DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands

Abstract

Bimetallic motifs are a structural feature common to some of the most effective and synthetically useful catalysts known, including in the active sites of many metalloenzymes and on the surfaces of industrially relevant heterogeneous materials. However, the complexity of these systems often hampers detailed studies of their fundamental properties. To glean valuable mechanistic insight into how these catalysts function, this research group has prepared a family of dinucleating 1,8-naphthyridine ligands that bind two first-row transition metals in close proximity, originally designed to help mimic the proposed active site of metal oxide surfaces. Of the various bimetallic combinations examined, dicopper(I) is particularly versatile, as neutral bridging ligands adopt a variety of different binding modes depending on the configuration of frontier orbitals available to interact with the Cu centers. Organodicopper complexes are readily accessible, either through the traditional route of salt metathesis or via the activation of tetraarylborate anions through aryl group abstraction by a dicopper(I) unit. The resulting bridging aryl complexes engage in C-H bond activations, notably with terminal alkynes to afford bridging alkynyl species. In this work, the μ-hydrocarbyl complexes are surprisingly tolerant of water and elevated temperatures. This stability was leveraged to isolate a species that typically represents amore » fleeting intermediate in Cu-catalyzed azide-alkyne coupling (CuAAC); reaction of a bridging alkynyl complex with an organic azide afforded the first example of a well-defined, symmetrically bridged dicopper triazolide. This complex was shown to be an intermediate during CuAAC, providing support for a proposed bimetallic mechanism. These platforms are not limited to formally low oxidation states; chemical oxidation of the hydrocarbyl complexes cleanly results in formation of mixed valence CuICuII complexes with varying degrees of distortion in both the bridging moiety and the dicopper core. Higher oxidation states, e.g., dicopper(II), are easily accessed via oxidation of a dicopper(I) compound with air to give a CuII2(μ-OH)2 complex. Reduction of this compound with silanes resulted in the unexpected formation of pentametallic copper(I) dihydride clusters or trimetallic monohydride complexes, depending on the nature of the silane. Finally, development of an unsymmetrical naphthyridine ligand with mixed donor side-arms enables selective synthesis of an isostructural series of six heterobimetallic complexes, demonstrating the power of ligand design in the preparation of heterometallic assemblies.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH); Natural Sciences and Engineering Research Council of Canada (NSERC); Fulbright; Link Foundation; European Union’s Horizon 2020; National Science Foundation (NSF)
OSTI Identifier:
1782189
Grant/Contract Number:  
AC02-05CH11231; S10-RR027172; S10OD024998; S10OD023532; DGE 1106400
Resource Type:
Accepted Manuscript
Journal Name:
Accounts of Chemical Research
Additional Journal Information:
Journal Volume: 53; Journal Issue: 9; Journal ID: ISSN 0001-4842
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Hydrocarbons; Anions; Ligands; Catalysts; Bimetals

Citation Formats

Desnoyer, Addison N., Nicolay, Amélie, Rios, Pablo, Ziegler, Micah S., and Tilley, T. Don. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. United States: N. p., 2020. Web. doi:10.1021/acs.accounts.0c00382.
Desnoyer, Addison N., Nicolay, Amélie, Rios, Pablo, Ziegler, Micah S., & Tilley, T. Don. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. United States. https://doi.org/10.1021/acs.accounts.0c00382
Desnoyer, Addison N., Nicolay, Amélie, Rios, Pablo, Ziegler, Micah S., and Tilley, T. Don. Wed . "Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands". United States. https://doi.org/10.1021/acs.accounts.0c00382. https://www.osti.gov/servlets/purl/1782189.
@article{osti_1782189,
title = {Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands},
author = {Desnoyer, Addison N. and Nicolay, Amélie and Rios, Pablo and Ziegler, Micah S. and Tilley, T. Don},
abstractNote = {Bimetallic motifs are a structural feature common to some of the most effective and synthetically useful catalysts known, including in the active sites of many metalloenzymes and on the surfaces of industrially relevant heterogeneous materials. However, the complexity of these systems often hampers detailed studies of their fundamental properties. To glean valuable mechanistic insight into how these catalysts function, this research group has prepared a family of dinucleating 1,8-naphthyridine ligands that bind two first-row transition metals in close proximity, originally designed to help mimic the proposed active site of metal oxide surfaces. Of the various bimetallic combinations examined, dicopper(I) is particularly versatile, as neutral bridging ligands adopt a variety of different binding modes depending on the configuration of frontier orbitals available to interact with the Cu centers. Organodicopper complexes are readily accessible, either through the traditional route of salt metathesis or via the activation of tetraarylborate anions through aryl group abstraction by a dicopper(I) unit. The resulting bridging aryl complexes engage in C-H bond activations, notably with terminal alkynes to afford bridging alkynyl species. In this work, the μ-hydrocarbyl complexes are surprisingly tolerant of water and elevated temperatures. This stability was leveraged to isolate a species that typically represents a fleeting intermediate in Cu-catalyzed azide-alkyne coupling (CuAAC); reaction of a bridging alkynyl complex with an organic azide afforded the first example of a well-defined, symmetrically bridged dicopper triazolide. This complex was shown to be an intermediate during CuAAC, providing support for a proposed bimetallic mechanism. These platforms are not limited to formally low oxidation states; chemical oxidation of the hydrocarbyl complexes cleanly results in formation of mixed valence CuICuII complexes with varying degrees of distortion in both the bridging moiety and the dicopper core. Higher oxidation states, e.g., dicopper(II), are easily accessed via oxidation of a dicopper(I) compound with air to give a CuII2(μ-OH)2 complex. Reduction of this compound with silanes resulted in the unexpected formation of pentametallic copper(I) dihydride clusters or trimetallic monohydride complexes, depending on the nature of the silane. Finally, development of an unsymmetrical naphthyridine ligand with mixed donor side-arms enables selective synthesis of an isostructural series of six heterobimetallic complexes, demonstrating the power of ligand design in the preparation of heterometallic assemblies.},
doi = {10.1021/acs.accounts.0c00382},
journal = {Accounts of Chemical Research},
number = 9,
volume = 53,
place = {United States},
year = {Wed Sep 02 00:00:00 EDT 2020},
month = {Wed Sep 02 00:00:00 EDT 2020}
}

Works referenced in this record:

Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand
journal, October 2014

  • Zhou, You-Yun; Hartline, Douglas R.; Steiman, Talia J.
  • Inorganic Chemistry, Vol. 53, Issue 21
  • DOI: 10.1021/ic5020785

Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis
journal, August 2011

  • Gunanathan, Chidambaram; Milstein, David
  • Accounts of Chemical Research, Vol. 44, Issue 8
  • DOI: 10.1021/ar2000265

A convenient, efficient method for conjugate reductions using catalytic quantities of Cu(I)
journal, June 1998


Metal-Ligand Cooperation on a Diruthenium Platform: Selective Imine Formation through Acceptorless Dehydrogenative Coupling of Alcohols with Amines
journal, April 2014

  • Saha, Biswajit; Wahidur Rahaman, S. M.; Daw, Prosenjit
  • Chemistry - A European Journal, Vol. 20, Issue 21
  • DOI: 10.1002/chem.201304403

Metal–metal cooperative bond activation by heterobimetallic alkyl, aryl, and acetylide Pt II /Cu I complexes
journal, January 2020

  • Deolka, Shubham; Rivada-Wheelaghan, Orestes; Aristizábal, Sandra L.
  • Chemical Science, Vol. 11, Issue 21
  • DOI: 10.1039/D0SC00646G

Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides
journal, March 2020

  • Deacy, Arron C.; Kilpatrick, Alexander F. R.; Regoutz, Anna
  • Nature Chemistry, Vol. 12, Issue 4
  • DOI: 10.1038/s41557-020-0450-3

Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition
journal, April 2017

  • Ziegler, Micah S.; Lakshmi, K. V.; Tilley, T. Don
  • Journal of the American Chemical Society, Vol. 139, Issue 15
  • DOI: 10.1021/jacs.6b13261

Dynamic Pd II /Cu I Multimetallic Assemblies as Molecular Models to Study Metal–Metal Cooperation in Sonogashira Coupling
journal, September 2020

  • Rivada‐Wheelaghan, Orestes; Comas‐Vives, Aleix; Fayzullin, Robert R.
  • Chemistry – A European Journal, Vol. 26, Issue 53
  • DOI: 10.1002/chem.202002013

Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
journal, February 2014

  • Zhang, Miao; de Respinis, Moreno; Frei, Heinz
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1874

A Short Copper-Copper Distance in a (μ-1,2-Peroxo)dicopper(II) Complex Having a 1,8-Naphthyridine Unit as an Additional Bridge
journal, April 2001


A Chiral Naphthyridine Diimine Ligand Enables Nickel‐Catalyzed Asymmetric Alkylidenecyclopropanations
journal, July 2020

  • Braconi, Elena; Cramer, Nicolai
  • Angewandte Chemie International Edition, Vol. 59, Issue 38
  • DOI: 10.1002/anie.202006082

Synthetic Analogues of the Active Sites of Iron−Sulfur Proteins
journal, October 2003

  • Venkateswara Rao, P.; Holm, R. H.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020615+

Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex
journal, January 2020

  • Nicolay, Amélie; Ziegler, Micah S.; Small, David W.
  • Chemical Science, Vol. 11, Issue 6
  • DOI: 10.1039/C9SC05835D

Structure of a unique binuclear manganese cluster in arginase
journal, October 1996

  • Kanyo, Zoltan F.; Scolnick, Laura R.; Ash, David E.
  • Nature, Vol. 383, Issue 6600
  • DOI: 10.1038/383554a0

Ligand effects on the structure, mixed-valence sites and magnetic properties of novel pentanickel string complexes
journal, January 2019

  • Chiu, Cheng-Chang; Lee, Gene-Hsiang; Lin, Tien-Sung
  • Dalton Transactions, Vol. 48, Issue 23
  • DOI: 10.1039/C9DT01363F

Room temperature C–H bond activation on a [PdI–PdI] platform
journal, January 2013

  • Sarkar, Mithun; Doucet, Henri; Bera, Jitendra K.
  • Chemical Communications, Vol. 49, Issue 84
  • DOI: 10.1039/c3cc44493g

Binuclear Copper Complexes and Their Catalytic Evaluation
journal, February 2012

  • Das, Raj K.; Sarkar, Mithun; Wahidur Rahaman, S. M.
  • European Journal of Inorganic Chemistry, Vol. 2012, Issue 10
  • DOI: 10.1002/ejic.201101283

1,8‐Naphthyridine Revisited: Applications in Dimetal Chemistry
journal, September 2009

  • Bera, Jitendra K.; Sadhukhan, Nabanita; Majumdar, Moumita
  • European Journal of Inorganic Chemistry, Vol. 2009, Issue 27
  • DOI: 10.1002/ejic.200900312

Cuprophilic Interactions in and between Molecular Entities
journal, May 2019

  • Harisomayajula, N. V. Satyachand; Makovetskyi, Serhii; Tsai, Yi‐Chou
  • Chemistry – A European Journal, Vol. 25, Issue 38
  • DOI: 10.1002/chem.201900332

Dinuclear first-row transition metal complexes with a naphthyridine-based dinucleating ligand
journal, January 2015

  • Davenport, T. C.; Tilley, T. D.
  • Dalton Transactions, Vol. 44, Issue 27
  • DOI: 10.1039/C4DT02727B

Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity
journal, June 2016


Understanding C–H Bond Activation on a Diruthenium(I) Platform
journal, December 2012

  • Sinha, Arup; Majumdar, Moumita; Sarkar, Mithun
  • Organometallics, Vol. 32, Issue 1
  • DOI: 10.1021/om301228h

Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation
journal, March 2018

  • Zhao, Yanyan; Yang, Ke R.; Wang, Zechao
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 12
  • DOI: 10.1073/pnas.1722137115

The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds
journal, January 2012

  • Green, Jennifer C.; Green, Malcolm L. H.; Parkin, Gerard
  • Chemical Communications, Vol. 48, Issue 94
  • DOI: 10.1039/c2cc35304k

A Bimetallic Hydroformylation Catalyst: High Regioselectivity and Reactivity Through Homobimetallic Cooperativity
journal, June 1993


MoMo Quadruple Bonds Bridged by 1,8-Naphthyridinyl-2,7-Dioxide: an Insight into the Nature of a Parallel-Linked Stiff-Chain Polymer:
journal, July 1991

  • Cayton, Roger H.; Chisholm, Malcolm H.; Huffman, John C.
  • Angewandte Chemie International Edition in English, Vol. 30, Issue 7
  • DOI: 10.1002/anie.199108621

Crescent-shaped dinuclear complexes: a dirhodium(II) complex of the new tetradentate ligand 2,7-bis(2-pyridyl)-1,8-naphthyridine (bpnp), [Rh2(bpnp)(.mu.-CH3CO2)3](PF6)
journal, March 1983

  • Tikkanen, Wayne R.; Binamira-Soriaga, E.; Kaska, William C.
  • Inorganic Chemistry, Vol. 22, Issue 7
  • DOI: 10.1021/ic00149a031

Dicopper Alkyl Complexes: Synthesis, Structure, and Unexpected Persistence
journal, August 2018


Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution
journal, December 2002

  • Dobbek, H.; Gremer, L.; Kiefersauer, R.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 25
  • DOI: 10.1073/pnas.212640899

Metal-assisted hydroformylation on a SiO2-attached rhodium dimer. In situ EXAFS and FT-IR observations of the dynamic behaviors of the dimer site
journal, December 1990

  • Asakura, Kiyotaka; Kitamura-Bando, Kyoko; Iwasawa, Yasuhiro
  • Journal of the American Chemical Society, Vol. 112, Issue 25
  • DOI: 10.1021/ja00181a010

Modeling Carboxylate-Bridged Dinuclear Active Sites in Metalloenzymes Using a Novel Naphthyridine-Based Dinucleating Ligand
journal, January 2000

  • He, Chuan; Lippard, Stephen J.
  • Journal of the American Chemical Society, Vol. 122, Issue 1
  • DOI: 10.1021/ja993125g

A molecular catalyst for water oxidation that binds to metal oxide surfaces
journal, March 2015

  • Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7469

Catalytic Applications of Early/Late Heterobimetallic Complexes
journal, January 2012


Tuning the Bonding of a μ-Mesityl Ligand on Dicopper(I) through a Proton-Responsive Expanded PNNP Pincer Ligand
journal, February 2020


Photoelectron spectra of the phospha-alkynes: 3,3-dimethyl-1-phosphabutyne Bu t CP and phenylphosphaethyne, PhCP
journal, January 1983

  • Laurent, James C. T. R. Burckett-St.; King, Michael A.; Kroto, Harold W.
  • J. Chem. Soc., Dalton Trans., Issue 4
  • DOI: 10.1039/DT9830000755

Catechol oxidase — structure and activity
journal, December 1999

  • Eicken, Christoph; Krebs, Bernt; Sacchettini, James C.
  • Current Opinion in Structural Biology, Vol. 9, Issue 6
  • DOI: 10.1016/S0959-440X(99)00029-9

Structural and Functional Aspects of Metal Sites in Biology
journal, January 1996

  • Holm, Richard H.; Kennepohl, Pierre; Solomon, Edward I.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr9500390

µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses
journal, January 2007


Mechanistic Insights into the Copper-Cocatalyzed Sonogashira Cross-Coupling Reaction: Key Role of an Anion
journal, February 2017


Aerobic oxidative coupling of alcohols and amines towards imine formation by a dicopper(I,I) catalyst
journal, November 2017


Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations
journal, June 2015

  • Pal, Sudipta; Uyeda, Christopher
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04990

A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride
journal, July 2016

  • Zhang, Shiyu; Fallah, Hengameh; Gardner, Evan J.
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603970

Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex
journal, February 2018

  • Powers, Ian G.; Andjaba, John M.; Luo, Xuyi
  • Journal of the American Chemical Society, Vol. 140, Issue 11
  • DOI: 10.1021/jacs.8b00503

Uses of Cobalt-Carbonyl Acetylene Complexes in Organic Synthesis?
journal, November 1977


Controlled and Reversible Stepwise Growth of Linear Copper(I) Chains Enabled by Dynamic Ligand Scaffolds
journal, November 2017

  • Rivada-Wheelaghan, Orestes; Aristizábal, Sandra L.; López-Serrano, Joaquín
  • Angewandte Chemie International Edition, Vol. 56, Issue 51
  • DOI: 10.1002/anie.201709167

Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts
journal, March 2016

  • Ullman, Andrew M.; Brodsky, Casey N.; Li, Nancy
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00762

Fluorinated Anions Promoted “on Water” Activity of Di- and Tetranuclear Copper(I) Catalysts for Functional Triazole Synthesis
journal, May 2015


Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions
journal, January 2012

  • Lyaskovskyy, Volodymyr; de Bruin, Bas
  • ACS Catalysis, Vol. 2, Issue 2
  • DOI: 10.1021/cs200660v

Principles of Mononucleating and Binucleating Ligand Design
journal, February 2004

  • Gavrilova, Anna L.; Bosnich, Brice
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020604g

Low-temperature (163 K) structure of 1,8-naphthyridine, C8H6N2
journal, May 1984

  • Dapporto, P.; Ghilardi, C. A.; Mealli, C.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 40, Issue 5
  • DOI: 10.1107/S0108270184006144

Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions
journal, April 2013


Chiral bisoxazoline ligands designed to stabilize bimetallic complexes
journal, January 2018

  • Das, Deepankar; Mal, Rudrajit; Mittal, Nisha
  • Beilstein Journal of Organic Chemistry, Vol. 14
  • DOI: 10.3762/bjoc.14.175

Structure and Valency of a Cobalt−Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy
journal, October 2010

  • Kanan, Matthew W.; Yano, Junko; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 132, Issue 39
  • DOI: 10.1021/ja1023767

A [Cu 2 O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol
journal, October 2009

  • Woertink, Julia S.; Smeets, Pieter J.; Groothaert, Marijke H.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 45
  • DOI: 10.1073/pnas.0910461106

Bimetallic catalysis for C–C and C–X coupling reactions
journal, January 2017

  • Pye, Dominic R.; Mankad, Neal P.
  • Chemical Science, Vol. 8, Issue 3
  • DOI: 10.1039/C6SC05556G

Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes
journal, May 2016

  • Ziegler, Micah S.; Levine, Daniel S.; Lakshmi, K. V.
  • Journal of the American Chemical Society, Vol. 138, Issue 20
  • DOI: 10.1021/jacs.6b00802

E -Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis
journal, November 2015

  • Karunananda, Malkanthi K.; Mankad, Neal P.
  • Journal of the American Chemical Society, Vol. 137, Issue 46
  • DOI: 10.1021/jacs.5b10357

Construction of copper chains with new fluorescent guanidino-functionalized naphthyridine ligands
journal, January 2016

  • Krämer, Christoph; Leingang, Simone; Hübner, Olaf
  • Dalton Transactions, Vol. 45, Issue 42
  • DOI: 10.1039/C6DT03166H

Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes
journal, February 2019


Crystal Structure of a Carbon Monoxide Dehydrogenase Reveals a [Ni-4Fe-5S] Cluster
journal, August 2001


Bonding and Reactivity of a μ-Hydrido Dicopper Cation
journal, October 2013

  • Wyss, Chelsea M.; Tate, Brandon K.; Bacsa, John
  • Angewandte Chemie International Edition, Vol. 52, Issue 49
  • DOI: 10.1002/anie.201306736

Metal–metal multiple bonding in C3-symmetric bimetallic complexes of the first row transition metals
journal, January 2014

  • Krogman, Jeremy P.; Thomas, Christine M.
  • Chemical Communications, Vol. 50, Issue 40
  • DOI: 10.1039/c3cc47537a

Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site
journal, June 1995


Cooperative H 2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded PNNP Pincer” Ligand
journal, September 2019

  • Kounalis, Errikos; Lutz, Martin; Broere, Daniël L. J.
  • Chemistry – A European Journal, Vol. 25, Issue 58
  • DOI: 10.1002/chem.201903724

Diiron Complexes of 1,8-Naphthyridine-Based Dinucleating Ligands as Models for Hemerythrin
journal, December 2000

  • He, Chuan; Barrios, Amy M.; Lee, Dongwhan
  • Journal of the American Chemical Society, Vol. 122, Issue 51
  • DOI: 10.1021/ja0026861

A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes
journal, May 2020

  • Desnoyer, Addison N.; Nicolay, Amélie; Ziegler, Micah S.
  • Angewandte Chemie International Edition, Vol. 59, Issue 31
  • DOI: 10.1002/anie.202004346

Dinucleating Naphthyridine-Based Ligand for Assembly of Bridged Dicopper(I) Centers: Three-Center Two-Electron Bonding Involving an Acetonitrile Donor
journal, October 2011

  • Davenport, Timothy C.; Tilley, T. Don
  • Angewandte Chemie International Edition, Vol. 50, Issue 51
  • DOI: 10.1002/anie.201106081

Configuring Bonds between First-Row Transition Metals
journal, October 2015


Well‐Defined Models for the Elusive Dinuclear Intermediates of the Pauson–Khand Reaction
journal, April 2016

  • Hartline, Douglas R.; Zeller, Matthias; Uyeda, Christopher
  • Angewandte Chemie International Edition, Vol. 55, Issue 20
  • DOI: 10.1002/anie.201601784

Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes
journal, January 2014

  • Matsunaga, Shigeki; Shibasaki, Masakatsu
  • Chem. Commun., Vol. 50, Issue 9
  • DOI: 10.1039/C3CC47587E

Copper(I)-Containing Ionic Liquids for High-Rate Electrodeposition
journal, March 2011

  • Brooks, Neil R.; Schaltin, Stijn; Van Hecke, Kristof
  • Chemistry - A European Journal, Vol. 17, Issue 18
  • DOI: 10.1002/chem.201003209

Reversible Substrate Activation and Catalysis at an Intact Metal–Metal Bond Using a Redox-Active Supporting Ligand
journal, May 2015

  • Steiman, Talia J.; Uyeda, Christopher
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b03092

Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate
journal, March 2020

  • Liu, Tianchang; Gau, Michael R.; Tomson, Neil C.
  • Journal of the American Chemical Society, Vol. 142, Issue 18
  • DOI: 10.1021/jacs.0c01861

End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO 3 for Solar Water Oxidation
journal, July 2018


Stille Coupling Made Easier—The Synergic Effect of Copper(I) Salts and the Fluoride Ion
journal, February 2004

  • Mee, Simon P. H.; Lee, Victor; Baldwin, Jack E.
  • Angewandte Chemie International Edition, Vol. 43, Issue 9
  • DOI: 10.1002/anie.200352979

Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform
journal, February 2016


Design and Synthesis of Multidentate Dinucleating Ligands Based on 1,8-Naphthyridine
journal, October 2000


A molecular structural analog of proposed dinuclear active sites in cobalt-based water oxidation catalysts
journal, January 2014

  • Davenport, Timothy C.; Ahn, Hyun S.; Ziegler, Micah S.
  • Chemical Communications, Vol. 50, Issue 48
  • DOI: 10.1039/c3cc46865h

Electrocatalytic Water Oxidation by a Dinuclear Copper Complex in a Neutral Aqueous Solution
journal, February 2015

  • Su, Xiao-Jun; Gao, Meng; Jiao, Lei
  • Angewandte Chemie International Edition, Vol. 54, Issue 16
  • DOI: 10.1002/anie.201411625

Silver(I) coordination polymers from dinucleating naphthyridine ligands
journal, March 2019


Room-Temperature Characterization of a Mixed-Valent μ-Hydroxodicopper(II,III) Complex
journal, August 2016


A tale of two methane monooxygenases
journal, November 2016

  • Ross, Matthew O.; Rosenzweig, Amy C.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 22, Issue 2-3
  • DOI: 10.1007/s00775-016-1419-y

Structure Sensitivity of the Oxygen Evolution Reaction Catalyzed by Cobalt(II,III) Oxide
journal, November 2015

  • Plaisance, Craig P.; van Santen, Rutger A.
  • Journal of the American Chemical Society, Vol. 137, Issue 46
  • DOI: 10.1021/jacs.5b07779

Synthesis, characterization, and x-ray molecular structures of mono- and dinuclear copper complexes with 2,7-bis(2-pyridyl)-1,8-naphthyridine
journal, October 1984

  • Tikkanen, Wayne R.; Krueger, Carl; Bomben, Kenneth D.
  • Inorganic Chemistry, Vol. 23, Issue 22
  • DOI: 10.1021/ic00190a041