DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells

Abstract

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. SNAbs However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Finally, our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug- and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [1];  [1];  [3];  [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [4]; ORCiD logo [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Pittsburgh, PA (United States)
  4. Emory Univ., Atlanta, GA (United States); Atlanta VA Medical Center, Decatur, GA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; Georgia Institute of Technology; National Science Foundation (NSF); National Institutes of Health (NIH)
OSTI Identifier:
1798050
Grant/Contract Number:  
AC02-06CH11357; 12456J4; 1255d06; ECCS-2025462; R01-GM123169; TG-MCB130173
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 21; Journal Issue: 1; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; Janus nanoparticle; antibody-dependent cellular responses; immunotherapy; monoclonal antibody; myeloid-derived suppressor cell

Citation Formats

Liu, Jiaying, Toy, Randall, Vantucci, Casey, Pradhan, Pallab, Zhang, Zijian, Kuo, Katie M., Kubelick, Kelsey P., Huo, Da, Wen, Jianguo, Kim, Jinhwan, Lyu, Zhiheng, Dhal, Simran, Atalis, Alexandra, Ghosh-Choudhary, Shohini K., Devereaux, Emily J., Gumbart, James C., Xia, Younan, Emelianov, Stanislav Y., Willett, Nick J., and Roy, Krishnendu. Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells. United States: N. p., 2021. Web. doi:10.1021/acs.nanolett.0c04833.
Liu, Jiaying, Toy, Randall, Vantucci, Casey, Pradhan, Pallab, Zhang, Zijian, Kuo, Katie M., Kubelick, Kelsey P., Huo, Da, Wen, Jianguo, Kim, Jinhwan, Lyu, Zhiheng, Dhal, Simran, Atalis, Alexandra, Ghosh-Choudhary, Shohini K., Devereaux, Emily J., Gumbart, James C., Xia, Younan, Emelianov, Stanislav Y., Willett, Nick J., & Roy, Krishnendu. Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells. United States. https://doi.org/10.1021/acs.nanolett.0c04833
Liu, Jiaying, Toy, Randall, Vantucci, Casey, Pradhan, Pallab, Zhang, Zijian, Kuo, Katie M., Kubelick, Kelsey P., Huo, Da, Wen, Jianguo, Kim, Jinhwan, Lyu, Zhiheng, Dhal, Simran, Atalis, Alexandra, Ghosh-Choudhary, Shohini K., Devereaux, Emily J., Gumbart, James C., Xia, Younan, Emelianov, Stanislav Y., Willett, Nick J., and Roy, Krishnendu. Mon . "Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells". United States. https://doi.org/10.1021/acs.nanolett.0c04833. https://www.osti.gov/servlets/purl/1798050.
@article{osti_1798050,
title = {Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells},
author = {Liu, Jiaying and Toy, Randall and Vantucci, Casey and Pradhan, Pallab and Zhang, Zijian and Kuo, Katie M. and Kubelick, Kelsey P. and Huo, Da and Wen, Jianguo and Kim, Jinhwan and Lyu, Zhiheng and Dhal, Simran and Atalis, Alexandra and Ghosh-Choudhary, Shohini K. and Devereaux, Emily J. and Gumbart, James C. and Xia, Younan and Emelianov, Stanislav Y. and Willett, Nick J. and Roy, Krishnendu},
abstractNote = {Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. SNAbs However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Finally, our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug- and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.},
doi = {10.1021/acs.nanolett.0c04833},
journal = {Nano Letters},
number = 1,
volume = 21,
place = {United States},
year = {Mon Jan 04 00:00:00 EST 2021},
month = {Mon Jan 04 00:00:00 EST 2021}
}

Works referenced in this record:

The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis
journal, April 2019


Photoacoustic Image-Guided Delivery of Plasmonic-Nanoparticle-Labeled Mesenchymal Stem Cells to the Spinal Cord
journal, August 2018


Myeloid-Derived Suppressor Cells in Sepsis
journal, January 2014

  • Lai, Dengming; Qin, Chaojin; Shu, Qiang
  • BioMed Research International, Vol. 2014
  • DOI: 10.1155/2014/598654

S100 proteins in cancer
journal, January 2015

  • Bresnick, Anne R.; Weber, David J.; Zimmer, Danna B.
  • Nature Reviews Cancer, Vol. 15, Issue 2
  • DOI: 10.1038/nrc3893

Therapeutic antibodies: successes, limitations and hopes for the future: Therapeutic antibodies: an update
journal, April 2009


Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards
journal, July 2016

  • Bronte, Vincenzo; Brandau, Sven; Chen, Shu-Hsia
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12150

Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges
journal, November 2020


Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors
journal, January 2015

  • Xiang, Dongxi; Zheng, Conglong; Zhou, Shu-Feng
  • Theranostics, Vol. 5, Issue 10
  • DOI: 10.7150/thno.11711

Myeloid-Derived Suppressor Cells Evolve during Sepsis and Can Enhance or Attenuate the Systemic Inflammatory Response
journal, June 2012

  • Brudecki, Laura; Ferguson, Donald A.; McCall, Charles E.
  • Infection and Immunity, Vol. 80, Issue 6
  • DOI: 10.1128/IAI.00239-12

TSPAN33 is a novel marker of activated and malignant B cells
journal, December 2013


Myeloid-Derived Suppressor Cells in Sepsis
journal, February 2019

  • Schrijver, Irene T.; Théroude, Charlotte; Roger, Thierry
  • Frontiers in Immunology, Vol. 10
  • DOI: 10.3389/fimmu.2019.00327

Assembly of Linear Nano-Chains from Iron Oxide Nanospheres with Asymmetric Surface Chemistry
journal, January 2011


Identification of cyclic peptides able to mimic the functional epitope of IgG1‐Fc for human FcyRI
journal, October 2008

  • Bonetto, Stephane; Spadola, Loredana; Buchanan, Andrew G.
  • The FASEB Journal, Vol. 23, Issue 2
  • DOI: 10.1096/fj.08-117069

Microenvironmental regulation of tumor progression and metastasis
journal, November 2013

  • Quail, Daniela F.; Joyce, Johanna A.
  • Nature Medicine, Vol. 19, Issue 11
  • DOI: 10.1038/nm.3394

Interrogating Cellular Functions with Designer Janus Particles
journal, February 2017


Proinflammatory S100 Proteins Regulate the Accumulation of Myeloid-Derived Suppressor Cells
journal, September 2008


Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE
journal, April 2015

  • Narumi, Kenta; Miyakawa, Reina; Ueda, Ryosuke
  • The Journal of Immunology, Vol. 194, Issue 11
  • DOI: 10.4049/jimmunol.1402301

Mechanism of T Cell Tolerance Induced by Myeloid-Derived Suppressor Cells
journal, February 2010

  • Nagaraj, Srinivas; Schrum, Adam G.; Cho, Hyun-Il
  • The Journal of Immunology, Vol. 184, Issue 6
  • DOI: 10.4049/jimmunol.0902661

Mechanisms of Fc Receptor and Dectin-1 Activation for Phagocytosis: Mechanisms of Fc Receptor and Dectin-1 Activation for Phagocytosis
journal, June 2012


Fabrication, properties and applications of Janus particles
journal, January 2012

  • Hu, Jing; Zhou, Shuxue; Sun, Yangyi
  • Chemical Society Reviews, Vol. 41, Issue 11
  • DOI: 10.1039/c2cs35032g

Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice
journal, December 2012

  • Ma, Chi; Kapanadze, Tamar; Gamrekelashvili, Jaba
  • Journal of Leukocyte Biology, Vol. 92, Issue 6
  • DOI: 10.1189/jlb.0212059

Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications
journal, March 2013

  • Kaewsaneha, Chariya; Tangboriboonrat, Pramuan; Polpanich, Duangporn
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 6
  • DOI: 10.1021/am302528g

TUNABLE COMPLEMENT ACTIVATION BY PARTICLES WITH VARIABLE SIZE AND Fc DENSITY
journal, June 2013


Janus particles for biological imaging and sensing
journal, January 2016

  • Yi, Yi; Sanchez, Lucero; Gao, Yuan
  • The Analyst, Vol. 141, Issue 12
  • DOI: 10.1039/C6AN00325G

Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery
journal, February 2016

  • Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko
  • Nature Nanotechnology, Vol. 11, Issue 6
  • DOI: 10.1038/nnano.2015.342

Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system
journal, March 2019


Antibody Phage Display: Technique and Applications
journal, February 2014

  • Hammers, Christoph M.; Stanley, John R.
  • Journal of Investigative Dermatology, Vol. 134, Issue 2
  • DOI: 10.1038/jid.2013.521

Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors
journal, November 2016

  • Ortiz, Daniel F.; Lansing, Jonathan C.; Rutitzky, Laura
  • Science Translational Medicine, Vol. 8, Issue 365
  • DOI: 10.1126/scitranslmed.aaf9418

Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice
journal, May 2014

  • Qin, Hong; Lerman, Beatrisa; Sakamaki, Ippei
  • Nature Medicine, Vol. 20, Issue 6
  • DOI: 10.1038/nm.3560

The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment
journal, March 2016


Silibinin inhibits accumulation of myeloid‐derived suppressor cells and tumor growth of murine breast cancer
journal, January 2014

  • Forghani, Parvin; Khorramizadeh, Mohammad R.; Waller, Edmund K.
  • Cancer Medicine, Vol. 3, Issue 2
  • DOI: 10.1002/cam4.186

Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock
journal, January 2017


Immunoparalysis after multiple trauma
journal, December 2007


S100A9 a new marker for monocytic human myeloid-derived suppressor cells: S100 a new MDSC marker
journal, April 2012


Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer
journal, June 2012

  • Brahmer, Julie R.; Tykodi, Scott S.; Chow, Laura Q. M.
  • New England Journal of Medicine, Vol. 366, Issue 26
  • DOI: 10.1056/NEJMoa1200694

Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer
journal, April 2009


Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers
journal, April 2015

  • Cabral, Horacio; Makino, Jun; Matsumoto, Yu
  • ACS Nano, Vol. 9, Issue 5
  • DOI: 10.1021/nn5070259

Antibody therapy of cancer
journal, March 2012

  • Scott, Andrew M.; Wolchok, Jedd D.; Old, Lloyd J.
  • Nature Reviews Cancer, Vol. 12, Issue 4
  • DOI: 10.1038/nrc3236

Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency
journal, February 2019

  • Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu
  • Cellular and Molecular Life Sciences, Vol. 76, Issue 10
  • DOI: 10.1007/s00018-019-03048-x

Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors
journal, October 2017

  • Xenaki, Katerina T.; Oliveira, Sabrina; van Bergen en Henegouwen, Paul M. P.
  • Frontiers in Immunology, Vol. 8
  • DOI: 10.3389/fimmu.2017.01287

Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging
journal, December 2017


Drugs derived from phage display: From candidate identification to clinical practice
journal, November 2013

  • Nixon, Andrew E.; Sexton, Daniel J.; Ladner, Robert C.
  • mAbs, Vol. 6, Issue 1
  • DOI: 10.4161/mabs.27240

Investigating the optimal size of anticancer nanomedicine
journal, October 2014

  • Tang, L.; Yang, X.; Yin, Q.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 43
  • DOI: 10.1073/pnas.1411499111

A Paradoxical Role for Myeloid-Derived Suppressor Cells in Sepsis and Trauma
journal, November 2010

  • Cuenca, Alex G.; Delano, Matthew J.; Kelly-Scumpia, Kindra M.
  • Molecular Medicine, Vol. 17, Issue 3-4
  • DOI: 10.2119/molmed.2010.00178

Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer
journal, January 2013

  • Wesolowski, Robert; Markowitz, Joseph; Carson, William E.
  • Journal for ImmunoTherapy of Cancer, Vol. 1, Issue 1
  • DOI: 10.1186/2051-1426-1-10

Development of systemic immune dysregulation in a rat trauma model of biomaterial-associated infection
journal, January 2021


Myeloid Suppressor Cell Depletion Augments Antitumor Activity in Lung Cancer
journal, July 2012


Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents
journal, November 2011

  • Luke, Geoffrey P.; Yeager, Doug; Emelianov, Stanislav Y.
  • Annals of Biomedical Engineering, Vol. 40, Issue 2
  • DOI: 10.1007/s10439-011-0449-4

Aptamers as targeted therapeutics: current potential and challenges
journal, November 2016

  • Zhou, Jiehua; Rossi, John
  • Nature Reviews Drug Discovery, Vol. 16, Issue 3
  • DOI: 10.1038/nrd.2016.199

Janus Magnetic‐Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy
journal, February 2020


Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors
journal, January 2011


Gr-1 dim CD11b + Immature Myeloid-Derived Suppressor Cells but Not Neutrophils Are Markers of Lethal Tuberculosis Infection in Mice
journal, April 2014

  • Tsiganov, Evgeny N.; Verbina, Elena M.; Radaeva, Tatiana V.
  • The Journal of Immunology, Vol. 192, Issue 10
  • DOI: 10.4049/jimmunol.1301365

Designing super selectivity in multivalent nano-particle binding
journal, June 2011

  • Martinez-Veracoechea, F. J.; Frenkel, D.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 27
  • DOI: 10.1073/pnas.1105351108

Issues with anti-Gr1 antibody-mediated myeloid-derived suppressor cell depletion
journal, May 2016


Bifunctional Janus Microparticles with Spatially Segregated Proteins
journal, June 2012

  • Tang, Jennifer L.; Schoenwald, Kipp; Potter, Daniel
  • Langmuir, Vol. 28, Issue 26
  • DOI: 10.1021/la3010079

Chemically Synthesized Molecules with the Targeting and Effector Functions of Antibodies
journal, December 2014

  • McEnaney, Patrick J.; Fitzgerald, Kelly J.; Zhang, Andrew X.
  • Journal of the American Chemical Society, Vol. 136, Issue 52
  • DOI: 10.1021/ja509513c

Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis
journal, October 2010

  • Zhang, Y.; Hoppe, A. D.; Swanson, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1008248107

Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging
journal, January 2019

  • Kubelick, Kelsey P.; Snider, Eric J.; Ethier, C. Ross
  • Theranostics, Vol. 9, Issue 13
  • DOI: 10.7150/thno.32546

Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells
journal, November 2011


Effects of Microparticle Size and Fc Density on Macrophage Phagocytosis
journal, April 2013


Janus Particles as Artificial Antigen-Presenting Cells for T Cell Activation
journal, October 2014

  • Chen, Bo; Jia, Yilong; Gao, Yuan
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am505510m