DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluorinated interphase enables reversible aqueous zinc battery chemistries

Abstract

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte alsomore » allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1];  [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [3];  [1];  [4];  [2];  [1];  [1];  [1];  [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States)
  2. US Army Research Lab., Adelphi, MD (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Univ. of Maryland, College Park, MD (United States); US Army Research Lab., Adelphi, MD (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1787833
Report Number(s):
BNL-221586-2021-JAAM
Journal ID: ISSN 1748-3387
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 16; Journal Issue: 8; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries; Energy storage

Citation Formats

Cao, Longsheng, Li, Dan, Pollard, Travis, Deng, Tao, Zhang, Bao, Yang, Chongyin, Chen, Long, Vatamanu, Jenel, Hu, Enyuan, Hourwitz, Matt J., Ma, Lin, Ding, Michael, Li, Qin, Hou, Singyuk, Gaskell, Karen, Fourkas, John T., Yang, Xiao-Qing, Xu, Kang, Borodin, Oleg, and Wang, Chunsheng. Fluorinated interphase enables reversible aqueous zinc battery chemistries. United States: N. p., 2021. Web. doi:10.1038/s41565-021-00905-4.
Cao, Longsheng, Li, Dan, Pollard, Travis, Deng, Tao, Zhang, Bao, Yang, Chongyin, Chen, Long, Vatamanu, Jenel, Hu, Enyuan, Hourwitz, Matt J., Ma, Lin, Ding, Michael, Li, Qin, Hou, Singyuk, Gaskell, Karen, Fourkas, John T., Yang, Xiao-Qing, Xu, Kang, Borodin, Oleg, & Wang, Chunsheng. Fluorinated interphase enables reversible aqueous zinc battery chemistries. United States. https://doi.org/10.1038/s41565-021-00905-4
Cao, Longsheng, Li, Dan, Pollard, Travis, Deng, Tao, Zhang, Bao, Yang, Chongyin, Chen, Long, Vatamanu, Jenel, Hu, Enyuan, Hourwitz, Matt J., Ma, Lin, Ding, Michael, Li, Qin, Hou, Singyuk, Gaskell, Karen, Fourkas, John T., Yang, Xiao-Qing, Xu, Kang, Borodin, Oleg, and Wang, Chunsheng. Mon . "Fluorinated interphase enables reversible aqueous zinc battery chemistries". United States. https://doi.org/10.1038/s41565-021-00905-4. https://www.osti.gov/servlets/purl/1787833.
@article{osti_1787833,
title = {Fluorinated interphase enables reversible aqueous zinc battery chemistries},
author = {Cao, Longsheng and Li, Dan and Pollard, Travis and Deng, Tao and Zhang, Bao and Yang, Chongyin and Chen, Long and Vatamanu, Jenel and Hu, Enyuan and Hourwitz, Matt J. and Ma, Lin and Ding, Michael and Li, Qin and Hou, Singyuk and Gaskell, Karen and Fourkas, John T. and Yang, Xiao-Qing and Xu, Kang and Borodin, Oleg and Wang, Chunsheng},
abstractNote = {Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.},
doi = {10.1038/s41565-021-00905-4},
journal = {Nature Nanotechnology},
number = 8,
volume = 16,
place = {United States},
year = {Mon May 10 00:00:00 EDT 2021},
month = {Mon May 10 00:00:00 EDT 2021}
}

Works referenced in this record:

Quantitative Research on the Vaporization and Decomposition of [EMIM][Tf 2 N] by Thermogravimetric Analysis–Mass Spectrometry
journal, May 2012

  • Chen, Yu; Cao, Yuanyuan; Shi, Yang
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 21
  • DOI: 10.1021/ie300247v

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase
journal, January 2019

  • Zhao, Zhiming; Zhao, Jingwen; Hu, Zhenglin
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/C9EE00596J

ZnCl 2 “Water‐in‐Salt” Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode
journal, May 2019

  • Zhang, Lu; Rodríguez‐Pérez, Ismael A.; Jiang, Heng
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902653

An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices
journal, January 2020

  • Chang, Nana; Li, Tianyu; Li, Rui
  • Energy & Environmental Science, Vol. 13, Issue 10
  • DOI: 10.1039/D0EE01538E

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Continuous surface charge polarizable continuum models of solvation. I. General formalism
journal, March 2010

  • Scalmani, Giovanni; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 132, Issue 11
  • DOI: 10.1063/1.3359469

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


A complete basis set model chemistry. VI. Use of density functional geometries and frequencies
journal, February 1999

  • Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.
  • The Journal of Chemical Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.477924

Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems
journal, January 2021


XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions
journal, July 2018

  • Winiarski, Juliusz; Tylus, Włodzimierz; Winiarska, Katarzyna
  • Journal of Spectroscopy, Vol. 2018
  • DOI: 10.1155/2018/2079278

Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions
journal, January 2006

  • Zhao, Yan; Schultz, Nathan E.; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 2, Issue 2
  • DOI: 10.1021/ct0502763

CO 2 Capture by Tertiary Amine Absorbents: A Performance Comparison Study
journal, June 2013

  • Chowdhury, Firoz Alam; Yamada, Hidetaka; Higashii, Takayuki
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 24
  • DOI: 10.1021/ie400825u

Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion
journal, April 2017

  • Parker, Joseph F.; Chervin, Christopher N.; Pala, Irina R.
  • Science, Vol. 356, Issue 6336
  • DOI: 10.1126/science.aak9991

Influence of surface topology and electrostatic potential on water/electrode systems
journal, January 1995

  • Siepmann, J. Ilja; Sprik, Michiel
  • The Journal of Chemical Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.469429

“Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting
journal, July 2017

  • Suo, Liumin; Borodin, Oleg; Wang, Yuesheng
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701189

In Situ Formation of a Stable Interface in Solid-State Batteries
journal, June 2019


Electrochemical interface between an ionic liquid and a model metallic electrode
journal, February 2007

  • Reed, Stewart K.; Lanning, Oliver J.; Madden, Paul A.
  • The Journal of Chemical Physics, Vol. 126, Issue 8
  • DOI: 10.1063/1.2464084

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates
journal, September 2001


Behavior of Organic Liquids at Bare and Modified Silica Interfaces
journal, November 2009

  • Horng, Pearl; Brindza, Michael R.; Walker, Robert A.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 1
  • DOI: 10.1021/jp908444x

A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode
journal, January 2018

  • Zhang, Chong; Holoubek, John; Wu, Xianyong
  • Chemical Communications, Vol. 54, Issue 100
  • DOI: 10.1039/C8CC07730D

Hydrophobic Organic‐Electrolyte‐Protected Zinc Anodes for Aqueous Zinc Batteries
journal, August 2020

  • Cao, Longsheng; Li, Dan; Deng, Tao
  • Angewandte Chemie International Edition, Vol. 59, Issue 43
  • DOI: 10.1002/anie.202008634

Ten years left to redesign lithium-ion batteries
journal, July 2018


Influence of Water Content on the Surface Morphology of Zinc Deposited from EMImOTf/Water Mixtures
journal, January 2019

  • Bayer, Martin; Overhoff, Gerrit Michael; Gui, Alicia Lei
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0121906jes

The Dissolution and Passivation of Zinc in Concentrated Aqueous Hydroxide
journal, January 1981

  • McKubre, M. C. H.
  • Journal of The Electrochemical Society, Vol. 128, Issue 3
  • DOI: 10.1149/1.2127450

PdMo bimetallene for oxygen reduction catalysis
journal, September 2019


Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
journal, June 2016

  • Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11801

Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation
journal, January 2001

  • Yamamoto, Naoki; Okuhara, Toshio; Nakato, Teruyuki
  • Journal of Materials Chemistry, Vol. 11, Issue 7
  • DOI: 10.1039/b100040n

The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “ Water-in-Salt ” electrolytes
journal, January 2018

  • Dubouis, Nicolas; Lemaire, Pierre; Mirvaux, Boris
  • Energy & Environmental Science, Vol. 11, Issue 12
  • DOI: 10.1039/C8EE02456A

How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface
journal, August 2018

  • Wang, Fei; Sun, Wei; Shadike, Zulipiya
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201806748

Decomposition of ionic liquids in electrochemical processing
journal, January 2006

  • Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.
  • Green Chem., Vol. 8, Issue 3
  • DOI: 10.1039/B512724F

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface
journal, January 2018

  • Kundu, Dipan; Hosseini Vajargah, Shahrzad; Wan, Liwen
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C8EE00378E

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives
journal, November 2016

  • Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu
  • Advanced Materials, Vol. 29, Issue 7
  • DOI: 10.1002/adma.201604685

Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth
journal, January 2016

  • Liu, Z.; Qi, Y.; Lin, Y. X.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0151605jes

Instability at the Electrode/Electrolyte Interface Induced by Hard Cation Chelation and Nucleophilic Attack
journal, October 2017


Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
journal, April 1984

  • Frisch, Michael J.; Pople, John A.; Binkley, J. Stephen
  • The Journal of Chemical Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.447079

Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids
journal, August 2009

  • Borodin, Oleg
  • The Journal of Physical Chemistry B, Vol. 113, Issue 33
  • DOI: 10.1021/jp905220k

Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF 6 in Propylene Carbonate
journal, November 2013

  • Nie, Mengyun; Abraham, Daniel P.; Seo, Daniel M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 48
  • DOI: 10.1021/jp409765w

Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Explicit reversible integrators for extended systems dynamics
journal, April 1996

  • Martyna, Glenn J.; Tuckerman, Mark E.; Tobias, Douglas J.
  • Molecular Physics, Vol. 87, Issue 5
  • DOI: 10.1080/00268979600100761

A rechargeable zinc-air battery based on zinc peroxide chemistry
journal, December 2020


Translating Materials-Level Performance into Device-Relevant Metrics for Zinc-Based Batteries
journal, December 2018


Molecular polarizabilities calculated with a modified dipole interaction
journal, August 1981


Modulating electrolyte structure for ultralow temperature aqueous zinc batteries
journal, September 2020


Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation
journal, November 2019