DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores

Abstract

Ru-based oxygen evolution reaction (OER) catalysts show significant promise for efficient water electrolysis, but rapid degradation poses a major challenge for commercial applications. In this work, we explore several Ru-based pyrochlores (A2Ru2O7, A = Y, Nd, Gd, Bi) as OER catalysts and demonstrate improved activity and stability of catalytic Ru sites relative to RuO2. Furthermore, we combine complementary experimental and theoretical analysis to understand how the A-site element impacts activity and stability under acidic OER conditions. Among the A2Ru2O7 studied herein, we find that a longer Ru–O bond and a weaker interaction of the Ru 4d and O 2p orbitals compared with RuO2 results in enhanced initial activity. We observe that the OER activity of the catalysts changes over time and is accompanied by both A-site and Ru dissolution at different relative rates depending on the identity of the A-site. Pourbaix diagrams constructed using density functional theory (DFT) calculations reveal a driving force for this experimentally observed dissolution, indicating that all compositions studied herein are thermodynamically unstable in acidic OER conditions. Theoretical activity predictions show consistent trends between A-site cation leaching and OER activity. These trends coupled with Bader charge analysis suggest that dissolution exposes highly oxidized Ru sites thatmore » exhibit enhanced activity. Overall, using the stability number (molO2 evolved/molRu dissolved) as a comparative metric, the A2Ru2O7 materials studied in this work show substantially greater stability than a standard RuO2 and commensurate stability to some Ir mixed metal oxides. Finally, the insights described herein provide a pathway to enhanced Ru catalyst activity and durability, ultimately improving the efficiency of water electrolyzers.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [5]
  1. Stanford Univ., CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Technical Univ. of Denmark, Lyngby (Denmark)
  4. Manchester Metropolitan Univ. (United Kingdom)
  5. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; National Science Foundation (NSF)
OSTI Identifier:
1779727
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; DGE-1656518; 9455; ECCS-1542152
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 10; Journal Issue: 20; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; water splitting; oxygen evolution; ruthenium; pyrochlore; theoretical Pourbaix stability; dissolution; activity descriptors

Citation Formats

Hubert, McKenzie A., Patel, Anjli M., Gallo, Alessandro, Liu, Yunzhi, Valle, Eduardo, Ben-Naim, Micha, Sanchez, Joel, Sokaras, Dimosthenis, Sinclair, Robert, Nørskov, Jens K., King, Laurie A., Bajdich, Michal, and Jaramillo, Thomas F. Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores. United States: N. p., 2020. Web. doi:10.1021/acscatal.0c02252.
Hubert, McKenzie A., Patel, Anjli M., Gallo, Alessandro, Liu, Yunzhi, Valle, Eduardo, Ben-Naim, Micha, Sanchez, Joel, Sokaras, Dimosthenis, Sinclair, Robert, Nørskov, Jens K., King, Laurie A., Bajdich, Michal, & Jaramillo, Thomas F. Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores. United States. https://doi.org/10.1021/acscatal.0c02252
Hubert, McKenzie A., Patel, Anjli M., Gallo, Alessandro, Liu, Yunzhi, Valle, Eduardo, Ben-Naim, Micha, Sanchez, Joel, Sokaras, Dimosthenis, Sinclair, Robert, Nørskov, Jens K., King, Laurie A., Bajdich, Michal, and Jaramillo, Thomas F. Mon . "Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores". United States. https://doi.org/10.1021/acscatal.0c02252. https://www.osti.gov/servlets/purl/1779727.
@article{osti_1779727,
title = {Acidic Oxygen Evolution Reaction Activity–Stability Relationships in Ru-Based Pyrochlores},
author = {Hubert, McKenzie A. and Patel, Anjli M. and Gallo, Alessandro and Liu, Yunzhi and Valle, Eduardo and Ben-Naim, Micha and Sanchez, Joel and Sokaras, Dimosthenis and Sinclair, Robert and Nørskov, Jens K. and King, Laurie A. and Bajdich, Michal and Jaramillo, Thomas F.},
abstractNote = {Ru-based oxygen evolution reaction (OER) catalysts show significant promise for efficient water electrolysis, but rapid degradation poses a major challenge for commercial applications. In this work, we explore several Ru-based pyrochlores (A2Ru2O7, A = Y, Nd, Gd, Bi) as OER catalysts and demonstrate improved activity and stability of catalytic Ru sites relative to RuO2. Furthermore, we combine complementary experimental and theoretical analysis to understand how the A-site element impacts activity and stability under acidic OER conditions. Among the A2Ru2O7 studied herein, we find that a longer Ru–O bond and a weaker interaction of the Ru 4d and O 2p orbitals compared with RuO2 results in enhanced initial activity. We observe that the OER activity of the catalysts changes over time and is accompanied by both A-site and Ru dissolution at different relative rates depending on the identity of the A-site. Pourbaix diagrams constructed using density functional theory (DFT) calculations reveal a driving force for this experimentally observed dissolution, indicating that all compositions studied herein are thermodynamically unstable in acidic OER conditions. Theoretical activity predictions show consistent trends between A-site cation leaching and OER activity. These trends coupled with Bader charge analysis suggest that dissolution exposes highly oxidized Ru sites that exhibit enhanced activity. Overall, using the stability number (molO2 evolved/molRu dissolved) as a comparative metric, the A2Ru2O7 materials studied in this work show substantially greater stability than a standard RuO2 and commensurate stability to some Ir mixed metal oxides. Finally, the insights described herein provide a pathway to enhanced Ru catalyst activity and durability, ultimately improving the efficiency of water electrolyzers.},
doi = {10.1021/acscatal.0c02252},
journal = {ACS Catalysis},
number = 20,
volume = 10,
place = {United States},
year = {Mon Oct 05 00:00:00 EDT 2020},
month = {Mon Oct 05 00:00:00 EDT 2020}
}

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation
journal, May 2017

  • Spöri, Camillo; Kwan, Jason Tai Hong; Bonakdarpour, Arman
  • Angewandte Chemie International Edition, Vol. 56, Issue 22
  • DOI: 10.1002/anie.201608601

Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction
journal, May 2017


Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media
journal, May 2019

  • Retuerto, María; Pascual, Laura; Calle-Vallejo, Federico
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09791-w

Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K -edge X-ray Absorption Spectroscopy
journal, January 2014

  • Suntivich, Jin; Hong, Wesley T.; Lee, Yueh-Lin
  • The Journal of Physical Chemistry C, Vol. 118, Issue 4
  • DOI: 10.1021/jp410644j

Trends in Activity and Dissolution on RuO 2 under Oxygen Evolution Conditions: Particles versus Well-Defined Extended Surfaces
journal, August 2018


Tailoring Lattice Oxygen Binding in Ruthenium Pyrochlores to Enhance Oxygen Evolution Activity
journal, March 2020

  • Kuznetsov, Denis A.; Naeem, Muhammad A.; Kumar, Priyank V.
  • Journal of the American Chemical Society, Vol. 142, Issue 17
  • DOI: 10.1021/jacs.0c01135

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
journal, January 2017

  • Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen
  • Energy & Environmental Science, Vol. 10, Issue 12
  • DOI: 10.1039/C7EE02307C

New Insights into Corrosion of Ruthenium and Ruthenium Oxide Nanoparticles in Acidic Media
journal, April 2015

  • Hodnik, Nejc; Jovanovič, Primož; Pavlišič, Andraž
  • The Journal of Physical Chemistry C, Vol. 119, Issue 18
  • DOI: 10.1021/acs.jpcc.5b01832

Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
journal, September 2013

  • Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3439

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
journal, January 2014

  • Fabbri, E.; Habereder, A.; Waltar, K.
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00669K

Nature of the electronic states in the layered perovskite noncuprate superconductor Sr 2 Ru O 4
journal, June 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Structural Studies of the Metal–Nonmetal Transition in Ru Pyrochlores
journal, April 2000

  • Field, M.; Kennedy, B. J.; Hunter, B. A.
  • Journal of Solid State Chemistry, Vol. 151, Issue 1
  • DOI: 10.1006/jssc.1999.8608

Crystal Structure and Electrical Properties of the Pyrochlore Ruthenate Bi2-xYxRu2O7
journal, January 1993

  • Kanno, R.; Takeda, Y.; Yamamoto, T.
  • Journal of Solid State Chemistry, Vol. 102, Issue 1
  • DOI: 10.1006/jssc.1993.1012

Electrochemical corrosion of a glassy carbon electrode
journal, October 2017


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

"Special points for Brillouin-zone integrations"—a reply
journal, August 1977


Pyrochlore electrocatalysts for efficient alkaline water electrolysis
journal, January 2015

  • Parrondo, Javier; George, Morgan; Capuano, Christopher
  • Journal of Materials Chemistry A, Vol. 3, Issue 20
  • DOI: 10.1039/C5TA01771H

Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4
journal, January 2017

  • Moreno-Hernandez, Ivan A.; MacFarland, Clara A.; Read, Carlos G.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01486D

High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media
journal, August 2017

  • Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b06808

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells
journal, January 2019

  • Alia, Shaun M.; Anderson, Grace C.
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0731904jes

Disappearance of the metal-insulator transition in iridate pyrochlores on approaching the ideal R 2 Ir 2 O 7 stoichiometry
journal, July 2018


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media
journal, August 2019

  • Strickler, Alaina L.; Flores, Raul A.; King, Laurie A.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 37
  • DOI: 10.1021/acsami.9b13697

An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces
journal, January 2019

  • Huang, Xiang; Wang, Jiong; Tao, Hua Bing
  • Chemical Science, Vol. 10, Issue 11
  • DOI: 10.1039/C8SC04521F

Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides
journal, April 2018


Synthesis, Crystal Structure, and Electrical Properties of the Pyrochlores Pb2-xLnxRu2O7-y(Ln = Nd, Gd)
journal, January 1995

  • Kobayashi, H.; Kanno, R.; Kawamoto, Y.
  • Journal of Solid State Chemistry, Vol. 114, Issue 1
  • DOI: 10.1006/jssc.1995.1003

Structural and Electronic Properties of the Ru Pyrochlores Bi 2- y Yb y Ru 2 O 7- δ
journal, October 2003

  • Li, Leqing; Kennedy, Brendan J.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm034503q

Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO 2 (110) Surface
journal, June 2019

  • Klyukin, Konstantin; Zagalskaya, Alexandra; Alexandrov, Vitaly
  • The Journal of Physical Chemistry C, Vol. 123, Issue 36
  • DOI: 10.1021/acs.jpcc.9b03418

In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media
journal, August 1984

  • Kötz, R.; Stucki, S.; Scherson, D.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 172, Issue 1-2
  • DOI: 10.1016/0022-0728(84)80187-4

Considerations for the scaling-up of water splitting catalysts
journal, May 2019


Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale
journal, June 2019


Core-Level X-Ray Photoemission Satellites in Ruthenates: A New Mechanism Revealing The Mott Transition
journal, September 2004


Electrochemical Stability of Metastable Materials
journal, November 2017


Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


Structural and Bonding Trends in Ruthenium Pyrochlores
journal, November 1996


Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

Comparative study of the electronic structures of SrMO 3 (M = Ti, V, Mn, Fe, and Co; M = Zr, Mo, Ru, and Rh) by O 1s x-ray absorption spectroscopy
journal, October 2008


A Porous Pyrochlore Y 2 [Ru 1.6 Y 0.4 ]O 7– δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media
journal, September 2018


The stability number as a metric for electrocatalyst stability benchmarking
journal, June 2018


Electron Correlations Engineer Catalytic Activity of Pyrochlore Iridates for Acidic Water Oxidation
journal, December 2018


Resolving ruthenium: XPS studies of common ruthenium materials
journal, September 2015

  • Morgan, David J.
  • Surface and Interface Analysis, Vol. 47, Issue 11
  • DOI: 10.1002/sia.5852

Generalized Kohn-Sham schemes and the band-gap problem
journal, February 1996


Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties
journal, September 2019

  • Abbott, Daniel F.; Pittkowski, Rebecca K.; Macounová, Kateřina
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 41
  • DOI: 10.1021/acsami.9b13220

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Electronic Band Structure of the Pyrochlore Ruthenium Oxides A 2 Ru 2 O 7 ( A = B i , Tl and Y)
journal, February 2000

  • Ishii, Fumiyuki; Oguchi, Tamio
  • Journal of the Physical Society of Japan, Vol. 69, Issue 2
  • DOI: 10.1143/JPSJ.69.526

Electrolysis of water on oxide surfaces
journal, September 2007


Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO
journal, December 2000


Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs
journal, September 2019


Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
journal, August 2013

  • Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja405997s

A Linear Response DFT+ U Study of Trends in the Oxygen Evolution Activity of Transition Metal Rutile Dioxides
journal, February 2015

  • Xu, Zhongnan; Rossmeisl, Jan; Kitchin, John R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp511426q

Efficient Pourbaix diagrams of many-element compounds
journal, January 2019

  • Patel, Anjli M.; Nørskov, Jens K.; Persson, Kristin A.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 45
  • DOI: 10.1039/C9CP04799A

Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides
journal, September 2012

  • García-Mota, Mónica; Bajdich, Michal; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp306303y

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction
journal, February 2020


Computational modelling of water oxidation catalysts
journal, January 2018

  • Soriano-López, Joaquín; Schmitt, Wolfgang; García-Melchor, Max
  • Current Opinion in Electrochemistry, Vol. 7
  • DOI: 10.1016/j.coelec.2017.10.001

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces
journal, May 2020


Introduction to Corrosion Science
book, January 2010


Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano
journal, July 2019

  • Dickens, Colin F.; Kirk, Charlotte; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 31
  • DOI: 10.1021/acs.jpcc.9b03830

Oxide pyrochlores — A review
journal, January 1983

  • Subramanian, M. A.; Aravamudan, G.; Subba Rao, G. V.
  • Progress in Solid State Chemistry, Vol. 15, Issue 2
  • DOI: 10.1016/0079-6786(83)90001-8

Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

Applications of electrochemistry in corrosion science and in practice
journal, January 1974


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

Orbital-selective confinement effect of Ru 4 d orbitals in SrRuO 3 ultrathin film
journal, January 2019


Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation
journal, August 2019


Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces
journal, March 2019