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SUMMARY  
 
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, 
play crucial roles in regulating the physicochemical properties of cellular membranes and hence 
their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane 
repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. 
Glycerolipids are the major structural components of cellular membranes and their composition 
can be adjusted by modifying their head groups, their acyl chain lengths and the number and 
position of double bonds. This review summarizes recent advances in our understanding of 
mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases 
involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major 
membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss 
the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss 
emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. 
Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop 
improvement and other biotechnological applications such as bioenergy production.     
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INTRODUCTION 

Biological membranes are essential components of living systems. They form a boundary between 
the cell and its environment, mediate intracellular signaling transduction and cell-to-cell 
communications and establish a selective permeable boundary that only allows certain molecules 
to enter or leave the cell.  In eukaryotic organisms, membranes divide the cell into discrete 
subcellular compartments that segregate vital but, in many cases, incompatible metabolic 
reactions. The fundamental structure of cellular membranes is the bilayer comprising two sheets 
of lipid molecules, into which proteins with important functions such as enzymes in energy 
transducing systems, receptors and transporters are either partially or fully embedded. According 
to the fluid mosaic model (Singer and Nicolson, 1972), a critical property of biological membranes 
is that they are present in a fluid state in which lipids and proteins are loosely bound to one another 
via chemical interactions and individual molecules are generally able to rotate and move laterally. 
Such fluidity is important for membrane-associated functions such as transport, synthesis of 
biomolecules, energy transduction and cell signaling, and it is influenced by both temperature and 
lipid composition (Los and Murata, 2004, van Meer et al., 2008, Ernst et al., 2016).  

In addition to their structural role, membrane lipids regulate the localization, structure and function 
of membrane proteins by lipid-lipid and lipid-protein interactions and by physical effects (van 
Meer et al., 2008, Quinn, 2012, Nyholm, 2015, Harayama and Riezman, 2018). Some lipids can 
define membrane microdomains that serve as sorting platforms and hubs for cell signal 
transduction machinery for a wide range of metabolic processes (Sezgin et al., 2017, Levental et 
al., 2020). Lipids also play crucial roles in membrane fusion events critical for cell division, 
organelle proliferation and membrane trafficking (van Meer et al., 2008, Harayama and Riezman, 
2018). Further, some lipids are known to function directly in cell signal pathways as messengers 
or regulators (Sunshine and Iruela-Arispe, 2017).   

Membrane lipids can be grouped into four major classes: phospholipids, glycolipids, sterols and 
sphingolipids (Figure 1) (Harayama and Riezman, 2018). Phospholipids and glycolipids are 
glycerol-based lipids consisting of two hydrophobic fatty acids attached to the sn-1 and sn-2 
positions and a phosphate group or a sugar moiety to the sn-3 position of a glycerol backbone, 
respectively. The phosphate group of phospholipids can be modified by a polar alcohol such as 
choline, ethanolamine, glycerol, inositol and serine, which gives this class of lipids their names 
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), 
phosphatidylinositol (PI) and phosphatidylserine (PS), respectively. The fatty acids of 
phospholipids and glycolipids vary in chain length, the degree of saturation and double bond 
position. Phospholipids are the most abundant membrane lipids in both yeast and mammals. In 
photosynthetic tissues of plants, however, glycolipids including galactolipids 
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and the 
sulfolipid sulfoquinovosyldiacylglycerol (SQDG) are far more abundant that phospholipids. 
Sterols are a subgroup of steroids with a characteristic structure consisting of four rings of carbon 
atoms, while sphingolipids are defined by the presence of a sphingoid-base covalently linked to a 
fatty acid via an amide bond.  In addition to the structural diversity, the different classes of 
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membrane lipids are not distributed equally among tissues, organelles or even between two leaflets 
of the same membrane, but rather have specific locations, and the collective action of their bulky 
lipids defines the identity and function of different organelles (van Meer et al., 2008, Harayama 
and Riezman, 2018). For example, in plants, galactolipids are located exclusively in chloroplasts, 
while sterols and sphingolipids are enriched in lipid microdomains of the plasma membrane. 
Galactolipids play a key role in the biogenesis of photosynthetic membranes and are important for 
the optimal function of embedded photosynthetic pigment-protein complexes in higher plants 
(Kobayashi, 2016).  

Lipids are the major determinants of the physicochemical properties of cellular membranes that in 
turn are crucial for membrane functions (Ernst et al., 2016, Harayama and Riezman, 2018). Both 
the nature of the glycerolipid head group and the length and degree of saturation of their acyl 
chains influence the membrane’s physical properties such as fluidity, permeability, bilayer 
thickness, charge and intrinsic curvature of membranes. In this context, glycerolipids with a 
relatively large head group such as PC and DGDG approximate a cylindrical molecular shape and 
tend to form bilayer lipid phases with no curvature strain. In contrast, the shapes of PE and MGDG 
are more conical, due to the presence of relatively small head groups. They impose negative 
curvature stress on membranes and are prone to form non-bilayer lipid structures in membranes. 
Anionic lipids PG, SQDG, PI and PS are key determinants of membrane surface charge and hence 
play crucial roles in mediating lipid-protein interactions (Jouhet, 2013, Harayama and Riezman, 
2018) (Figure 1). Sterols interact more favorably with saturated than with unsaturated acyl chains 
of phospholipids (Nystrom et al., 2010, Nyholm et al., 2019). These interactions regulate 
membrane fluidity, lipid bilayer stability and membrane microdomain formation. In addition to 
lipid class composition, membrane physical properties and function are also dependent on the fatty 
acid composition of lipid molecules. In general, lipids with saturated fatty acids decrease 
membrane fluidity due to the tight packing of straight saturated acyl tails and stronger interactions 
of saturated acyl chains with sterols. The packing of unsaturated lipids, on the other hand, increases 
membrane fluidity because cis double bonds create a rigid bend preventing tight packing of their 
fatty acids (Munro, 2003, Harayama and Riezman, 2018). In addition to the degree of fatty acid 
desaturation, their acyl chain length and their positional distribution on the glycerol backbone 
affect organization and dynamics of membranes.   
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Figure 1. Schematic representation of the chemical structures of membrane lipids and lipid molecular 
shapes. (a-n) Structures of membrane lipids. Membrane lipids are subdivided in four major categories: 
phospholipids (b-g), glycolipids (h-j), sphingolipids (a) and sterols (l). Triacylglycerol (TAG) is a storage 
glycerolipid (m). Classes of phospholipids are defined by the hydrophilic head groups (R) attached to the 
sn-3 position of the glycerol backbone. Sphingolipids constitute a large category of lipids with diverse acyl 
chains and headgroups (X). (o) Schematic representation of lipid molecular shapes. 

Membrane lipid compositions are determined by a range of metabolic processes including lipid 
biosynthesis, transport, turnover, remodeling and degradation. Glycerolipids are major structural 
components of cellular membranes. The enzymatic steps and pathways involved in glycerolipid 
biosynthesis are well defined and the mechanisms of lipid transport well studied. However, much 
less is known about the molecular processes underlying lipid modifications after their synthesis. 
This review will summarize our current knowledge about post-synthetic modifications of fatty 
acids and head groups, with a focus on the candidate enzymes involved in remodeling of acyl 
chains and head groups of glycerolipids. In addition, we will discuss the functional role of TAG 
metabolism in lipid remodeling. Finally, new information about the functions of membrane lipid 
remodeling will be summarized. 
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OVERVIEW OF GLYCEROLIPID BIOSYNTHESIS   
 
Two parallel pathways compartmentalized in the plastid or the ER contribute to glycerolipid 
biosynthesis in plants (Figure 2). Fatty acids, the main component of glycerolipids, are almost 
exclusively synthesized in plastids. The end products of plastid fatty acid synthesis in order of 
abundance are mainly 18:1, 16:0 and 18:0 (the number of carbon atoms in the fatty acid chain: the 
number of double bonds). These fatty acids can be used inside the plastid to produce 
lysophosphatidic acid (LPA) and phosphatidic acid (PA) by the glycerol-3-phosphate 
acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LPAAT), respectively. The 
resulting PA can be used to synthesize PG or be dephosphorylated by phosphatidic acid 
phosphatase (PAP) to produce diacylglycerol (DAG). DAG is as a precursor for glycolipid 
synthesis via the plastid pathway. Alternatively, fatty acids can be exported to the ER and used to 
synthesize LPA, PA and DAG by ER-resident GPAT, LPAAT and phosphatidic acid 
phosphohydrolase (PAH), respectively via the Kennedy pathway (Kennedy and Weiss, 1956).  
However, radiotracer labeling studies showed that most of  nascent fatty acids exported from the 
plastid are first incorporated into PC through acyl remodeling (or editing) that allows the 
desaturation of PC-bound monosaturated fatty acids into polyunsaturated fatty acids (PUFAs) by 
ER-resident fatty acid desaturase 2 (FAD2) and FAD3 and the subsequent release of PUFAs for 
the synthesis of PA by ER-resident GPATS and LPAATs   (Bates et al., 2007, Bates et al., 2009). 
PA and its dephosphorylated product DAG can serve as precursors for the synthesis of 
phospholipids in the ER. In addition, phospholipids assembled in the ER can return to the plastid 
to provide DAG moieties for the synthesis of galactolipids and SQDG in the plastid. Because the 
substrate specificity of plastid and ER LPAATs differs, glycerolipids assembled by the plastid and 
ER pathway contain fatty acids with 16 and 18 carbon chain lengths (C16 and C18) at the sn-2 
position of the glycerol backbone, respectively. Another important feature of acyltransferases 
involved in PA synthesis is that GPATs prefer saturated fatty acids and fatty acids with one double 
bond. Therefore, the substrate specificity of acyltransferases, PC acyl remodeling and the balance 
between the plastid and ER pathways of thylakoid lipid synthesis influence the composition of 
glycerolipids in plant cell membranes. 
 
DAG formed in the ER is also an immediate precursor for the acyl-CoA-dependent acylation by 
diacylglycerol acyltransferase (DGAT) at the sn-3 position of the glycerol backbone to produce 
triacylglycerol (TAG) (Routaboul et al., 1999, Zou et al., 1999). TAG can also be produced by 
phospholipid:diacylglycerol acyltransferase (PDAT), which catalyzes the transfer of acyl groups 
from the sn-2 position of PC to DAG to form TAG and lysophosphatidylcholine (LPC) (Dahlqvist 
et al., 2000). Non-seed tissues such as leaves do not accumulate TAG to significant levels (Xu and 
Shanklin, 2016, Xu et al., 2020), though they contain high TAG synthetic activities (Dahlqvist et 
al., 2000). 
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Figure 2 Membrane lipid remodeling during abiotic stresses.  

Multiple abiotic stresses (cold, heat, drought or salt) induce the expression of genes encoding many 
enzymes, such as DGAT1, PDAT1, DGTT1, AGAP1, PGD1 and HIL1 in plants and algae. These 
transcripts are translated, and the corresponding proteins are translocated to the ER and chloroplasts, where 
they modify lipid composition to fine-tune plant responses to environmental cues. In the ER, glycerol lipids 
are synthesized through the Kennedy pathway and TAG are assembled by DGAT1, DGTT1 and PDAT1. 
PC can be used to generate DAG via PDCT. Acyl-CoA is incorporated into PC by acyl-editing reactions 
presumably via LPCATs. Stresses trigger the synthesis of PA through activating the hydrolysis of PC by 
PLD and/or phosphorylation of DAG by DGKs. PC and PA are imported from ER to chloroplast, where 
they are converted to DAG. MGDG is produced via the transfer of a galactose from UDP-galactose onto 
DAG by MGD enzymes. MGDG is subsequently converted to DGDG by DGD enzymes. Abiotic stresses 
activate enzymes such as SFR2, PGD1, HIL1, AGAP1, PLIP2, DAD1 and DGL1, which are involved in 
mobilization of unsaturation fatty acids from MGDG/DGDG for lipid remodeling and TAG and JA 
biosynthesis under stress conditions. FAs are synthesized in the plastid stroma from acetyl-CoA and 
incorporated to phospholipids through the plastid pathway. Abiotic stresses also trigger plastoglobule (pg) 
accumulation in chloroplasts. Stresses can cause thylakoid breakdown, leading to the release of FA, DAG 
and free phytol. Plastoglobule-localized PES1 and -2 convert phytol and FA into phytylesters as well as FA 
and DAG into TAG. Plastoglobules recruit enzymes of the jasmonate biosynthesis pathway, which redirects 
fatty acids from thylakoid lipids to JA production. ABC1K1 and ABC1K3 phosphorylate VTE1 to promote 
tocopherol production under high light. Question marks indicate the enzymes involved in the reactions 
remain to be determined.  
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CANDIDATE ENZYMES FOR MEMBRANE LIPID REMODELING 
 
Glycerolipid remodeling can be achieved through modifications of acyl chains or head groups. 
Glycerolipid acyl remodeling is a process in which one or both fatty acids are exchanged, creating 
an intermediate lysophospholipid (LPL). Phospholipid acyl remodeling in animal systems is 
known as the Lands cycle (Lands, 1960), in which fatty acids attached to the sn-2 position of 
phospholipids are liberated by phospholipases. The resultant LPLs can be reacylated by 
lysophospholipid acyltransferases to generate phospholipids with different fatty acids. 
Alternatively, processes of acyl remodeling can include an exchange of both acyl groups with a 
glycerophosphodiester or DAG intermediate. In addition, acyl exchange in transacylation reactions 
in which an acyl group is transferred from a phospholipid or a LPL donor to an LPL acceptor have 
also been reported (Yamashita et al., 2014). 
 
Lysophosphatidylcholine acyltransferase   
  
So far, most of the knowledge regarding the mechanism of membrane lipid acyl remodeling is 
derived from studies on PC because of its central role in glycerolipid metabolism.  First, PC is a 
site of fatty acid desaturation (Sperling and Heinz, 1993). Second, PC acyl remodeling serves as a 
dominant entry point for acyl groups exported from the plastid into the ER pathway (Bates et al., 
2007, Bates et al., 2009). Third, PC remodeling provides a main source of fatty acids and DAG 
for TAG biosynthesis in developing seeds (Bates et al., 2009, Lu et al., 2009). Finally, DAG 
moieties derived from PC are important precursors for the synthesis of thylakoid lipids (Ohlrogge 
and Browse, 1995). In Arabidopsis, two lysophosphatidylcholine acyltransferases, namely 
LPCAT1 and LPCAT2, have been shown to play central roles in PC acyl remodeling in developing 
seeds (Wang et al., 2012) and leaves (Karki et al., 2019). These LPCAT enzymes catalyze the 
reacylation of LPC preferentially at the sn-2 position using fatty acids exported from the plastid 
(Bates et al., 2007, Bates et al., 2009). In vitro enzymatic assays, however, showed that LPCAT1 
and LPCAT2 can catalyze the acylation of fatty acids at the sn-1 position of PC at a rate ranging 
from 15 to 70% of that of the sn-2 position (Lager et al., 2013). In addition, acyl substrate 
specificity analysis showed that LPCATs from five different plant species have a strong preference 
for C18-unsaturated acyl chains over 16:0 or unusual fatty acids (Lager et al., 2013). 
 
The lipases responsible for removing fatty acids from PC to generate LPC substrate for LPCAT-
catalyzed acylation in plants remain elusive. There are more than 200 genes annotated as lipases 
(Troncoso-Ponce et al., 2013), but most of their functional roles remain uncertain. Two studies 
showed that Fatty Acid Reducer genes, which encode GDSL lipases, are involved in seed oil 
accumulation in Arabidopsis and Brassica napus (Chen et al., 2012, Karunarathna et al., 2020)  
Arabidopsis LPCAT enzymes have been shown to be able to catalyze the direct transfer of acyl 
groups of PC to free CoA in in vitro assays, leading to the generation of LPC and acyl-CoA (Lager 
et al., 2013), but the functional significance of this observation requires further investigation. An 
alternative hypothesis is that PDAT is involved in the provision of LPC for LPCAT-catalyzed 
acylation (Lager et al., 2013). In support of this possibility, LPC acylation reactions catalyzed by 
LPCAT1 and LPCAT2 have been shown to be critical for maintaining the supply of PC as an acyl 
donor in PDAT1-mediated TAG synthesis in developing seeds (Xu et al., 2012). 



8 
 

 
Phospholipase 
 
Phospholipases can be classified into A, B, C and D families based on the bond they hydrolyze 
within a phospholipid molecule (Hong et al., 2016). Phospholipase A enzymes release the acyl 
chain at the sn-1 or sn-2 position to generate LPL. Phospholipase Bs (PLBs) hydrolyze acyl ester 
bonds at both the sn-1 or sn-2 position, whereas phospholipase C (PLC) and D (PLD) cleave the 
phosphodiester bond linked to the glycerol backbone and the polar head group to generate DAG 
and PA, respectively. Among the four phospholipase families, multiple forms of PLD, C, and A 
have been extensively characterized in plants and they have been implicated in the remodeling of 
membrane phospholipids and/or in the generation of  signal lipids (Wang, 2001, Welti et al., 2002, 
Nakamura, 2013, Hong et al., 2016). Both transcript levels and protein abundance of non-specific 
PLCs (NPCs), namely NPC4 and NPC5, have been shown to be enhanced in plants starved for 
inorganic phosphate (Pi) (Andersson et al., 2005, Nakamura et al., 2005, Gaude et al., 2008). In 
addition, transcript analysis has shown that, among 12 isoforms of PLDs, PLDζ1 expression is 
increased in response to Pi starvation (Cruz-Ramirez et al., 2006).  
 
PG is the only phospholipid present in chloroplast photosynthetic membranes. Radiotracer pulse-
chase labeling (Hellgren and Sandelius, 2001) and in vivo lipid ‘tag and track’ methods (Hurlock 
et al., 2018) indicate that chloroplast PG undergoes extensive post-synthetic acyl remodeling, 
possibly due to its tight association with highly oxidative photosynthetic protein complexes 
(Hellgren and Sandelius, 2001). A plastid lipase1 (PLIP1) has recently been shown to be involved 
in acyl remodeling of PG, contributing to the export of acyl groups from plastids to TAG synthesis 
in developing seeds (Wang et al., 2017, Aulakh and Durrett, 2019). PLIP1 is a phospholipase that 
specifically hydrolyzes polyunsaturated fatty acids from the sn-1 position of plastid PG.  
 
Galactolipase 
 
Several acylhydrolases capable of releasing fatty acids from galactolipids have recently been 
identified in microalgae and higher plants. Among them, plastid galactolipid degradation1 (PGD1) 
was first reported in the green algae Chlamydomonas (Li et al., 2012, Du et al., 2018). The enzyme 
specifically hydrolyzes 18:1-containing MGDG but not MGDG containing polyunsaturated fatty 
acids. Disruption of PGD1 alters galactolipid content and acyl composition, suggesting a role of 
this lipase in acyl remodeling of de novo-synthesized chloroplast membrane lipids (Du et al., 
2018). Another chloroplast MGDG lipase in Arabidopsis, heat inducible lipase1 (HIL1), has been 
implicated in removing polyunsaturated acyl groups (18:3) from 34:6-MGDGs (Higashi et al., 
2018). Additionally, two closely related chloroplast-targeted lipases, DEFECTIVE IN ANTHER 
DEHISCENCE1 (DAD1) and DONGLE1 (DGL1), have been reported to be involved in jasmonic 
acid (JA) biosynthesis in respond to wounding.  DAD1 has weak galactolipase and strong PLA1 
activities, while DGL1 has strong galactolipase and weak PLA1 activities (Ishiguro et al., 2001, 
Hyun et al., 2008, Ellinger et al., 2010). 
  
Glycerophosphocholine acyltransferase 
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Glycerophosphocholine acyltransferase (GPCAT) catalyzes the acylation of glycerol-3-
phosphocholine (GPC), the product of complete PC deacylation, with acyl-CoA as acyl donor to 
generate LPC. Reacylation of LPC by LPCATs can lead to the formation of PC with new fatty 
acids. GPCAT activity has been demonstrated in cell-free extracts and microsomal fractions of 
yeast and plants (Stalberg et al., 2008, Lager et al., 2015). The yeast gene encoding GPCAT was 
identified by screening enzyme activities of extracts from a yeast knock-out library (Glab et al., 
2016). Loss of GPCAT affects PC fatty acid profiles, suggesting a role of this enzyme in post-
synthetic acyl remodeling of PC (Anaokar et al., 2019). The plant GPCAT has been shown to 
exhibit broad substrate specificity for acyl donors (Glab et al., 2016). The plant GPCAT can also 
catalyze transacylation from LPC and lysophosphatidylethanolamine (LPE) to GPC, suggesting a 
role of this enzyme in acyl group exchange between PC and PE. In yeast, the B type of 
phospholipases (PLBs) deacylate PC to form free fatty acids and GPC (Lee et al., 1994). The 
pathways and enzymes involved in GPC formation and the exact functional role of GPCAT remain 
to be established in plants. 
 
Fatty acid desaturase 
 
The desaturation of acyl chains of glycerolipids to polyunsaturated forms typical of cellular 
membranes occurs in both the plastids and ER by membrane-bound fatty acid desaturates (FADs) 
(Browse and Somerville, 1991, Shanklin and Cahoon, 1998). In the plastid, FAD4 and FAD5 are 
specifically responsible for the conversion of 16:0 of PG to trans-palmitoleic acid (t16:1) and 16:0 
of MGDG to 16:1, palmitoleic acid, respectively (Browse et al., 1985, Kunst et al., 1989b). The 
generation of fatty acids with two double bonds in all plastidic glycerolipids is catalyzed by FAD6 
(Browse et al., 1989) and further desaturation of 16:2 and 18:2 to 16:3 and 18:3 is catalyzed by 
either FAD7 or FAD8 isozymes (Iba et al., 1993, McConn et al., 1994). In extraplastidic 
membranes, two ER-desaturases FAD2 and FAD3 are responsible for converting 18:1 in 
glycerolipid substrates to 18:2 and 18:3, respectively (Miquel and Browse, 1992, Browse et al., 
1993). 
 
Phosphatidylcholine:diacylglycerol cholinephosphotransferase 
 
Phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT) catalyzes the headgroup 
exchange between PC and DAG (Lu et al., 2009). Genetic evidence suggest that the main function 
of this enzyme is to facilitate further desaturation of the 18:1-containing DAG produced by the 
Kennedy pathway on PC and the subsequent release of polyunsaturated DAG for TAG synthesis 
in developing seeds (Lu et al., 2009, Bates et al., 2012). Consequently, disruption of PDCT results 
in a 40% reduction in polyunsaturated seed fatty acid content (Lu et al., 2009) and combined 
disruption of LPCAT1, LPCAT2 and PDCT reduces the levels of polyunsaturated fatty acids by 
66% (Bates et al., 2012). The PDCT gene is expressed in both seeds and non-seed tissues, but a 
nonsense mutation in PDCT (also known as ROD1) has no obvious effects on lipid and fatty acid 
composition of leaves (Lu et al., 2009), hinting at a possible role of PDCT in the remodeling of 
membrane lipids in vegetative tissues under stress conditions (Lu et al., 2009).   
 
Sensitive to freezing2 
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The sensitive to freezing2 (SFR2) gene was discovered in a genetic screen for Arabidopsis mutants 
sensitive to freezing (Warren et al., 1996). The SFR2 protein was originally described as a family 
I glycosyl-hydrolase (Thorlby et al., 2004). Later on, Moellering et al. (Moellering et al., 2010) 
found that SFR2 is a galactolipid:galactolipid galactosyl transferase originally reported in isolated 
chloroplasts (Heemskerk et al., 1987, Heemskerk et al., 1988), that is capable of  processively 
transferring galactosyl residues from MGDG to a second galactolipid acceptor, forming DGDG 
and oligogalactolipids with DAG as a by-product (Moellering et al., 2010) (Figure 2). SFR2 is a 
membrane protein associated with the chloroplast outer envelope (Roston et al., 2014) and its 
activity increases in response to freezing and ozone fumigation (Sakaki et al., 1990a, Moellering 
et al., 2010) and in Arabidopsis mutants defective in ER-to-plastid lipid trafficking (Xu et al., 
2003, Awai et al., 2006, Lu et al., 2007, Xu et al., 2008, Fan et al., 2015).  
 
Acylated galactolipid-associated phospholipase 

Acylated galactolipid-associated phospholipase1 (AGAP1) transfers a fatty acid from one MGDG 
molecule to the galactose residue in another MGDG, thereby producing acyl-MGDG and lyso-
MGDG (Nilsson et al., 2015). Acyl-MGDGs, predominantly 18:3-MGDG, were found to 
accumulate in plant tissues in response to abiotic or biotic stress (Vu et al., 2014b, Nilsson et al., 
2015). In Arabidopsis, acyl-MGDGs frequently contains oxidized fatty acids in the form of the JA 
precursor 12-oxo-phytodienoic acid (OPDA) (Kourtchenko et al., 2007). In contrast to acyl-
MGDGs, lyso-MGDGs do not accumulate, indicating they are either rapidly hydrolyzed to release 
fatty acids that could potentially end up in TAGs via PC remodeling, or reacylated to form MGDGs 
(Mueller et al., 2017) (Figure 2). Like SFR2, the Arabidopsis AGAP1 is localized to the 
chloroplast envelope membranes (Nilsson et al., 2015).  
 
ROLE OF TRIACYLGLYCEROL METABOLISM IN MEMBRANE LIPID 
REMODELING 
 
Both TAG and phospholipid synthesis occur in the ER where they share the same acyl-CoA pools 
derived from acyl remodeling of PC and possibly the same DAG pool also. Therefore, it is 
reasonable to expect that the rate of TAG synthesis and the activity of the TAG assembly enzymes 
may affect membrane lipid synthesis via their effects on acyl-CoA and DAG pools. 
In plants, both the acyl-CoA-dependent reactions catalyzed by DGATs and the acyl-CoA-
independent processes catalyzed by PDATs contribute to TAG synthesis (Zhang et al., 2009b). At 
least four types of DGATs, namely integral membrane proteins DGAT1 and DGAT2, soluble 
DGAT3 and multifunctional acyltransferases have been implicated in TAG synthesis in plants (Xu 
et al., 2020). Among these enzymes, DGAT1 prefers saturated and very long-chain acyl groups 
over polyunsaturated acyl chains (Katavic et al., 1995), DGAT2 prefers unsaturated acyl species 
over saturated ones (Zhou et al., 2013, Ayme et al., 2014) and DGAT3 has higher preference for 
polyunsaturated fatty acids (Hernandez et al., 2012). Therefore, the relative contributions of 
DGAT1, DGAT2 and DGAT3 to TAG synthesis may affect the composition of acyl-CoA pools 
and thus the fatty acid composition of membrane lipids. The rate of PDAT1-mediated TAG 
synthesis has been shown to be highest towards phospholipids containing polyunsaturated fatty 
acids or oxygenated acyl groups (Stahl et al., 2004). Thus, increasing PDAT1 activity may be 
expected to cause decreases in membrane lipid content and the polyunsaturated fatty acids of 
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membrane lipids. Indeed, overexpression of PDAT1 in Arabidopsis has been shown to cause a 
decrease of 18:3 in major membrane lipids such as PC, PE, DGDG and MGDG (Fan et al., 2013a, 
Fan et al., 2013b).     

In plants and other eukaryotes, TAGs synthesized in the ER are packaged into dynamic subcellular 
structures named lipid droplets (LD) for subsequent use as a source of fatty acids for energy 
production or for membrane biogenesis (Chapman et al., 2012, Xu et al., 2020). The metabolic 
breakdown of TAG stored in LDs for energy production can proceed via cytosolic lipolysis and 
lipophagy (Fan et al., 2019, Xu et al., 2020). During cytosolic lipolysis, TAG lipases such as 
SUGAR-DEPNDENT1 (SDP1) hydrolyze TAGs to release free fatty acids in the cytoplasm 
(Eastmond, 2006) and the resulting fatty acids are imported into peroxisomes by PEROXISOMAL 
ABC TRANSPORTER1 (PXA1) to enter the β-oxidation pathway (Zolman et al., 2001). 
Alternatively, LDs can be delivered by autophagy into vacuoles, where resident lipases degrade 
TAGs in LDs into free fatty acids (Fan et al., 2019). The released fatty acids can be exported into 
the cytosol to be used for TAG synthesis or as substrates for peroxisomal β-oxidation (Zechner et 
al., 2017). In addition to TAG, membrane lipids can serve as a source of fatty acids for energy 
production via β-oxidation in peroxisomes under stress conditions such as dark-induced starvation 
(Kunz et al., 2009; Fan et al., 2017). In this scenario, fatty acids released from membrane lipids 
are first incorporated into TAGs and stored in LDs. TAGs in LDs are then hydrolyzed by SDP1 
and the released fatty acids are imported into peroxisomes by PXA1 prior to being used for energy 
production via β-oxidation (Fan et al., 2014, Yu et al., 2018). Since activation of free fatty acids 
into acyl-CoA esters by cytosolic acyl-CoA synthases is a prerequisite for entry of fatty acids into 
peroxisomes (De Marcos Lousa et al., 2013), activities of cytosolic acyl-CoA synthases, SDP1, 
PXA1 and lipophagy may impact the composition and content of cytosolic acyl-CoA pools, 
thereby effecting membrane lipid synthesis. In support of this possibility, Arabidopsis mutants 
lacking PXA1 accumulate acyl-CoAs (Footitt et al., 2002) and blocking the β-oxidation pathway 
results in changes in membrane lipid content and its fatty acid composition (Fan et al., 2014, Yu 
et al., 2018).  
 
TRANSCRIPTIONAL AND POSTTRANSCRIPTIONAL REGULATION OF LIPID 
REMODELING 
 
The transcript abundance of several enzymes involved in lipid remodeling varies across different 
tissues and cell types, and in response to developmental and environmental cues (Kargiotidou et 
al., 2008, Fan et al., 2014, Higashi et al., 2015, Dar et al., 2017, Yuan et al., 2017, Arisz et al., 
2018). These results hint at the possible involvement of transcriptional networks in regulating 
membrane lipid remodeling. In support of this possibility, a transcription factor MYB96 has been 
suggested to mediate abscisic acid (ABA)-dependent TAG accumulation in vegetative tissues 
under drought stress through the transcriptional regulation of DGAT1 and PDAT1 (Lee et al., 
2019). In addition, ABSCISIC ACID INSENSITVE 4 (ABI4), a transcription factor in ABA 
signaling, has been implicated in regulating the DGAT1 transcript abundance under stress 
conditions (Yang et al., 2011, Kong et al., 2013). Further, both cis-regulatory elements and 
transcription factors are involved in the regulation of FAD2 and FAD3 expression (Dar et al., 2017, 
He et al., 2020).  
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Mammalian LPCATs can be regulated by posttranslational modifications such as phosphorylation 
(Morimoto et al., 2010), but no information is available regarding the regulation of plant LPCATs 
at either the transcriptional or posttranscriptional level. On the other hand, posttranscriptional 
mechanisms have also been suggested to be involved in regulating the activities of FAD2 (Dar et 
al., 2017), DGAT1 (Caldo et al., 2018) and phospholipases (Singh et al., 2015). Similarly, the 
SFR2 gene is constitutively expressed in various plant tissues and both SFR2 mRNA and protein 
levels remain constant during development and in response to abiotic stress (Thorlby et al., 2004, 
Wang et al., 2016). Various factors, including cytoplasmic acidification (Barnes et al., 2016), 
MgCl2 (Heemskerk et al., 1987, Barnes et al., 2016) and free fatty acids (Sakaki et al., 1990b, Fan 
et al., 2015), have been implicated in the regulation of SFR2 activity.     
 
CONSEQUENCES OF MEMBRANE LIPID REMODELING  
 
The ability to remodel membrane lipid composition in response to environmental and 
developmental cues is important for development, biomass production and plant survival. One of 
key biological roles for membrane lipid remodeling is to adjust membrane physiochemical 
properties to optimize its functions with respect to a new set of conditions (Moellering and 
Banning, 2011, Patton-Vogt and de Kroon, 2020). In addition, emerging evidence suggests that 
glycerolipid acyl remodeling plays important roles in removing oxidized or damaged acyl chains, 
sequestering cytotoxic fatty acids, releasing signaling lipids and in stress responses  (Hermansson 
et al., 2011, Nakamura, 2013, Vu et al., 2014a, Renne et al., 2015, Patton-Vogt and de Kroon, 
2020). In plants, PC remodeling has been implicated in fatty acid desaturation and the subsequent 
release of desaturated fatty acids and DAG for membrane lipid and TAG synthesis (Bates et al., 
2013, Li-Beisson et al., 2013). For more detailed information on membrane lipid remodeling and 
its function under abiotic stresses, the reader is directed to several recent reviews (Nakamura, 2013, 
Yang and Benning, 2018, Guo et al., 2019, Lu et al., 2020).  
 
Modifications of glycerolipid desaturation  
 
One of the most intensively studied mechanisms of lipid remodeling involves modifications of the 
acyl chain profile, particularly the degree of desaturation of glycerolipids in response to changes 
in temperature and many other environmental challenges. In general, organisms increase acyl 
desaturation at lower temperatures while decreasing it at higher temperatures to counteract effects 
of temperature variations on membrane fluidity (Ernst et al., 2016). This phenomenon has been 
demonstrated in many studies (Hugly et al., 1989, Kunst et al., 1989a, Wada et al., 1990, Hugly 
and Somerville, 1992, Welti et al., 2002, Falcone et al., 2004, Chen et al., 2006, Qin et al., 2020). 
A similar link between the degree of acyl desaturation and plant stress tolerance has been reported 
for plants under drought and salt conditions (Gigon et al., 2004, Zhang et al., 2005, Liu et al., 
2013, Li et al., 2014, Sui and Han, 2014, Sui et al., 2018). A series of desaturase mutants in 
Arabidopsis, including fad2 (Miquel et al., 1993),  acyl-lipid desaturase2 (ads2) (Chen and 
Thelen, 2013),  fad5 (Hugly and Somerville, 1992), fad6 (Hugly et al., 1989) and fad8 (Matsuda 
et al., 2005) were found to be sensitive to low temperature. In addition, overexpression of the 
FAD3 gene led to an increase in 18:3 fatty acid levels and an improvement in chilling tolerance in 
tomato (Yu et al., 2009). Arabidopsis mutants deficient in desaturation of fatty acids, such as fad6 
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(formerly referred to as fadcC)  (Hugly et al., 1989), fabB (Kunst et al., 1989a) and fad7fad8 
(Murakami et al., 2000) have been shown to be more tolerant to high temperature. All these studies 
illustrate a key role of FADs in adaptation to temperature stresses. Moreover, FADs are important 
in plant responses to other environmental stresses. For examples, Arabidopsis FAD2 and FAD6 
are required for salt tolerance (Zhang et al., 2009a, Zhang et al., 2012), and stearoyl-acyl carrier 
protein △9-desaturase6 (SAD6) and FAD3 are involved in drought and hypoxia response in 
Arabidopsis crown galls (Klinkenberg et al., 2014). Ectopic expression Brassica napus FAD3 or 
Arabidopsis FAD8 improved drought tolerance in tobacco (Zhang et al., 2005), whereas antisense 
expression of an Arabidopsis FAD7 compromised drought and salt tolerance in transgenic tobacco 
plants (Im et al., 2002).  
 
An alternative way to adjust membrane fatty acid composition and lipid content is to alter the 
balance between the parallel plastid and ER pathways of glycerolipid biosynthesis (Yu L, 2020). 
Reports from Li et al. (2015, 2016) provides good examples of how the two glycerolipid 
biosynthesis pathways cooperate to regulate the fatty acid composition in plant response to 
temperature stress. They found that low temperature enhanced the plastid pathway of galactolipid 
biosynthesis and conversely, high temperature enhanced the ER pathway. Consistent with these 
observations, a recent study found that the synthesis of glycerolipids via the plastid pathway was 
severely compromised, whereas lipid assembly via the ER pathway was slightly enhanced during 
moderate heat stress (Qin et al., 2020). Moreover, higher temperature caused an increase in the 
transport of DAG moieties with C16/C18 from the ER to the chloroplast for MGDG and DGDG 
biosynthesis at the expense of DAG moieties with C18/C18, while lower temperature resulted in 
the opposite (Li et al., 2015).  
 
Modifications of phospholipid composition  
 
An alternative route for lipid remodeling is the head group exchange among different lipid classes. 
Remodeling of head groups might lead to substantial changes in the proportion of different lipid 
classes, consequently altering the biochemical and physical properties of membranes. It may play 
important roles in plant adaptation to adverse environmental conditions by preventing the phase 
transition from a liquid-crystalline phase to a non-bilayer phase or hexagonal II (HII) phase. Large 
negative curvature favoring lipids such as PA, PE, PS and MGDG tend to form a HII phase or 
cubic phase, whereas small curvature favoring lipids such as PC, PG, PI, DGDG and SQDG tend 
to form bilayers (Jouhet, 2013). Extensive membrane lipid profiling analysis in different plant 
species showed dynamic lipid compositional changes under different stress conditions (Zheng et 
al., 2011, Degenkolbe et al., 2012, Li et al., 2015, Legeret et al., 2016, Narayanan et al., 2016, 
Marla et al., 2017, Djanaguiraman et al., 2018, Kenchanmane Raju et al., 2018, Guo et al., 2019). 
For example, PC and PE levels were found to decrease in response to low temperature in 
Arabidopsis (Kenchanmane Raju et al., 2018) and in response water stress in wheat seedlings 
(Wang et al., 2020), whereas increases in relative abundance of these lipids were found in most 
natural Arabidopsis accessions during cold acclimation (Degenkolbe et al., 2012) and in wheat 
leaf at 4 ℃(Li et al., 2015). Under high temperature stress, Narayanan et al. (2018) found that PC 
and PE generally decreased in wheat while Li et al. (2015) found that PC increased with no change 
in PE levels in leaves of Atriplex lentiformis. A significant increase in PC:PE ratio was observed 
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in wheat leaf and pollen at high temperatures (Narayanan et al., 2016, 2018). Higher PC:PE ratios 
may reduce the propensity of membrane to form non-bilayer phases (de Vries et al., 2004). 
However, changes of major phospholipids PC and PE are not very consistent under different 
stresses, probably due to dynamic turnover of these two lipids and differences in plant sources and 
growth conditions. PG levels were found to decrease consistently in Arabidopsis under low 
temperature with exception of one report, in which no significant changes were identified 
(Kenchanmane Raju et al., 2018). Increases in SQDG and PG levels were observed in grasses 
during drought stress (Perlikowski et al., 2016). Low temperature has been shown to activate 
phospholipase D (PLD) and diacylglycerol kinase (DGK) in Arabidopsis, leading to an increase 
in PA levels (Welti et al., 2002, Tan et al., 2018). Moreover, other environmental signals, including 
heat, drought, salinity, wounding, and pathogen attack, also can trigger a rapid synthesis of PA 
through activation of either PLD, the PLC/DGK pathway, or both. PA is not only a non-bilayer-
forming lipid but also a key signal molecule in stress responses (Mishkind et al., 2009, Testerink 
and Munnik, 2011, Hong et al., 2016, Yao and Xue, 2018).  
 
Modifications of galactolipid composition 
 
The most pronounced effect of temperature stress on lipid composition is changes in levels of 
MGDG and DGDG. As a non-bilayer lipid, MGDG was mostly found to decrease under cold, heat 
or drought stresses in different organisms such as Arabidopsis (Li et al., 2015, Arisz et al., 2018, 
Higashi et al., 2018), sorghum (Marla et al., 2017), wheat (Li et al., 2015), tomato (Spicher et al., 
2016), Chlamydomonas (Legeret et al., 2016), cowpea (Torres-Franklin et al., 2007) and 
Craterostigma plantagineum (Gasulla et al., 2013), while the bilayer-forming lipid DGDG was 
found to be increased. As a result, the ratio of DGDG to MGDG increased under these stress 
conditions. The DGDG to MGDG ratio is important for correct protein folding and insertion, 
chloroplast shape, JA production and intracellular protein trafficking in the chloroplast (Bruce, 
1998, Lin et al., 2016, Yu et al., 2020). Higher DGDG to MGDG ratios have been suggested to 
enhance the stability of the thylakoid membrane in response to abiotic stresses (Suss and 
Yordanov, 1986, Torres-Franklin et al., 2007, Wang et al., 2014, Zhang et al., 2019). Mutations 
in the DGDG synthase1 (DGD1) reduce DGDG level and the ratio of DGDG to MGDG, leading 
to impaired plant growth and photosynthetic efficiency (Dörmann et al., 1995) as well as decreased 
basal and acquired thermotolerance (Chen et al., 2006). In contrast, overexpressing a rice MGDG 
synthase1 (MGD1) in tobacco resulted in significantly higher MGDG and DGDG contents, higher 
DGDG-MGDG ratios and enhanced salt tolerance (Wang et al., 2014b).  
 
Several proteins including SFR2, PGD1, HIL1 and AGAP1 have been suggested to be involved in 
MGDG remodeling under various environmental stresses. The chloroplast localized SFR2 
converts MGDG to oligogalactolipids and DGDGs (Moellering et al., 2010). This mechanism of 
remodeling stabilizes chloroplast membranes by increasing the ratio of bilayer-forming to 
nonbilayer-forming galactolipids and by removing extra membrane lipids as the cytoplasm and 
chloroplast shrinks due to dehydration during freezing and salt stress (Moellering et al., 2010, 
Wang et al., 2016). Chlamydomonas PGD1 is involved in adjusting thylakoid membrane lipid 
levels, in particular the ratio of DGDG/MGDG in response to various environmental stresses (Du 
et al., 2018). Another chloroplastic MGDG lipase in Arabidopsis, HIL1, has been implicated in 
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enhancing thylakoid membrane stability in the response to heat, osmotic and high light stresses 
(Higashi et al., 2018). More importantly, galactolipid remodeling are closely linked to the 
biosynthesis of oxylipins, such as JA, 12-oxo-phytodienoic acid (OPDA) and dinor-OPDA 
(dnOPDA), which are important signaling compounds involved in various abiotic and biotic 
stresses (Wasternack and Hause, 2013, Kazan, 2015, Dolan, 2020, Monte et al., 2020). It is 
generally accepted that PUFAs (18:3, 16:3) released from galactolipids by acyl-hydrolyzing 
enzymes are the precursors of the JA and oxylipin pathway (Scherer et al., 2010, Deboever et al., 
2020). Two Arabidopsis PLA1 lipases, PLIP2 and PLIP3, were found to be capable of releasing 
PUFAs from the chloroplast membrane lipids (primary MGDG and PG, respectively) for JA 
production. Transcripts of PLIP2 and PLIP3 were induced by ABA and possibly by abiotic 
stresses, such as cold and drought, thus providing a mechanistic link between ABA-mediated 
abiotic stress responses and oxylipin signaling (Wang et al., 2018).  
 
Replacement of phospholipids with non-phosphorus lipids 
 
Under Pi starvation, membrane phospholipids are replaced by non-phosphorus lipids, typically 
DGDG and SQDG, to conserve Pi (Essigmann et al., 1998, Härtel et al., 2000, Yu et al., 2002). 
This is achieved via degradation of phospholipids such as PC and plastidic PG by phospholipases 
to release DAG and Pi, recycling of DAG for glycolipid synthesis and transfer of DGDG from the 
plastid envelope to extraplastidic membranes including the plasma membrane, the tonoplast and 
mitochondrial membranes (Jouhet et al., 2003, Andersson et al., 2005, Nakamura et al., 2005, 
Cruz-Ramirez et al., 2006, Li et al., 2006, Nakamura et al., 2009), likely via intraorganellar 
membrane contact sites (Michaud and Jouhet, 2019). 
 
The phospholipases involved in Pi starvation-induced phospholipid degradation include NPC4, 
NPC5, PLDζ1 and PLDζ2 (Nakamura et al., 2005, Cruz-Ramirez et al., 2006, Li et al., 2006, 
Gaude et al., 2008). PA, the product of the PLD-mediated phospholipid hydrolysis, can be further 
metabolized to generate DAG for DGDG biosynthesis by phosphatidic acid phosphatases (PAPs) 
including soluble phosphatide phosphohydrolases (PAHs) and membrane-bound PAP2 
(Nakamura, 2013). The Arabidopsis genome harbors two PAH genes, PAH1 and PAH2. Knockout 
of both genes resulted in reduced galactolipid level, increased PC content and impaired seedling 
growth under Pi starvation, suggesting a role of PAHs in Pi homeostasis (Nakamura et al., 2009). 
An alternative pathway involves PLB and glycerophosphodiester phosphodiesterase (GDPD) 
(Nakamura, 2013). GDPD removes alcohols from glycerophosphodiester (GPD) to generate G3P, 
which can enter the G3P stepwise acylation pathway to produce DAG and subsequently DGDG 
(Figure 2). 

Three isoforms, namely MGD1, 2 and 3, are responsible for MGDG synthesis in Arabidopsis 
(Awai et al., 2001). Among them, the ubiquitously expressed MGD1 is responsible for the bulk of 
MGDG synthesis in photosynthetic membrane under normal growth conditions. MGD2 and 
MGD3, on the other hand, are expressed mainly in flowers and roots. Both MGD2 and MGD3 are 
induced by Pi starvation (Awai et al., 2001) and knockout of both genes almost eliminates the 
ability of Arabidopsis roots to synthesize DGDG under Pi starvation, suggesting a major role of 
these two isoforms in membrane lipid remodeling (Kobayashi et al., 2009).   
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DGDG is synthesized by the enzyme DGDG synthase, which catalyzes a galactose from UDP-
galactose onto MGDG to produce DGDG (Dörmann et al., 1999). The Arabidopsis genome 
harbors two genes for DGDG synthesis, DGD1 and DGD2. Inactivation of DGD1 causes a 90% 
reduction in DGDG content, suggesting that this enzyme is dominant in DGDG synthesis under 
normal growth conditions (Dörmann et al., 1995). Both DGD1 and DGD2 transcript levels are 
upregulated under Pi-limiting conditions and gene knockout studies showed that both enzymes 
contribute to the synthesis of Pi starvation-induced DGDG synthesis at the outer envelope of 
chloroplasts (Härtel et al., 2000, Kelly and Dormann, 2002).  

Under Pi starvation conditions, a decrease in the chloroplast PG level was found to be accompanied 
by an increase in the amount of the sulfolipid SQDG (Essigmann et al., 1998, Yu et al., 2002). 
Although the metabolic basis underlying PG to SQDG conversion remains largely unknown, it has 
been reported that the expression of SQD1, which encodes a UDP-sulfoquinovose synthase 
catalyzing the limiting step in SQDG synthesis, is induced under Pi starvation (Essigmann et al., 
1998). Disruption of the sulfolipid synthase2 (SQD2), which catalyzes the transfer of 
sulfoquinovose from UDP-sulfoquinovose onto DAG, results in reduced growth under Pi-limiting 
conditions, suggesting an important role for PG to SQDG conversion in plant acclimation to Pi 
starvation (Yu et al., 2002). Interestingly, a recent study has shown that the conversion of PG to 
glycolipids also occurs in photosynthetic cells grown under low carbon dioxide (Jimbo et al., 
2021).       
  
Protection against lipotoxicity during stress-induced lipid remodeling 
 
Membrane lipid remodeling often results in the formation of cytotoxic lipid intermediates such as 
free fatty acids, DAG and other hydrolytic products as byproducts, and the accumulation of which 
can cause membrane disruption, oxidative stress and even cell death in a process collectively 
known as lipotoxicity (Garbarino et al., 2009, Petschnigg et al., 2009, Fan et al., 2013a, Fan et al., 
2017, Lu et al., 2020). During evolution, plants have acquired a series of adaptive mechanisms to 
combat lipotoxic stress, including sequestration of  toxic lipids as TAG inside LDs and avoiding 
excessive exposure of the cytoplasm to free fatty acids by facilitating their trafficking through 
membrane contacts and by LD-peroxisome connections (Xu et al., 2020).  
 
Many environmental factors can boost TAG accumulation in leaves (Lu et al., 2020), likely 
through regulating the expression of several key TAG biosynthesis genes (Figure 2). In line with 
this possibility, the DGAT1 transcript has been shown to be induced by ABA, high salinity, 
hyperosmotic stress, nitrogen deprivation, heat and cold (Yang et al., 2011, Kong et al., 2013, 
Higashi et al., 2015, Mueller et al., 2017, Arisz et al., 2018). PDAT1 expression was significantly 
induced by heat (Higashi et al., 2015), salt stress and drought (Yuan et al., 2017).  

As previously discussed, several enzymes, such as  AGAP1 (Nilsson et al., 2015), MGD1 (Du et 
al., 2018) and HIL1 (Higashi et al., 2018) are involved in the mobilization of unsaturation fatty 
acids from membrane lipids for TAG biosynthesis under stress conditions. SFR2 can generate a 
highly unsaturated pool of DAGs for TAG production by remodeling galactolipids in chloroplasts 
in response to freezing, drought and salt stress (Moellering et al., 2010, Wang et al., 2016). DGTT1 
is induced by heat stress and plays roles in the conversion of MGDG to TAG in heat-stressed cells 
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(Legeret et al., 2016). Deficiency in TAG synthesis leads to premature cell death when fatty acids 
are produced in excess of demand for membrane lipid synthesis (Fan et al., 2013a). 
Blocking TAG hydrolysis by disrupting SDP1 impairs fatty acid β-oxidation, alters membrane 
lipid homeostasis in Arabidopsis, increases TAG accumulation in LDs and thus significantly 
enhancing plant tolerance to extended darkness (Fan et al., 2014, Fan et al., 2017). Disruption of 
DGAT1- and PDAT1-mediated TAG synthesis impairs plant freezing and heat tolerance, 
respectively (Mueller et al., 2017, Arisz et al., 2018, Tan et al., 2018). Two dgat1 mutants have 
been shown to be more susceptible to drought stress than wild-type plants, suggesting that TAG 
accumulation in vegetative tissues is required for drought tolerance (Lee et al., 2019). Moreover, 
LD accumulation under salt stress exerts a positive impact on salt stress tolerance, likely through 
their involvement in providing fatty acids and enzymes to facilitate membrane reconstruction (You 
et al., 2019). However, artificially boosting TAG accumulation by overexpression of PDAT1 in 
Arabidopsis resulted in an increase in sensitivity to salt stress and extended darkness, probably 
because high TAG accumulation resulted in an increase in the flux of fatty acids into the β-
oxidation pathway, thereby enhancing ROS production (Yu et al., 2019).  

LDs can accumulate in chloroplasts as well as the cytoplasm under several stress conditions (Xu 
et al., 2020). Chloroplast LDs are often referred to as plastoglobules. They mainly consist of fatty 
acid phytyl esters, TAGs, carotenoids, tocopherols and quinones. By analogy with cytosolic lipid 
bodies, plastoglobules may act as a buffering reservoir for fatty acids during thylakoid membrane 
lipid remodeling (van Wijk and Kessler, 2017). Two plastoglobuli-localized proteins, phytyl ester 
synthases, PES1 and PES2, were found to contribute to the deposition of free phytol and fatty acids 
in the form of phytyl esters and TAGs, thus playing a role in maintaining the integrity of the 
photosynthetic membrane during senescence and abiotic stress (Lippold et al., 2012). There are 
seven plastoglobule-associated fibrillin (FIB) proteins found in Arabidopsis (Singh and McNellis, 
2011). Loss-of-function and transcriptional analysis of FIB1a, -1b, -2 suggested they are involved 
in plant stress responses (Singh and McNellis, 2011). Study of another plastoglobule protein FIB4 
revealed that deregulated plastoglobule accumulation results in broad stress sensitivity and altered 
photosynthetic activity (Singh et al., 2010). Plastoglobules are sites of initiation of JA biosynthesis, 
particularly during stress, by recycling of fatty acids from thylakoid lipids (van Wijk and Kessler, 
2017). FIB1a, -1b, and -2 condition JA production during low-temperature induced photooxidative 
stress (Youssef et al., 2010). Plastoglobule-localized kinases ABC1 domain containing kinase1 
(ABC1K1) and ABC1K3 are involved in adaptation of Arabidopsis to stresses and in thylakoid 
remodeling during growth (Lundquist et al., 2013).  
 
CONCLUSIONS AND FUTURE DIRECTIONS 
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The biochemical characterization of acyltransferases, desaturases and lipases involved in 
membrane lipid remodeling and genetic analysis of mutants defective in various steps in lipid 
modification pathways provide the mechanistic basis to further understand the processes and 
functions of membrane lipid remodeling during development and in response to stress. It is likely 
that the combined action of these enzymes regulates the physicochemical properties of membranes, 
including fluidity, thickness, phase behavior, permeability, lipid-protein interactions and stability 
of cellular membranes. These factors ultimately affect membrane-associated functions and 
ultimately physiological processes such as stress tolerance. However, details of how changes in 
membrane lipid composition and content affect plant physiology remain largely unknown. In 
addition, although significant progress has been made towards understanding the enzymes 
involved in PC and MGDG modifications, we are only beginning to understand the molecular 
machinery involved in remodeling of other membrane glycerolipids such as PE, PG, PI, PS and 
cardiolipin. Changes in membrane lipid composition and content have been reported under a wide 
variety of developmental and environmental conditions, but how plant cells sense their membrane 
lipid compositions and how such signals regulate the transcript levels and activities of enzymes 

involved in membrane remodeling remains to be 
explored. In this context, additional studies are needed to dissect the transcriptional and 
posttranslational mechanisms underlying the regulation of lipid modification enzymes such as 
LPCATs and SFR2. Furthermore, fatty acids form the building blocks of membrane lipids, storage 
TAG and plant surface lipids, but whether changes in levels of membrane lipids and TAG during 
lipid remodeling impact surface lipid metabolism and accumulation is presently unknown. Other 
issues requiring further investigation include 1) the molecular identity of lipases involved in PC 
diacylation; 2) the relative contribution of the LPCAT back reaction and PDAT1 to PC 
remodeling; 3) the physiological relevance of thylakoid membrane lipid remodeling and the roles 
of GPCAT, PDCAT and AGAP1 in lipid remodeling in photosynthetic cells; and 4) the 
contribution of intracellular lipid transport in membrane lipid remodeling and organellar-specific 
changes in membrane lipid composition. In addition to glycerolipids, our knowledge regarding 
how abiotic stresses affect sterol and sphingolipid content and composition, roles of sterols and 
sphingolipids in membrane microdomain formation and their functional relevance in stress 
tolerance is very limited. Addressing these issues will reveal novel aspects of lipid metabolism, 
lipid homeostasis and cellular mechanisms of stress tolerance, and will likely inform novel 

Box2: Open questions 

 How do changes in membrane lipid composition 
affect membrane physiological properties?    
 How do plant cells sense membrane lipid 
composition and relay the signals to regulate the 
activity of enzymes and the transcript levels of 
genes involved in lipid remodeling?  
 What are the molecular identities of 
phospholipases involved in PC acyl remodeling? 
 What are the roles of sterols and sphingolipids in 
membrane remodeling under stress?   
 What is the role of intracellular lipid transport in 
membrane lipid remodeling? 
 What are the mechanisms of PE, PI, PS and 
cardiolipin remodeling? 

Box1: Summary 

 Plant cells remodel their membrane lipid 
composition to maintain normal physicochemical 
properties and hence their many functions.  
 Membrane lipid remodeling can be achieved by 
modifying lipid head groups and/or their acyl 
chain length and degree of fatty acid unsaturation. 
 Acyltransferases, lipases and desaturases are key 
players in membrane remodeling. 
 Triacylglycerol metabolism plays an important 
role in membrane lipid remodeling by affecting 
acyl-CoA and DAG pools. 
 Membrane lipid remodeling plays a critical role 
in many aspects of lipid metabolism and stress 
tolerance. 
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strategies for crop improvement and other biotechnological applications such as enhancing TAG 
production in seeds and the vegetative tissues of plants.  
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