates Altered in Soils Undergoing Permafrost Thaw
journal, November 2011

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Crummer, K. Grace
  • Ecosystems, Vol. 15, Issue 1
  • DOI: 10.1007/s10021-011-9500-4

Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra
journal, May 2016

  • Blanc-Betes, Elena; Welker, Jeffrey M.; Sturchio, Neil C.
  • Global Change Biology, Vol. 22, Issue 8
  • DOI: 10.1111/gcb.13242

Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic
journal, February 2013

  • Cory, Rose M.; Crump, Byron C.; Dobkowski, Jason A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 9
  • DOI: 10.1073/pnas.1214104110

Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
journal, February 2016

  • Salmon, Verity G.; Soucy, Patrick; Mauritz, Marguerite
  • Global Change Biology, Vol. 22, Issue 5
  • DOI: 10.1111/gcb.13204

Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarst-Impacted Ecosystems on Carbon-Rich Permafrost Soils in Northeastern Siberia: Siberian CO 2 , Water, and Energy Fluxes
journal, October 2017

  • Euskirchen, Eugénie S.; Edgar, Colin W.; Syndonia Bret-Harte, M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 10
  • DOI: 10.1002/2017JG004070

Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis
journal, January 2000


Effect of permafrost thaw on CO 2 and CH 4 exchange in a western Alaska peatland chronosequence
journal, August 2014

  • Johnston, Carmel E.; Ewing, Stephanie A.; Harden, Jennifer W.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085004

Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
journal, January 2015


Open-top designs for manipulating field temperature in high-latitude ecosystems
journal, December 1997


Isotropic thaw subsidence in undisturbed permafrost landscapes: ISOTROPIC THAW SUBSIDENCE
journal, December 2013

  • Shiklomanov, Nikolay I.; Streletskiy, Dmitry A.; Little, Jonathon D.
  • Geophysical Research Letters, Vol. 40, Issue 24
  • DOI: 10.1002/2013GL058295

Fitting Linear Mixed-Effects Models Using lme4
journal, January 2015

  • Bates, Douglas; Mächler, Martin; Bolker, Ben
  • Journal of Statistical Software, Vol. 67, Issue 1
  • DOI: 10.18637/jss.v067.i01

Methane Efflux Measured by Eddy Covariance in Alaskan Upland Tundra Undergoing Permafrost Degradation
journal, September 2018

  • Taylor, M. A.; Celis, G.; Ledman, J. D.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 9
  • DOI: 10.1029/2018JG004444

Response of boreal ecosystems to varying modes of permafrost degradation
journal, September 2005

  • Jorgenson, M. T.; Osterkamp, T. E.
  • Canadian Journal of Forest Research, Vol. 35, Issue 9
  • DOI: 10.1139/x05-153

Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska: PEAT ACCUMULATION IN DRAINED LAKE BASINS
journal, April 2012

  • Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001766

Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s
journal, August 2016

  • Walter Anthony, Katey; Daanen, Ronald; Anthony, Peter
  • Nature Geoscience, Vol. 9, Issue 9
  • DOI: 10.1038/ngeo2795

Direct observation of permafrost degradation and rapid soil carbon loss in tundra
journal, July 2019


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate: SPATIAL VARIATION IN CARBON EXCHANGE
journal, March 2012

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001836

Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962-2015: Barrow Subsidence
journal, September 2016

  • Streletskiy, Dmitry A.; Shiklomanov, Nikolay I.; Little, Jonathon D.
  • Permafrost and Periglacial Processes, Vol. 28, Issue 3
  • DOI: 10.1002/ppp.1918

Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors
journal, May 2019

  • Ward Jones, Melissa K.; Pollard, Wayne H.; Jones, Benjamin M.
  • Environmental Research Letters, Vol. 14, Issue 5
  • DOI: 10.1088/1748-9326/ab12fd

Balancing the Global Carbon Budget
journal, May 2007


Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau: PERMAFROST COLLAPSE CAUSED CARBON LOSS
journal, July 2016

  • Mu, Cuicui; Zhang, Tingjun; Zhang, Xiankai
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 7
  • DOI: 10.1002/2015JG003235

The circumpolar active layer monitoring (calm) program: Research designs and initial results 1
journal, July 2000


Plant Species Composition and Productivity following Permafrost Thaw and Thermokarst in Alaskan Tundra
journal, March 2007


Thermosphere extension of the Whole Atmosphere Community Climate Model: WHOLE ATMOSPHERE MODEL
journal, December 2010

  • Liu, H. -L.; Foster, B. T.; Hagan, M. E.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A12
  • DOI: 10.1029/2010JA015586

Global Change and the Carbon Balance of Arctic Ecosystems
journal, June 1992

  • Shaver, Gaius R.; Billings, W. D.; Chapin,, F. Stuart
  • BioScience, Vol. 42, Issue 6
  • DOI: 10.2307/1311862

Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods
journal, March 2008

  • Grønlund, Arne; Hauge, Atle; Hovde, Anders
  • Nutrient Cycling in Agroecosystems, Vol. 81, Issue 2
  • DOI: 10.1007/s10705-008-9171-5

Permafrost Destabilization and Thermokarst Following Snow Fence Installation, Barrow, Alaska, U.S.A
journal, November 2006


Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra
journal, October 2015

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Natali, Susan M.
  • Nature Climate Change, Vol. 6, Issue 2
  • DOI: 10.1038/nclimate2830

Permafrost collapse alters soil carbon stocks, respiration, CH 4 , and N 2 O in upland tundra
journal, November 2015

  • Abbott, Benjamin W.; Jones, Jeremy B.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.13069

Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
journal, November 2012

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Crummer, Kathryn G.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12058

Long‐Term Measurements of Methane Ebullition From Thaw Ponds
journal, July 2019

  • Burke, S. A.; Wik, M.; Lang, A.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2018JG004786

The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem
journal, January 2016

  • Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.
  • Biogeosciences, Vol. 13, Issue 8
  • DOI: 10.5194/bg-13-2291-2016

Talik Formation at a Snow Fence in Continuous Permafrost, Western Arctic Canada: Talik Formation at a Snow Fence
journal, June 2016

  • O'Neill, H. B.; Burn, C. R.
  • Permafrost and Periglacial Processes, Vol. 28, Issue 3
  • DOI: 10.1002/ppp.1905

Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions
journal, May 2013

  • Subin, Zachary M.; Koven, Charles D.; Riley, William J.
  • Journal of Climate, Vol. 26, Issue 10
  • DOI: 10.1175/JCLI-D-12-00305.1

Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra
journal, July 2014

  • Pizano, Camila; Barón, Andrés F.; Schuur, Edward A. G.
  • Environmental Research Letters, Vol. 9, Issue 7
  • DOI: 10.1088/1748-9326/9/7/075006

Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013

  • Torre Jorgenson, M.; Harden, Jennifer; Kanevskiy, Mikhail
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035017

Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia
journal, July 2004


Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327