DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo

Abstract

We measure the electrical resistivity of hcp iron up to ~170 GPa and ~3000 K using a four-probe van der Pauw method coupled with homogeneous flattop laser heating in a DAC, and compute its electrical and thermal conductivity by first-principles molecular dynamics including electron-phonon and electron-electron scattering. We find that the measured resistivity of hcp iron increases almost linearly with temperature, and is consistent with our computations. Overall, the results constrain the resistivity and thermal conductivity of hcp iron to ~80±5 μΩ cm and ~100±10 W m-1 K-1, respectively, at conditions near the core-mantle boundary. Our results indicate an adiabatic heat flow of ~10±1 TW out of the core, supporting a present-day geodynamo driven by thermal and compositional convection.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [5]
  1. Sichuan Univ., Chengdu (China). Inst. of Atomic & Molecular Physics; Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai (China)
  2. Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  3. Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai (China)
  4. Univ. of Chicago, IL (United States). Center for Advanced Radiation Sources (CARS)
  5. Carnegie Inst. of Science, Washington, DC (United States). Earth and Planets Lab., Extreme Materials Initiative
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1782157
Grant/Contract Number:  
AC02-05CH11231; 41804082; EAR-1901813; EAR-1901801; EAR-1634415; FG02-94ER1446
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 125; Journal Issue: 7; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Earth's interior; electrical conductivity; electron thermal conductivity; geomagnetism; transition metals; Boltzmann theory; DFT+DMFT; pressure techniques; resistivity measurements; x-ray diffraction

Citation Formats

Zhang, Youjun, Hou, Mingqiang, Liu, Guangtao, Zhang, Chengwei, Prakapenka, Vitali B, Greenberg, Eran, Fei, Yingwei, Cohen, R.  E., and Lin, Jung-Fu. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. United States: N. p., 2020. Web. doi:10.1103/physrevlett.125.078501.
Zhang, Youjun, Hou, Mingqiang, Liu, Guangtao, Zhang, Chengwei, Prakapenka, Vitali B, Greenberg, Eran, Fei, Yingwei, Cohen, R.  E., & Lin, Jung-Fu. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. United States. https://doi.org/10.1103/physrevlett.125.078501
Zhang, Youjun, Hou, Mingqiang, Liu, Guangtao, Zhang, Chengwei, Prakapenka, Vitali B, Greenberg, Eran, Fei, Yingwei, Cohen, R.  E., and Lin, Jung-Fu. Thu . "Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo". United States. https://doi.org/10.1103/physrevlett.125.078501. https://www.osti.gov/servlets/purl/1782157.
@article{osti_1782157,
title = {Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo},
author = {Zhang, Youjun and Hou, Mingqiang and Liu, Guangtao and Zhang, Chengwei and Prakapenka, Vitali B and Greenberg, Eran and Fei, Yingwei and Cohen, R.  E. and Lin, Jung-Fu},
abstractNote = {We measure the electrical resistivity of hcp iron up to ~170 GPa and ~3000 K using a four-probe van der Pauw method coupled with homogeneous flattop laser heating in a DAC, and compute its electrical and thermal conductivity by first-principles molecular dynamics including electron-phonon and electron-electron scattering. We find that the measured resistivity of hcp iron increases almost linearly with temperature, and is consistent with our computations. Overall, the results constrain the resistivity and thermal conductivity of hcp iron to ~80±5 μΩ cm and ~100±10 W m-1 K-1, respectively, at conditions near the core-mantle boundary. Our results indicate an adiabatic heat flow of ~10±1 TW out of the core, supporting a present-day geodynamo driven by thermal and compositional convection.},
doi = {10.1103/physrevlett.125.078501},
journal = {Physical Review Letters},
number = 7,
volume = 125,
place = {United States},
year = {Thu Aug 13 00:00:00 EDT 2020},
month = {Thu Aug 13 00:00:00 EDT 2020}
}

Works referenced in this record:

Thermal equation of state of hcp-iron: Constraint on the density deficit of Earth's solid inner core: THERMAL EQUATION OF STATE OF HCP-IRON
journal, July 2016

  • Fei, Yingwei; Murphy, Caitlin; Shibazaki, Yuki
  • Geophysical Research Letters, Vol. 43, Issue 13
  • DOI: 10.1002/2016GL069456

Electrical resistivity of liquid Fe to 12 GPa: Implications for heat flow in cores of terrestrial bodies
journal, July 2018


The New Core Paradox
journal, October 2013


Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago
journal, March 2010


An Experimental Examination of Thermal Conductivity Anisotropy in hcp Iron
journal, November 2018


Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary
journal, February 2018

  • Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 2
  • DOI: 10.1002/2017JB014723

Resistivity saturation of hcp Fe-Si alloys in an internally heated diamond anvil cell: A key to assessing the Earth's core conductivity
journal, August 2020


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Thermal and electrical conductivity of iron at Earth’s core conditions
journal, April 2012

  • Pozzo, Monica; Davies, Chris; Gubbins, David
  • Nature, Vol. 485, Issue 7398
  • DOI: 10.1038/nature11031

Core–mantle boundary heat flow
journal, January 2008

  • Lay, Thorne; Hernlund, John; Buffett, Bruce A.
  • Nature Geoscience, Vol. 1, Issue 1
  • DOI: 10.1038/ngeo.2007.44

High-temperature electrical resistivity measurements of hcp iron to Mbar pressure in an internally resistive heated diamond anvil cell
journal, October 2019


Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data: FLUX REPRESENTATION FOR CO
journal, November 2011

  • Wu, Lin; Bocquet, Marc; Lauvaux, Thomas
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D21
  • DOI: 10.1029/2011JD016198

Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure: TRANSPORT PROPERTIES OF Fe AND Fe-Si
journal, October 2013

  • Seagle, Christopher T.; Cottrell, Elizabeth; Fei, Yingwei
  • Geophysical Research Letters, Vol. 40, Issue 20
  • DOI: 10.1002/2013GL057930

Thermal Conductivity and Electrical Resistivity of Solid Iron at Earth’s Core Conditions from First Principles
journal, August 2018


A numerical analysis of various cross sheet resistor test structures
journal, January 1977


Geodynamo Conductivity Limits
journal, July 2019

  • Driscoll, Peter E.; Du, Zhixue
  • Geophysical Research Letters, Vol. 46, Issue 14
  • DOI: 10.1029/2019GL082915

The plastic deformation of iron at pressures of the Earth's inner core
journal, June 2000

  • Wenk, H. -R.; Matthies, S.; Hemley, R. J.
  • Nature, Vol. 405, Issue 6790
  • DOI: 10.1038/35016558

Ioffe-Regel criterion and resistivity of metals
journal, December 1981


Electron–electron scattering and thermal conductivity of ϵ -iron at Earth’s core conditions
journal, July 2017


A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance
journal, April 2007


Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite
journal, July 2017

  • Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo
  • Journal of Geophysical Research: Solid Earth, Vol. 122, Issue 7
  • DOI: 10.1002/2017JB014339

Analytical model for solidification of the Earth's core
journal, March 1992

  • Buffett, Bruce A.; Huppert, Herbert E.; Lister, John R.
  • Nature, Vol. 356, Issue 6367
  • DOI: 10.1038/356329a0

Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core
journal, February 2012

  • de Koker, N.; Steinle-Neumann, G.; Vlcek, V.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 11
  • DOI: 10.1073/pnas.1111841109

Powering Earth’s dynamo with magnesium precipitation from the core
journal, January 2016

  • O’Rourke, Joseph G.; Stevenson, David J.
  • Nature, Vol. 529, Issue 7586
  • DOI: 10.1038/nature16495

Electronic structure calculations with dynamical mean-field theory
journal, August 2006


Thermal conductivity of hcp iron at high pressure and temperature
journal, March 2011


Incoherent charge dynamics of La 2 x Sr x CuO 4 : Dynamical localization and resistivity saturation
journal, October 2003


The high conductivity of iron and thermal evolution of the Earth’s core
journal, November 2013


Transport properties of iron at Earth's core conditions: The effect of spin disorder
journal, July 2017


Electrical resistivity at large temperatures: Saturation and lack thereof
journal, November 2002


High pressure and temperature electrical resistivity of iron and implications for planetary cores: HIGH PRESSURE AND TEMPERATURE ELECTRICAL RESISTIVITY
journal, January 2013

  • Deng, Liwei; Seagle, Christopher; Fei, Yingwei
  • Geophysical Research Letters, Vol. 40, Issue 1
  • DOI: 10.1029/2012GL054347

Pseudopotentials for high-throughput DFT calculations
journal, January 2014


Transport properties in correlated systems: An analytical model
journal, October 2005


Electronic thermal conductivity at high temperatures: Violation of the Wiedemann-Franz law in narrow-band metals
journal, December 2006


Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics
journal, April 2018

  • Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 16
  • DOI: 10.1073/pnas.1718557115

Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary
journal, October 2012

  • Ohta, Kenji; Yagi, Takashi; Taketoshi, Naoyuki
  • Earth and Planetary Science Letters, Vol. 349-350
  • DOI: 10.1016/j.epsl.2012.06.043

Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core
journal, December 1998

  • Mao, Ho-kwang; Shu, Jinfu; Shen, Guoyin
  • Nature, Vol. 396, Issue 6713
  • DOI: 10.1038/25506

Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
journal, October 2015

  • Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.
  • Nature, Vol. 526, Issue 7572
  • DOI: 10.1038/nature15523

An Experimental Study of Various Cross Sheet Resistor Test Structures
journal, January 1978

  • Buehler, Martin G.
  • Journal of The Electrochemical Society, Vol. 125, Issue 4
  • DOI: 10.1149/1.2131516

Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number
journal, April 2017


Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity
journal, January 2019


Thermal conductivity of ferropericlase in the Earth's lower mantle
journal, May 2017


Thermal evolution of the core with a high thermal conductivity
journal, October 2015


Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium
journal, September 2008


Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: Chemically-induced resistivity saturation in the Earth's core
journal, October 2016


Advances in geodynamo modelling
journal, March 2019


Colloquium : Saturation of electrical resistivity
journal, October 2003


Shear wave anisotropy of textured hcp-Fe in the Earth's inner core
journal, October 2010


Transport properties for liquid silicon-oxygen-iron mixtures at Earth's core conditions
journal, January 2013


Experimental constraints on light elements in the Earth’s outer core
journal, March 2016

  • Zhang, Youjun; Sekine, Toshimori; He, Hongliang
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22473

Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements
journal, July 2019

  • Hasegawa, Akira; Yagi, Takashi; Ohta, Kenji
  • Review of Scientific Instruments, Vol. 90, Issue 7
  • DOI: 10.1063/1.5093343

Electrical conductivity of iron under shock compression up to 200 GPa
journal, October 2002


Quasihydrostatic Equation of State of Iron above 2 Mbar
journal, November 2006


The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties
journal, May 2018


Electrical Resistivity of Fe‐C Alloy at High Pressure: Effects of Carbon as a Light Element on the Thermal Conductivity of the Earth's Core
journal, May 2018

  • Zhang, Chengwei; Lin, Jung‐Fu; Liu, Ying
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 5
  • DOI: 10.1029/2017JB015260

Composition and State of the Core
journal, May 2013


Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle
journal, November 2012

  • Haigis, Volker; Salanne, Mathieu; Jahn, Sandro
  • Earth and Planetary Science Letters, Vol. 355-356
  • DOI: 10.1016/j.epsl.2012.09.002

Constraints from material properties on the dynamics and evolution of Earth’s core
journal, August 2015

  • Davies, Christopher; Pozzo, Monica; Gubbins, David
  • Nature Geoscience, Vol. 8, Issue 9
  • DOI: 10.1038/ngeo2492

On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity
journal, November 2014


Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996

  • Georges, Antoine; Kotliar, Gabriel; Krauth, Werner
  • Reviews of Modern Physics, Vol. 68, Issue 1
  • DOI: 10.1103/RevModPhys.68.13

How much potassium is in the Earth's core? New insights from partitioning experiments
journal, April 2007

  • Corgne, Alexandre; Keshav, Shantanu; Fei, Yingwei
  • Earth and Planetary Science Letters, Vol. 256, Issue 3-4
  • DOI: 10.1016/j.epsl.2007.02.012

Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core
journal, October 2011

  • Manthilake, G. M.; de Koker, N.; Frost, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 44
  • DOI: 10.1073/pnas.1110594108

Earth's core problem
journal, June 2016


Inner Workings: Diamond anvils probe the origins of Earth’s magnetic field
journal, February 2017


Preliminary reference Earth model
journal, June 1981


Direct measurement of thermal conductivity in solid iron at planetary core conditions
journal, June 2016

  • Konôpková, Zuzana; McWilliams, R. Stewart; Gómez-Pérez, Natalia
  • Nature, Vol. 534, Issue 7605
  • DOI: 10.1038/nature18009

Experimental determination of the electrical resistivity of iron at Earth’s core conditions
journal, June 2016

  • Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei
  • Nature, Vol. 534, Issue 7605
  • DOI: 10.1038/nature17957

Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


The Iron Invariance: Implications for Thermal Convection in Earth's Core
journal, October 2019

  • Yong, Wenjun; Secco, Richard A.; Littleton, Joshua A. H.
  • Geophysical Research Letters, Vol. 46, Issue 20
  • DOI: 10.1029/2019GL084485

Influence of sulfur on the electrical resistivity of a crystallizing core in small terrestrial bodies
journal, August 2018


Lowermost mantle thermal conductivity constrained from experimental data and tomographic models
journal, May 2019

  • Deschamps, Frédéric; Hsieh, Wen-Pin
  • Geophysical Journal International, Vol. 219, Issue Supplement_1
  • DOI: 10.1093/gji/ggz231

Thermal and electrical conductivity of solid iron and iron–silicon mixtures at Earth's core conditions
journal, May 2014


New method for solving Boltzmann's equation for electrons in metals
journal, May 1978


Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions
journal, August 2001


Electrical conductivity, demagnetization, and the high-pressure phase transition in shock-compressed iron
journal, February 1969


The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa
journal, January 1989


Advances in geodynamo modelling
journal, March 2019


High-temperature electrical resistivity measurements of hcp iron to Mbar pressure in an internally resistive heated diamond anvil cell
journal, October 2019


Electronic correlations in dense iron: from moderate pressure to Earth’s core conditions
journal, July 2019


Transport properties of iron at the Earth's core conditions: the effect of spin disorder
text, January 2017