DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes

Abstract

Silicon (Si) is the most naturally abundant element possessing 10-fold greater theoretical capacity compared to that of graphite-based anodes. The practicality of implementing Si anodes is, however, limited by the unstable solid/electrolyte interphase (SEI) and anode fracturing during continuous lithiation/delithiation. We demonstrate that glyme-based electrolytes (GlyEls) ensure a conformal SEI on Si and keep the Si “fracture-free”. Benchmarking against the optimal, commonly used carbonate electrolyte with the fluoroethylene carbonate additive, the Si anode cycled in a GlyEl exhibits a reduced early parasitic current (by 62.5%) and interfacial resistance (by 72.8%), while cell capacity retention is promoted by >7% over the course of 110 cycles. A mechanistic investigation by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy indicates GlyEl enriches Si SEI with elastic polyether but diminishes its carbonate species. Glyme-based electrolytes proved to be viable in stabilizing the SEI on Si for future high energy density lithium-ion batteries.

Authors:
ORCiD logo [1];  [2];  [3];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [2];  [2]; ORCiD logo [2];  [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Univ. of Tennessee, Knoxville, TN (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office; USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1785091
Alternate Identifier(s):
OSTI ID: 1797645
Report Number(s):
NREL/JA-5K00-80105
Journal ID: ISSN 2380-8195; MainId:42308;UUID:cb172aaa-621c-4240-9ef3-6db81d1e2d84;MainAdminID:24514
Grant/Contract Number:  
AC36-08GO28308; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; anodes; carbonation; electrolytes; energy dispersive spectroscopy; lithium-ion batteries; X-ray photoelectron spectroscopy

Citation Formats

Yang, Guang, Frisco, Sarah, Tao, Runming, Philip, Nathan, Bennett, Tyler H., Stetson, Caleb, Zhang, Ji-Guang, Han, Sang-Don, Teeter, Glenn, Harvey, Steven P., Zhang, Yunya, Veith, Gabriel M., and Nanda, Jagjit. Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes. United States: N. p., 2021. Web. doi:10.1021/acsenergylett.0c02629.
Yang, Guang, Frisco, Sarah, Tao, Runming, Philip, Nathan, Bennett, Tyler H., Stetson, Caleb, Zhang, Ji-Guang, Han, Sang-Don, Teeter, Glenn, Harvey, Steven P., Zhang, Yunya, Veith, Gabriel M., & Nanda, Jagjit. Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes. United States. https://doi.org/10.1021/acsenergylett.0c02629
Yang, Guang, Frisco, Sarah, Tao, Runming, Philip, Nathan, Bennett, Tyler H., Stetson, Caleb, Zhang, Ji-Guang, Han, Sang-Don, Teeter, Glenn, Harvey, Steven P., Zhang, Yunya, Veith, Gabriel M., and Nanda, Jagjit. Mon . "Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes". United States. https://doi.org/10.1021/acsenergylett.0c02629. https://www.osti.gov/servlets/purl/1785091.
@article{osti_1785091,
title = {Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes},
author = {Yang, Guang and Frisco, Sarah and Tao, Runming and Philip, Nathan and Bennett, Tyler H. and Stetson, Caleb and Zhang, Ji-Guang and Han, Sang-Don and Teeter, Glenn and Harvey, Steven P. and Zhang, Yunya and Veith, Gabriel M. and Nanda, Jagjit},
abstractNote = {Silicon (Si) is the most naturally abundant element possessing 10-fold greater theoretical capacity compared to that of graphite-based anodes. The practicality of implementing Si anodes is, however, limited by the unstable solid/electrolyte interphase (SEI) and anode fracturing during continuous lithiation/delithiation. We demonstrate that glyme-based electrolytes (GlyEls) ensure a conformal SEI on Si and keep the Si “fracture-free”. Benchmarking against the optimal, commonly used carbonate electrolyte with the fluoroethylene carbonate additive, the Si anode cycled in a GlyEl exhibits a reduced early parasitic current (by 62.5%) and interfacial resistance (by 72.8%), while cell capacity retention is promoted by >7% over the course of 110 cycles. A mechanistic investigation by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy indicates GlyEl enriches Si SEI with elastic polyether but diminishes its carbonate species. Glyme-based electrolytes proved to be viable in stabilizing the SEI on Si for future high energy density lithium-ion batteries.},
doi = {10.1021/acsenergylett.0c02629},
journal = {ACS Energy Letters},
number = 5,
volume = 6,
place = {United States},
year = {Mon Apr 05 00:00:00 EDT 2021},
month = {Mon Apr 05 00:00:00 EDT 2021}
}

Works referenced in this record:

Intrinsic Properties of Individual Inorganic Silicon–Electrolyte Interphase Constituents
journal, November 2019

  • Han, Sang-Don; Wood, Kevin N.; Stetson, Caleb
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 50
  • DOI: 10.1021/acsami.9b18252

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Role of 1,3-Dioxolane and LiNO 3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries
journal, January 2016

  • Jaumann, Tony; Balach, Juan; Klose, Markus
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.1011603jes

Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
journal, January 2010

  • Cheng, Yang-Tse; Verbrugge, Mark W.
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3298892

Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs
journal, November 2009

  • Yang, Jing; Liu, Hongwei; Martens, Wayde N.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 1
  • DOI: 10.1021/jp908548f

Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
journal, January 2018

  • Wu, Qingliu; Shi, Bing; Bareño, Javier
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13980

Electrochemically induced fractures in crystalline silicon anodes
journal, June 2019


Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation
journal, March 2012

  • Etacheri, Vinodkumar; Geiger, Uzi; Gofer, Yossi
  • Langmuir, Vol. 28, Issue 14
  • DOI: 10.1021/la300306v

Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
journal, January 2011

  • Li, Juchuan; Dozier, Alan K.; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3574027

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy
journal, July 2018

  • Jin, Yanting; Kneusels, Nis-Julian H.; Marbella, Lauren E.
  • Journal of the American Chemical Society, Vol. 140, Issue 31
  • DOI: 10.1021/jacs.8b03408

Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces
journal, December 2016

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpcc.6b10774

XPS study of diethyl carbonate adsorption on LiCoO2 thin films
journal, January 2013


Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes
journal, February 2020


Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
journal, January 2016

  • Ashuri, Maziar; He, Qianran; Shaw, Leon L.
  • Nanoscale, Vol. 8, Issue 1
  • DOI: 10.1039/C5NR05116A

Electrochemical Charge Transfer Reaction Kinetics at the Silicon-Liquid Electrolyte Interface
journal, January 2015

  • Swamy, Tushar; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0181513jes

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation
journal, January 2017

  • Yoon, Taeho; Chapman, Navid; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1421709jes

Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes
journal, April 2019


Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
journal, October 2006


Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials
journal, January 2019


Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Nonpassivated Silicon Anode Surface
journal, May 2020

  • Yin, Yanli; Arca, Elisabetta; Wang, Luning
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 23
  • DOI: 10.1021/acsami.0c03799

Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate
journal, October 2017

  • Jin, Yanting; Kneusels, Nis-Julian H.; Magusin, Pieter C. M. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b06834

Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries
journal, August 2018


XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part I. Investigation of Initial Surface Chemistry
journal, January 2018

  • Schulz, Natalia; Hausbrand, René; Dimesso, Lucangelo
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0061805jes

Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes
journal, June 2014

  • Li, Juchuan; Dudney, Nancy J.; Nanda, Jagjit
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5009419

Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions
journal, July 2019


Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries
journal, September 2017


The Role of Carbonate and Sulfite Additives in Propylene Carbonate-Based Electrolytes on the Formation of SEI Layers at Graphitic Li-Ion Battery Anodes
journal, January 2014

  • Bhatt, Mahesh Datt; O’Dwyer, Colm
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0931409jes

Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability
journal, July 2019


XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part II. SEI-Composition and Formation inside Composite Electrodes
journal, January 2018

  • Schulz, Natalia; Hausbrand, René; Wittich, Carolin
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0881803jes

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Distilling nanoscale heterogeneity of amorphous silicon using tip-enhanced Raman spectroscopy (TERS) via multiresolution manifold learning
journal, January 2021


Cracking mechanisms in lithiated silicon thin film electrodes
journal, November 2014


Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity
journal, September 2019


Mechanical Damage of Surface Films and Failure of Nano-Sized Silicon Electrodes in Lithium Ion Batteries
journal, October 2016

  • Lee, Jae Gil; Kim, Jongjung; Lee, Jeong Beom
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0141701jes

The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries
journal, September 2017


Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium
journal, December 2019

  • He, Mingfu; Guo, Rui; Hobold, Gustavo M.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 1
  • DOI: 10.1073/pnas.1911017116

Amorphous silicon anode for lithium-ion rechargeable batteries
journal, April 2003


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362