DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy

Abstract

Enhanced negative thermal expansion (NTE) properties are achieved by introducing a little amount of boron in the Fe43Mn28Ga28.97B0.03 alloy. As a result, this alloy shows a giant NTE coefficient of alpha(1) = -79.7 x 10-6 K-1 in a wide temperature range from 277 K to 136 K. Compared to the NTE characteristics in Fe43Mn28Ga29, the NTE operation temperature window has expanded by 74% with the corresponding coefficient of thermal expansion increased by 57% within the NTE temperature window for the boron-doped Fe43Mn28Ga28.97B0.03. Additionally, in-situ synchrotron high-energy X-ray diffraction results suggest that by boron substitution, the large unit cell volume change across martensitic transformation and the wide phase transition temperature interval are responsible for the pronounced NTE behavior in Fe43Mn28Ga28.97B0.03. Moreover, for the Fe43Mn28Ga28.97B0.03 NTE material, the compressive strength and strain are significantly improved compared with that of Fe43Mn28Ga29. The present study indicates that Fe43Mn28Ga28.97B0.03 with enhanced NTE across martensitic transformation may be used for practical application as thermal-expansion compensators.

Authors:
 [1];  [2];  [3];  [4];  [3];  [2];  [2];  [2];  [2];  [5];  [6];  [2]
  1. Univ. of Science and Technology Beijing (China). Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Lab. for Advanced Metals and Materials; Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Process Engineering, State Key Lab. of Multi-Phase Complex Systems
  2. Univ. of Science and Technology Beijing (China). Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Lab. for Advanced Metals and Materials
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Northern Illinois Univ., DeKalb, IL (United States)
  5. Beijing Inst. of Technology (China)
  6. Qufu Normal Univ. (China). Experimental Teaching and Equipment Management Center
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Natural Science Foundation of China (NSFC); Fundamental Research Funds for the Central Universities
OSTI Identifier:
1785099
Grant/Contract Number:  
AC02-06CH11357; 51731005; 51822102; 51671180; FRF-TP-18-008C1
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Alloys and Compounds
Additional Journal Information:
Journal Volume: 857; Journal ID: ISSN 0925-8388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Chemical substitution; Magnetic functional materials; Martensitic transformation; Negative thermal expansion

Citation Formats

Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Gallington, L. C., Li, R. G., Cao, Y. X., Chen, Z., Li, S. H., Nie, Z. H., Liu, Z. A., and Wang, Y. D. Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy. United States: N. p., 2020. Web. doi:10.1016/j.jallcom.2020.157572.
Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Gallington, L. C., Li, R. G., Cao, Y. X., Chen, Z., Li, S. H., Nie, Z. H., Liu, Z. A., & Wang, Y. D. Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy. United States. https://doi.org/10.1016/j.jallcom.2020.157572
Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Gallington, L. C., Li, R. G., Cao, Y. X., Chen, Z., Li, S. H., Nie, Z. H., Liu, Z. A., and Wang, Y. D. Mon . "Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy". United States. https://doi.org/10.1016/j.jallcom.2020.157572. https://www.osti.gov/servlets/purl/1785099.
@article{osti_1785099,
title = {Enhanced negative thermal expansion of boron-doped Fe43Mn28Ga28.97B0.03 alloy},
author = {Sun, X. M. and Cong, D. Y. and Ren, Y. and Brown, D. E. and Gallington, L. C. and Li, R. G. and Cao, Y. X. and Chen, Z. and Li, S. H. and Nie, Z. H. and Liu, Z. A. and Wang, Y. D.},
abstractNote = {Enhanced negative thermal expansion (NTE) properties are achieved by introducing a little amount of boron in the Fe43Mn28Ga28.97B0.03 alloy. As a result, this alloy shows a giant NTE coefficient of alpha(1) = -79.7 x 10-6 K-1 in a wide temperature range from 277 K to 136 K. Compared to the NTE characteristics in Fe43Mn28Ga29, the NTE operation temperature window has expanded by 74% with the corresponding coefficient of thermal expansion increased by 57% within the NTE temperature window for the boron-doped Fe43Mn28Ga28.97B0.03. Additionally, in-situ synchrotron high-energy X-ray diffraction results suggest that by boron substitution, the large unit cell volume change across martensitic transformation and the wide phase transition temperature interval are responsible for the pronounced NTE behavior in Fe43Mn28Ga28.97B0.03. Moreover, for the Fe43Mn28Ga28.97B0.03 NTE material, the compressive strength and strain are significantly improved compared with that of Fe43Mn28Ga29. The present study indicates that Fe43Mn28Ga28.97B0.03 with enhanced NTE across martensitic transformation may be used for practical application as thermal-expansion compensators.},
doi = {10.1016/j.jallcom.2020.157572},
journal = {Journal of Alloys and Compounds},
number = ,
volume = 857,
place = {United States},
year = {Mon Oct 12 00:00:00 EDT 2020},
month = {Mon Oct 12 00:00:00 EDT 2020}
}

Works referenced in this record:

Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
journal, December 2005

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2147726

Thermal study of the interplay between spin and lattice in CoCr 2 O 4 and CdCr 2 O 4
journal, February 2013


Linear Thermal Expansion of Three Tungstates
journal, April 1968


Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys
journal, July 1999


Giant negative thermal expansion in magnetic nanocrystals
journal, October 2008


Enhanced reversibility and unusual microstructure of a phase-transforming material
journal, October 2013

  • Song, Yintao; Chen, Xian; Dabade, Vivekanand
  • Nature, Vol. 502, Issue 7469
  • DOI: 10.1038/nature12532

Structure, Magnetism, and Tunable Negative Thermal Expansion in (Hf,Nb)Fe 2 Alloys
journal, August 2017


Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with Ni 2 In-Type Hexagonal Structure
journal, January 2015

  • Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510693a

Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5−xBx alloys
journal, September 2010


Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn 3 Cu 1 x Ge x N
journal, November 2008


Magnetoelastic and pressure effects at the antiferro–ferromagnetic transition in Hf 1− x Ta x Fe 2− y alloys
journal, December 1996

  • Morellon, L.; Algarabel, P. A.; Ibarra, M. R.
  • Journal of Applied Physics, Vol. 80, Issue 12
  • DOI: 10.1063/1.363763

Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys
journal, August 2012


Thermal expansion anomalies and spontaneous magnetostriction in R2Fe17Cx intermetallic compounds
journal, December 1991


Thermal expansion anomaly and Invar effect of Mn1−xCoxB
journal, February 1992


Large magnetic entropy change and enhanced mechanical properties of Ni–Mn–Sn–C alloys
journal, March 2014


Thermal expansion of the magnetically ordering intermetallics RTMg (R = Eu, Gd and T = Ag, Au)
journal, November 2007


Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy
journal, January 2020


Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn 0.98 CoGe
journal, December 2016

  • Lin, Jianchao; Tong, Peng; Zhang, Kui
  • Applied Physics Letters, Vol. 109, Issue 24
  • DOI: 10.1063/1.4972234

Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys
journal, March 2008

  • Xuan, H. C.; Wang, D. H.; Zhang, C. L.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2895645

Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect
journal, January 2008

  • Takenaka, K.; Asano, K.; Misawa, M.
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2831715

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys
journal, June 2013

  • Emre, Baris; Yüce, Süheyla; Stern-Taulats, Enric
  • Journal of Applied Physics, Vol. 113, Issue 21
  • DOI: 10.1063/1.4808340

Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride
journal, September 2011

  • Song, Xiaoyan; Sun, Zhonghua; Huang, Qingzhen
  • Advanced Materials, Vol. 23, Issue 40
  • DOI: 10.1002/adma.201102552

Zero Thermal Expansion in PbTiO 3 -Based Perovskites
journal, January 2008

  • Chen, Jun; Xing, Xianran; Sun, Ce
  • Journal of the American Chemical Society, Vol. 130, Issue 4
  • DOI: 10.1021/ja7100278

Connection of giant volume magnetostriction and colossal magnetoresistance in La0.8Ba0.2MnO3
journal, May 2004


Negative thermal expansion materials: technological key for control of thermal expansion
journal, February 2012


Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni 50 Mn 34.8 In 14.2 B
journal, May 2012

  • Dubenko, Igor; Samanta, Tapas; Quetz, Abdiel
  • Applied Physics Letters, Vol. 100, Issue 19
  • DOI: 10.1063/1.4714539

Critical magnetic behavior of ferromagnetic CdCr 2 S 4
journal, October 2013


Magnetically driven negative thermal expansion in antiperovskite Ga 1- x Mn x N 0.8 Mn 3 (0.1 ≤  x  ≤ 0.3)
journal, November 2015

  • Guo, X. G.; Lin, J. C.; Tong, P.
  • Applied Physics Letters, Vol. 107, Issue 20
  • DOI: 10.1063/1.4936239

Negative thermal expansion and spontaneous magnetostriction of Tb2Fe16.5Cr0.5 compound
journal, June 2005

  • Hao, Yanming; Zhou, Yan; Zhao, Miao
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1921334

Nature of low-temperature phase transitions in CaMn7O12
journal, October 2005

  • Volkova, O.; Arango, Yu.; Tristan, N.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 82, Issue 7
  • DOI: 10.1134/1.2142874

Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys
journal, May 2015

  • Pandey, S.; Quetz, A.; Rodionov, I. D.
  • Journal of Applied Physics, Vol. 117, Issue 18
  • DOI: 10.1063/1.4921052

Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys
journal, April 2017


Large Magnetostriction and Negative Thermal Expansion in the Frustrated Antiferromagnet ZnCr 2 Se 4
journal, April 2007


Effects of the substitution of gallium with boron on the physical and mechanical properties of Ni–Mn–Ga shape memory alloys
journal, July 2014