

Mechanisms and functions of membrane lipid remodeling in plants

L. Yu

To be published in "The Plant Journal"

April 2021

Biology Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Mechanisms and functions of membrane lipid remodeling in plants

Linhui Yu¹, Chao Zhou¹, Jilian Fan, John Shanklin and Changcheng Xu*

Biology Department, Brookhaven National Laboratory, Upton, NY 11973

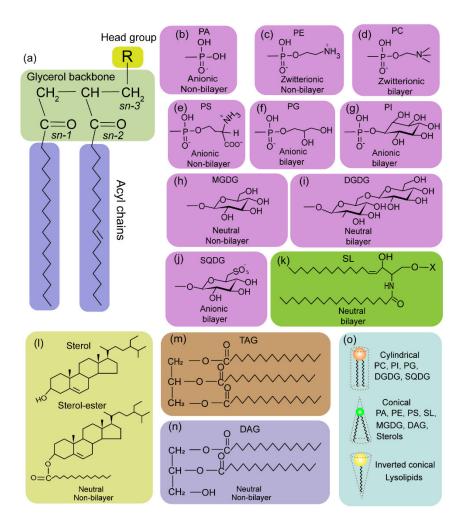
*Correspondence: <u>cxu@bnl.gov</u>

¹These authors contributed equally to this work.

SUMMARY

Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.

Keywords: membrane lipid, remodeling, lipase; acyltransferase, triacylglycerol, abiotic stress


INTRODUCTION

Biological membranes are essential components of living systems. They form a boundary between the cell and its environment, mediate intracellular signaling transduction and cell-to-cell communications and establish a selective permeable boundary that only allows certain molecules to enter or leave the cell. In eukaryotic organisms, membranes divide the cell into discrete subcellular compartments that segregate vital but, in many cases, incompatible metabolic reactions. The fundamental structure of cellular membranes is the bilayer comprising two sheets of lipid molecules, into which proteins with important functions such as enzymes in energy transducing systems, receptors and transporters are either partially or fully embedded. According to the fluid mosaic model (Singer and Nicolson, 1972), a critical property of biological membranes is that they are present in a fluid state in which lipids and proteins are loosely bound to one another via chemical interactions and individual molecules are generally able to rotate and move laterally. Such fluidity is important for membrane-associated functions such as transport, synthesis of biomolecules, energy transduction and cell signaling, and it is influenced by both temperature and lipid composition (Los and Murata, 2004, van Meer et al., 2008, Ernst et al., 2016).

In addition to their structural role, membrane lipids regulate the localization, structure and function of membrane proteins by lipid-lipid and lipid-protein interactions and by physical effects (van Meer *et al.*, 2008, Quinn, 2012, Nyholm, 2015, Harayama and Riezman, 2018). Some lipids can define membrane microdomains that serve as sorting platforms and hubs for cell signal transduction machinery for a wide range of metabolic processes (Sezgin *et al.*, 2017, Levental *et al.*, 2020). Lipids also play crucial roles in membrane fusion events critical for cell division, organelle proliferation and membrane trafficking (van Meer *et al.*, 2008, Harayama and Riezman, 2018). Further, some lipids are known to function directly in cell signal pathways as messengers or regulators (Sunshine and Iruela-Arispe, 2017).

Membrane lipids can be grouped into four major classes: phospholipids, glycolipids, sterols and sphingolipids (Figure 1) (Harayama and Riezman, 2018). Phospholipids and glycolipids are glycerol-based lipids consisting of two hydrophobic fatty acids attached to the sn-1 and sn-2 positions and a phosphate group or a sugar moiety to the sn-3 position of a glycerol backbone, respectively. The phosphate group of phospholipids can be modified by a polar alcohol such as choline, ethanolamine, glycerol, inositol and serine, which gives this class of lipids their names phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS), respectively. The fatty acids of phospholipids and glycolipids vary in chain length, the degree of saturation and double bond position. Phospholipids are the most abundant membrane lipids in both yeast and mammals. In photosynthetic tissues of plants, however. glycolipids including galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG) are far more abundant that phospholipids. Sterols are a subgroup of steroids with a characteristic structure consisting of four rings of carbon atoms, while sphingolipids are defined by the presence of a sphingoid-base covalently linked to a fatty acid via an amide bond. In addition to the structural diversity, the different classes of membrane lipids are not distributed equally among tissues, organelles or even between two leaflets of the same membrane, but rather have specific locations, and the collective action of their bulky lipids defines the identity and function of different organelles (van Meer *et al.*, 2008, Harayama and Riezman, 2018). For example, in plants, galactolipids are located exclusively in chloroplasts, while sterols and sphingolipids are enriched in lipid microdomains of the plasma membrane. Galactolipids play a key role in the biogenesis of photosynthetic membranes and are important for the optimal function of embedded photosynthetic pigment-protein complexes in higher plants (Kobayashi, 2016).

Lipids are the major determinants of the physicochemical properties of cellular membranes that in turn are crucial for membrane functions (Ernst et al., 2016, Harayama and Riezman, 2018). Both the nature of the glycerolipid head group and the length and degree of saturation of their acyl chains influence the membrane's physical properties such as fluidity, permeability, bilayer thickness, charge and intrinsic curvature of membranes. In this context, glycerolipids with a relatively large head group such as PC and DGDG approximate a cylindrical molecular shape and tend to form bilayer lipid phases with no curvature strain. In contrast, the shapes of PE and MGDG are more conical, due to the presence of relatively small head groups. They impose negative curvature stress on membranes and are prone to form non-bilayer lipid structures in membranes. Anionic lipids PG, SQDG, PI and PS are key determinants of membrane surface charge and hence play crucial roles in mediating lipid-protein interactions (Jouhet, 2013, Harayama and Riezman, 2018) (Figure 1). Sterols interact more favorably with saturated than with unsaturated acyl chains of phospholipids (Nystrom et al., 2010, Nyholm et al., 2019). These interactions regulate membrane fluidity, lipid bilayer stability and membrane microdomain formation. In addition to lipid class composition, membrane physical properties and function are also dependent on the fatty acid composition of lipid molecules. In general, lipids with saturated fatty acids decrease membrane fluidity due to the tight packing of straight saturated acyl tails and stronger interactions of saturated acyl chains with sterols. The packing of unsaturated lipids, on the other hand, increases membrane fluidity because cis double bonds create a rigid bend preventing tight packing of their fatty acids (Munro, 2003, Harayama and Riezman, 2018). In addition to the degree of fatty acid desaturation, their acyl chain length and their positional distribution on the glycerol backbone affect organization and dynamics of membranes.

Figure 1. Schematic representation of the chemical structures of membrane lipids and lipid molecular shapes. (a-n) Structures of membrane lipids. Membrane lipids are subdivided in four major categories: phospholipids (b-g), glycolipids (h-j), sphingolipids (a) and sterols (l). Triacylglycerol (TAG) is a storage glycerolipid (m). Classes of phospholipids are defined by the hydrophilic head groups (R) attached to the *sn-3* position of the glycerol backbone. Sphingolipids constitute a large category of lipids with diverse acyl chains and headgroups (X). (o) Schematic representation of lipid molecular shapes.

Membrane lipid compositions are determined by a range of metabolic processes including lipid biosynthesis, transport, turnover, remodeling and degradation. Glycerolipids are major structural components of cellular membranes. The enzymatic steps and pathways involved in glycerolipid biosynthesis are well defined and the mechanisms of lipid transport well studied. However, much less is known about the molecular processes underlying lipid modifications after their synthesis. This review will summarize our current knowledge about post-synthetic modifications of fatty acids and head groups, with a focus on the candidate enzymes involved in remodeling of acyl chains and head groups of glycerolipids. In addition, we will discuss the functional role of TAG metabolism in lipid remodeling. Finally, new information about the functions of membrane lipid remodeling will be summarized.

OVERVIEW OF GLYCEROLIPID BIOSYNTHESIS

Two parallel pathways compartmentalized in the plastid or the ER contribute to glycerolipid biosynthesis in plants (Figure 2). Fatty acids, the main component of glycerolipids, are almost exclusively synthesized in plastids. The end products of plastid fatty acid synthesis in order of abundance are mainly 18:1, 16:0 and 18:0 (the number of carbon atoms in the fatty acid chain: the number of double bonds). These fatty acids can be used inside the plastid to produce lysophosphatidic acid (LPA) and phosphatidic acid (PA) by the glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LPAAT), respectively. The resulting PA can be used to synthesize PG or be dephosphorylated by phosphatidic acid phosphatase (PAP) to produce diacylglycerol (DAG). DAG is as a precursor for glycolipid synthesis via the plastid pathway. Alternatively, fatty acids can be exported to the ER and used to synthesize LPA, PA and DAG by ER-resident GPAT, LPAAT and phosphatidic acid phosphohydrolase (PAH), respectively via the Kennedy pathway (Kennedy and Weiss, 1956). However, radiotracer labeling studies showed that most of nascent fatty acids exported from the plastid are first incorporated into PC through acyl remodeling (or editing) that allows the desaturation of PC-bound monosaturated fatty acids into polyunsaturated fatty acids (PUFAs) by ER-resident fatty acid desaturase 2 (FAD2) and FAD3 and the subsequent release of PUFAs for the synthesis of PA by ER-resident GPATS and LPAATs (Bates et al., 2007, Bates et al., 2009). PA and its dephosphorylated product DAG can serve as precursors for the synthesis of phospholipids in the ER. In addition, phospholipids assembled in the ER can return to the plastid to provide DAG moieties for the synthesis of galactolipids and SQDG in the plastid. Because the substrate specificity of plastid and ER LPAATs differs, glycerolipids assembled by the plastid and ER pathway contain fatty acids with 16 and 18 carbon chain lengths (C16 and C18) at the sn-2 position of the glycerol backbone, respectively. Another important feature of acyltransferases involved in PA synthesis is that GPATs prefer saturated fatty acids and fatty acids with one double bond. Therefore, the substrate specificity of acyltransferases, PC acyl remodeling and the balance between the plastid and ER pathways of thylakoid lipid synthesis influence the composition of glycerolipids in plant cell membranes.

DAG formed in the ER is also an immediate precursor for the acyl-CoA-dependent acylation by diacylglycerol acyltransferase (DGAT) at the *sn-3* position of the glycerol backbone to produce triacylglycerol (TAG) (Routaboul *et al.*, 1999, Zou *et al.*, 1999). TAG can also be produced by phospholipid:diacylglycerol acyltransferase (PDAT), which catalyzes the transfer of acyl groups from the *sn-2* position of PC to DAG to form TAG and lysophosphatidylcholine (LPC) (Dahlqvist *et al.*, 2000). Non-seed tissues such as leaves do not accumulate TAG to significant levels (Xu and Shanklin, 2016, Xu *et al.*, 2020), though they contain high TAG synthetic activities (Dahlqvist *et al.*, 2000).

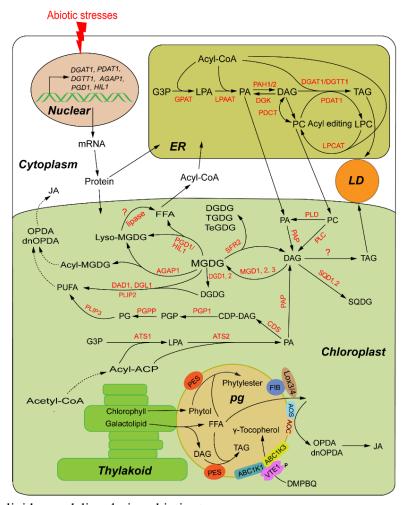


Figure 2 Membrane lipid remodeling during abiotic stresses.

Multiple abiotic stresses (cold, heat, drought or salt) induce the expression of genes encoding many enzymes, such as DGAT1, PDAT1, DGTT1, AGAP1, PGD1 and HIL1 in plants and algae. These transcripts are translated, and the corresponding proteins are translocated to the ER and chloroplasts, where they modify lipid composition to fine-tune plant responses to environmental cues. In the ER, glycerol lipids are synthesized through the Kennedy pathway and TAG are assembled by DGAT1, DGTT1 and PDAT1. PC can be used to generate DAG via PDCT. Acyl-CoA is incorporated into PC by acyl-editing reactions presumably via LPCATs. Stresses trigger the synthesis of PA through activating the hydrolysis of PC by PLD and/or phosphorylation of DAG by DGKs. PC and PA are imported from ER to chloroplast, where they are converted to DAG. MGDG is produced via the transfer of a galactose from UDP-galactose onto DAG by MGD enzymes. MGDG is subsequently converted to DGDG by DGD enzymes. Abiotic stresses activate enzymes such as SFR2, PGD1, HIL1, AGAP1, PLIP2, DAD1 and DGL1, which are involved in mobilization of unsaturation fatty acids from MGDG/DGDG for lipid remodeling and TAG and JA biosynthesis under stress conditions. FAs are synthesized in the plastid stroma from acetyl-CoA and incorporated to phospholipids through the plastid pathway. Abiotic stresses also trigger plastoglobule (pg) accumulation in chloroplasts. Stresses can cause thylakoid breakdown, leading to the release of FA, DAG and free phytol. Plastoglobule-localized PES1 and -2 convert phytol and FA into phytylesters as well as FA and DAG into TAG. Plastoglobules recruit enzymes of the jasmonate biosynthesis pathway, which redirects fatty acids from thylakoid lipids to JA production. ABC1K1 and ABC1K3 phosphorylate VTE1 to promote tocopherol production under high light. Question marks indicate the enzymes involved in the reactions remain to be determined.

CANDIDATE ENZYMES FOR MEMBRANE LIPID REMODELING

Glycerolipid remodeling can be achieved through modifications of acyl chains or head groups. Glycerolipid acyl remodeling is a process in which one or both fatty acids are exchanged, creating an intermediate lysophospholipid (LPL). Phospholipid acyl remodeling in animal systems is known as the Lands cycle (Lands, 1960), in which fatty acids attached to the *sn-2* position of phospholipids are liberated by phospholipases. The resultant LPLs can be reacylated by lysophospholipid acyltransferases to generate phospholipids with different fatty acids. Alternatively, processes of acyl remodeling can include an exchange of both acyl groups with a glycerophosphodiester or DAG intermediate. In addition, acyl exchange in transacylation reactions in which an acyl group is transferred from a phospholipid or a LPL donor to an LPL acceptor have also been reported (Yamashita *et al.*, 2014).

Lysophosphatidylcholine acyltransferase

So far, most of the knowledge regarding the mechanism of membrane lipid acyl remodeling is derived from studies on PC because of its central role in glycerolipid metabolism. First, PC is a site of fatty acid desaturation (Sperling and Heinz, 1993). Second, PC acyl remodeling serves as a dominant entry point for acyl groups exported from the plastid into the ER pathway (Bates et al., 2007, Bates et al., 2009). Third, PC remodeling provides a main source of fatty acids and DAG for TAG biosynthesis in developing seeds (Bates et al., 2009, Lu et al., 2009). Finally, DAG moieties derived from PC are important precursors for the synthesis of thylakoid lipids (Ohlrogge and Browse, 1995). In Arabidopsis, two lysophosphatidylcholine acyltransferases, namely LPCAT1 and LPCAT2, have been shown to play central roles in PC acyl remodeling in developing seeds (Wang et al., 2012) and leaves (Karki et al., 2019). These LPCAT enzymes catalyze the reacylation of LPC preferentially at the sn-2 position using fatty acids exported from the plastid (Bates et al., 2007, Bates et al., 2009). In vitro enzymatic assays, however, showed that LPCAT1 and LPCAT2 can catalyze the acylation of fatty acids at the sn-1 position of PC at a rate ranging from 15 to 70% of that of the sn-2 position (Lager et al., 2013). In addition, acyl substrate specificity analysis showed that LPCATs from five different plant species have a strong preference for C18-unsaturated acyl chains over 16:0 or unusual fatty acids (Lager et al., 2013).

The lipases responsible for removing fatty acids from PC to generate LPC substrate for LPCAT-catalyzed acylation in plants remain elusive. There are more than 200 genes annotated as lipases (Troncoso-Ponce *et al.*, 2013), but most of their functional roles remain uncertain. Two studies showed that *Fatty Acid Reducer* genes, which encode GDSL lipases, are involved in seed oil accumulation in Arabidopsis and *Brassica napus* (Chen *et al.*, 2012, Karunarathna *et al.*, 2020) Arabidopsis LPCAT enzymes have been shown to be able to catalyze the direct transfer of acyl groups of PC to free CoA in in vitro assays, leading to the generation of LPC and acyl-CoA (Lager *et al.*, 2013), but the functional significance of this observation requires further investigation. An alternative hypothesis is that PDAT is involved in the provision of LPC for LPCAT-catalyzed acylation (Lager *et al.*, 2013). In support of this possibility, LPC acylation reactions catalyzed by LPCAT1 and LPCAT2 have been shown to be critical for maintaining the supply of PC as an acyl donor in PDAT1-mediated TAG synthesis in developing seeds (Xu *et al.*, 2012).

Phospholipase

Phospholipases can be classified into A, B, C and D families based on the bond they hydrolyze within a phospholipid molecule (Hong *et al.*, 2016). Phospholipase A enzymes release the acyl chain at the *sn-1* or *sn-2* position to generate LPL. Phospholipase Bs (PLBs) hydrolyze acyl ester bonds at both the *sn-1* or *sn-2* position, whereas phospholipase C (PLC) and D (PLD) cleave the phosphodiester bond linked to the glycerol backbone and the polar head group to generate DAG and PA, respectively. Among the four phospholipase families, multiple forms of PLD, C, and A have been extensively characterized in plants and they have been implicated in the remodeling of membrane phospholipids and/or in the generation of signal lipids (Wang, 2001, Welti *et al.*, 2002, Nakamura, 2013, Hong *et al.*, 2016). Both transcript levels and protein abundance of non-specific PLCs (NPCs), namely NPC4 and NPC5, have been shown to be enhanced in plants starved for inorganic phosphate (Pi) (Andersson *et al.*, 2005, Nakamura *et al.*, 2005, Gaude *et al.*, 2008). In addition, transcript analysis has shown that, among 12 isoforms of PLDs, *PLDζ1* expression is increased in response to Pi starvation (Cruz-Ramirez *et al.*, 2006).

PG is the only phospholipid present in chloroplast photosynthetic membranes. Radiotracer pulse-chase labeling (Hellgren and Sandelius, 2001) and in vivo lipid 'tag and track' methods (Hurlock *et al.*, 2018) indicate that chloroplast PG undergoes extensive post-synthetic acyl remodeling, possibly due to its tight association with highly oxidative photosynthetic protein complexes (Hellgren and Sandelius, 2001). A plastid lipase1 (PLIP1) has recently been shown to be involved in acyl remodeling of PG, contributing to the export of acyl groups from plastids to TAG synthesis in developing seeds (Wang *et al.*, 2017, Aulakh and Durrett, 2019). PLIP1 is a phospholipase that specifically hydrolyzes polyunsaturated fatty acids from the *sn-1* position of plastid PG.

Galactolipase

Several acylhydrolases capable of releasing fatty acids from galactolipids have recently been identified in microalgae and higher plants. Among them, plastid galactolipid degradation1 (PGD1) was first reported in the green algae Chlamydomonas (Li *et al.*, 2012, Du *et al.*, 2018). The enzyme specifically hydrolyzes 18:1-containing MGDG but not MGDG containing polyunsaturated fatty acids. Disruption of PGD1 alters galactolipid content and acyl composition, suggesting a role of this lipase in acyl remodeling of de novo-synthesized chloroplast membrane lipids (Du *et al.*, 2018). Another chloroplast MGDG lipase in Arabidopsis, heat inducible lipase1 (HIL1), has been implicated in removing polyunsaturated acyl groups (18:3) from 34:6-MGDGs (Higashi *et al.*, 2018). Additionally, two closely related chloroplast-targeted lipases, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE1 (DGL1), have been reported to be involved in jasmonic acid (JA) biosynthesis in respond to wounding. DAD1 has weak galactolipase and strong PLA1 activities, while DGL1 has strong galactolipase and weak PLA1 activities (Ishiguro *et al.*, 2001, Hyun *et al.*, 2008, Ellinger *et al.*, 2010).

Glycerophosphocholine acyltransferase

Glycerophosphocholine acyltransferase (GPCAT) catalyzes the acylation of glycerol-3-phosphocholine (GPC), the product of complete PC deacylation, with acyl-CoA as acyl donor to generate LPC. Reacylation of LPC by LPCATs can lead to the formation of PC with new fatty acids. GPCAT activity has been demonstrated in cell-free extracts and microsomal fractions of yeast and plants (Stalberg *et al.*, 2008, Lager *et al.*, 2015). The yeast gene encoding GPCAT was identified by screening enzyme activities of extracts from a yeast knock-out library (Glab *et al.*, 2016). Loss of GPCAT affects PC fatty acid profiles, suggesting a role of this enzyme in post-synthetic acyl remodeling of PC (Anaokar *et al.*, 2019). The plant GPCAT has been shown to exhibit broad substrate specificity for acyl donors (Glab *et al.*, 2016). The plant GPCAT can also catalyze transacylation from LPC and lysophosphatidylethanolamine (LPE) to GPC, suggesting a role of this enzyme in acyl group exchange between PC and PE. In yeast, the B type of phospholipases (PLBs) deacylate PC to form free fatty acids and GPC (Lee *et al.*, 1994). The pathways and enzymes involved in GPC formation and the exact functional role of GPCAT remain to be established in plants.

Fatty acid desaturase

The desaturation of acyl chains of glycerolipids to polyunsaturated forms typical of cellular membranes occurs in both the plastids and ER by membrane-bound fatty acid desaturates (FADs) (Browse and Somerville, 1991, Shanklin and Cahoon, 1998). In the plastid, FAD4 and FAD5 are specifically responsible for the conversion of 16:0 of PG to *trans*-palmitoleic acid (*t*16:1) and 16:0 of MGDG to 16:1, palmitoleic acid, respectively (Browse *et al.*, 1985, Kunst *et al.*, 1989b). The generation of fatty acids with two double bonds in all plastidic glycerolipids is catalyzed by FAD6 (Browse *et al.*, 1989) and further desaturation of 16:2 and 18:2 to 16:3 and 18:3 is catalyzed by either FAD7 or FAD8 isozymes (Iba *et al.*, 1993, McConn *et al.*, 1994). In extraplastidic membranes, two ER-desaturases FAD2 and FAD3 are responsible for converting 18:1 in glycerolipid substrates to 18:2 and 18:3, respectively (Miquel and Browse, 1992, Browse *et al.*, 1993).

Phosphatidylcholine:diacylglycerol cholinephosphotransferase

Phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT) catalyzes the headgroup exchange between PC and DAG (Lu et al., 2009). Genetic evidence suggest that the main function of this enzyme is to facilitate further desaturation of the 18:1-containing DAG produced by the Kennedy pathway on PC and the subsequent release of polyunsaturated DAG for TAG synthesis in developing seeds (Lu et al., 2009, Bates et al., 2012). Consequently, disruption of PDCT results in a 40% reduction in polyunsaturated seed fatty acid content (Lu et al., 2009) and combined disruption of LPCAT1, LPCAT2 and PDCT reduces the levels of polyunsaturated fatty acids by 66% (Bates et al., 2012). The PDCT gene is expressed in both seeds and non-seed tissues, but a nonsense mutation in PDCT (also known as ROD1) has no obvious effects on lipid and fatty acid composition of leaves (Lu et al., 2009), hinting at a possible role of PDCT in the remodeling of membrane lipids in vegetative tissues under stress conditions (Lu et al., 2009).

Sensitive to freezing2

The sensitive to freezing (SFR2) gene was discovered in a genetic screen for Arabidopsis mutants sensitive to freezing (Warren et al., 1996). The SFR2 protein was originally described as a family I glycosyl-hydrolase (Thorlby et al., 2004). Later on, Moellering et al. (Moellering et al., 2010) found that SFR2 is a galactolipid:galactolipid galactosyl transferase originally reported in isolated chloroplasts (Heemskerk et al., 1987, Heemskerk et al., 1988), that is capable of processively transferring galactosyl residues from MGDG to a second galactolipid acceptor, forming DGDG and oligogalactolipids with DAG as a by-product (Moellering et al., 2010) (Figure 2). SFR2 is a membrane protein associated with the chloroplast outer envelope (Roston et al., 2014) and its activity increases in response to freezing and ozone fumigation (Sakaki et al., 1990a, Moellering et al., 2010) and in Arabidopsis mutants defective in ER-to-plastid lipid trafficking (Xu et al., 2003, Awai et al., 2006, Lu et al., 2007, Xu et al., 2008, Fan et al., 2015).

Acylated galactolipid-associated phospholipase

Acylated galactolipid-associated phospholipase1 (AGAP1) transfers a fatty acid from one MGDG molecule to the galactose residue in another MGDG, thereby producing acyl-MGDG and lyso-MGDG (Nilsson *et al.*, 2015). Acyl-MGDGs, predominantly 18:3-MGDG, were found to accumulate in plant tissues in response to abiotic or biotic stress (Vu *et al.*, 2014b, Nilsson *et al.*, 2015). In Arabidopsis, acyl-MGDGs frequently contains oxidized fatty acids in the form of the JA precursor 12-oxo-phytodienoic acid (OPDA) (Kourtchenko *et al.*, 2007). In contrast to acyl-MGDGs, lyso-MGDGs do not accumulate, indicating they are either rapidly hydrolyzed to release fatty acids that could potentially end up in TAGs via PC remodeling, or reacylated to form MGDGs (Mueller *et al.*, 2017) (Figure 2). Like SFR2, the Arabidopsis AGAP1 is localized to the chloroplast envelope membranes (Nilsson *et al.*, 2015).

ROLE OF TRIACYLGLYCEROL METABOLISM IN MEMBRANE LIPID REMODELING

Both TAG and phospholipid synthesis occur in the ER where they share the same acyl-CoA pools derived from acyl remodeling of PC and possibly the same DAG pool also. Therefore, it is reasonable to expect that the rate of TAG synthesis and the activity of the TAG assembly enzymes may affect membrane lipid synthesis via their effects on acyl-CoA and DAG pools.

In plants, both the acyl-CoA-dependent reactions catalyzed by DGATs and the acyl-CoA-independent processes catalyzed by PDATs contribute to TAG synthesis (Zhang et al., 2009b). At least four types of DGATs, namely integral membrane proteins DGAT1 and DGAT2, soluble DGAT3 and multifunctional acyltransferases have been implicated in TAG synthesis in plants (Xu et al., 2020). Among these enzymes, DGAT1 prefers saturated and very long-chain acyl groups over polyunsaturated acyl chains (Katavic et al., 1995), DGAT2 prefers unsaturated acyl species over saturated ones (Zhou et al., 2013, Ayme et al., 2014) and DGAT3 has higher preference for polyunsaturated fatty acids (Hernandez et al., 2012). Therefore, the relative contributions of DGAT1, DGAT2 and DGAT3 to TAG synthesis may affect the composition of acyl-CoA pools and thus the fatty acid composition of membrane lipids. The rate of PDAT1-mediated TAG synthesis has been shown to be highest towards phospholipids containing polyunsaturated fatty acids or oxygenated acyl groups (Stahl et al., 2004). Thus, increasing PDAT1 activity may be expected to cause decreases in membrane lipid content and the polyunsaturated fatty acids of

membrane lipids. Indeed, overexpression of PDAT1 in Arabidopsis has been shown to cause a decrease of 18:3 in major membrane lipids such as PC, PE, DGDG and MGDG (Fan *et al.*, 2013a, Fan *et al.*, 2013b).

In plants and other eukaryotes, TAGs synthesized in the ER are packaged into dynamic subcellular structures named lipid droplets (LD) for subsequent use as a source of fatty acids for energy production or for membrane biogenesis (Chapman et al., 2012, Xu et al., 2020). The metabolic breakdown of TAG stored in LDs for energy production can proceed via cytosolic lipolysis and lipophagy (Fan et al., 2019, Xu et al., 2020). During cytosolic lipolysis, TAG lipases such as SUGAR-DEPNDENT1 (SDP1) hydrolyze TAGs to release free fatty acids in the cytoplasm (Eastmond, 2006) and the resulting fatty acids are imported into peroxisomes by PEROXISOMAL ABC TRANSPORTER1 (PXA1) to enter the β-oxidation pathway (Zolman et al., 2001). Alternatively, LDs can be delivered by autophagy into vacuoles, where resident lipases degrade TAGs in LDs into free fatty acids (Fan et al., 2019). The released fatty acids can be exported into the cytosol to be used for TAG synthesis or as substrates for peroxisomal β-oxidation (Zechner et al., 2017). In addition to TAG, membrane lipids can serve as a source of fatty acids for energy production via β-oxidation in peroxisomes under stress conditions such as dark-induced starvation (Kunz et al., 2009; Fan et al., 2017). In this scenario, fatty acids released from membrane lipids are first incorporated into TAGs and stored in LDs. TAGs in LDs are then hydrolyzed by SDP1 and the released fatty acids are imported into peroxisomes by PXA1 prior to being used for energy production via β-oxidation (Fan et al., 2014, Yu et al., 2018). Since activation of free fatty acids into acyl-CoA esters by cytosolic acyl-CoA synthases is a prerequisite for entry of fatty acids into peroxisomes (De Marcos Lousa et al., 2013), activities of cytosolic acyl-CoA synthases, SDP1, PXA1 and lipophagy may impact the composition and content of cytosolic acyl-CoA pools, thereby effecting membrane lipid synthesis. In support of this possibility, Arabidopsis mutants lacking PXA1 accumulate acyl-CoAs (Footitt et al., 2002) and blocking the β-oxidation pathway results in changes in membrane lipid content and its fatty acid composition (Fan et al., 2014, Yu et al., 2018).

TRANSCRIPTIONAL AND POSTTRANSCRIPTIONAL REGULATION OF LIPID REMODELING

The transcript abundance of several enzymes involved in lipid remodeling varies across different tissues and cell types, and in response to developmental and environmental cues (Kargiotidou *et al.*, 2008, Fan *et al.*, 2014, Higashi *et al.*, 2015, Dar *et al.*, 2017, Yuan *et al.*, 2017, Arisz *et al.*, 2018). These results hint at the possible involvement of transcriptional networks in regulating membrane lipid remodeling. In support of this possibility, a transcription factor MYB96 has been suggested to mediate abscisic acid (ABA)-dependent TAG accumulation in vegetative tissues under drought stress through the transcriptional regulation of DGAT1 and PDAT1 (Lee *et al.*, 2019). In addition, ABSCISIC ACID INSENSITVE 4 (ABI4), a transcription factor in ABA signaling, has been implicated in regulating the *DGAT1* transcript abundance under stress conditions (Yang *et al.*, 2011, Kong *et al.*, 2013). Further, both *cis*-regulatory elements and transcription factors are involved in the regulation of *FAD2* and *FAD3* expression (Dar *et al.*, 2017, He *et al.*, 2020).

Mammalian LPCATs can be regulated by posttranslational modifications such as phosphorylation (Morimoto *et al.*, 2010), but no information is available regarding the regulation of plant LPCATs at either the transcriptional or posttranscriptional level. On the other hand, posttranscriptional mechanisms have also been suggested to be involved in regulating the activities of FAD2 (Dar *et al.*, 2017), DGAT1 (Caldo *et al.*, 2018) and phospholipases (Singh *et al.*, 2015). Similarly, the *SFR2* gene is constitutively expressed in various plant tissues and both SFR2 mRNA and protein levels remain constant during development and in response to abiotic stress (Thorlby *et al.*, 2004, Wang *et al.*, 2016). Various factors, including cytoplasmic acidification (Barnes *et al.*, 2016), MgCl₂ (Heemskerk *et al.*, 1987, Barnes *et al.*, 2016) and free fatty acids (Sakaki *et al.*, 1990b, Fan *et al.*, 2015), have been implicated in the regulation of SFR2 activity.

CONSEQUENCES OF MEMBRANE LIPID REMODELING

The ability to remodel membrane lipid composition in response to environmental and developmental cues is important for development, biomass production and plant survival. One of key biological roles for membrane lipid remodeling is to adjust membrane physiochemical properties to optimize its functions with respect to a new set of conditions (Moellering and Banning, 2011, Patton-Vogt and de Kroon, 2020). In addition, emerging evidence suggests that glycerolipid acyl remodeling plays important roles in removing oxidized or damaged acyl chains, sequestering cytotoxic fatty acids, releasing signaling lipids and in stress responses (Hermansson *et al.*, 2011, Nakamura, 2013, Vu *et al.*, 2014a, Renne *et al.*, 2015, Patton-Vogt and de Kroon, 2020). In plants, PC remodeling has been implicated in fatty acid desaturation and the subsequent release of desaturated fatty acids and DAG for membrane lipid and TAG synthesis (Bates *et al.*, 2013, Li-Beisson *et al.*, 2013). For more detailed information on membrane lipid remodeling and its function under abiotic stresses, the reader is directed to several recent reviews (Nakamura, 2013, Yang and Benning, 2018, Guo *et al.*, 2019, Lu *et al.*, 2020).

Modifications of glycerolipid desaturation

One of the most intensively studied mechanisms of lipid remodeling involves modifications of the acyl chain profile, particularly the degree of desaturation of glycerolipids in response to changes in temperature and many other environmental challenges. In general, organisms increase acyl desaturation at lower temperatures while decreasing it at higher temperatures to counteract effects of temperature variations on membrane fluidity (Ernst *et al.*, 2016). This phenomenon has been demonstrated in many studies (Hugly *et al.*, 1989, Kunst *et al.*, 1989a, Wada *et al.*, 1990, Hugly and Somerville, 1992, Welti *et al.*, 2002, Falcone *et al.*, 2004, Chen *et al.*, 2006, Qin *et al.*, 2020). A similar link between the degree of acyl desaturation and plant stress tolerance has been reported for plants under drought and salt conditions (Gigon *et al.*, 2004, Zhang *et al.*, 2005, Liu *et al.*, 2013, Li *et al.*, 2014, Sui and Han, 2014, Sui *et al.*, 2018). A series of desaturase mutants in Arabidopsis, including *fad2* (Miquel *et al.*, 1993), *acyl-lipid desaturase2* (*ads2*) (Chen and Thelen, 2013), *fad5* (Hugly and Somerville, 1992), *fad6* (Hugly *et al.*, 1989) and *fad8* (Matsuda *et al.*, 2005) were found to be sensitive to low temperature. In addition, overexpression of the *FAD3* gene led to an increase in 18:3 fatty acid levels and an improvement in chilling tolerance in tomato (Yu *et al.*, 2009). *Arabidopsis* mutants deficient in desaturation of fatty acids, such as *fad6*

(formerly referred to as fadcC) (Hugly et al., 1989), fabB (Kunst et al., 1989a) and fad7fad8 (Murakami et al., 2000) have been shown to be more tolerant to high temperature. All these studies illustrate a key role of FADs in adaptation to temperature stresses. Moreover, FADs are important in plant responses to other environmental stresses. For examples, Arabidopsis FAD2 and FAD6 are required for salt tolerance (Zhang et al., 2009a, Zhang et al., 2012), and stearoyl-acyl carrier protein Δ^9 -desaturase6 (SAD6) and FAD3 are involved in drought and hypoxia response in Arabidopsis crown galls (Klinkenberg et al., 2014). Ectopic expression Brassica napus FAD3 or Arabidopsis FAD8 improved drought tolerance in tobacco (Zhang et al., 2005), whereas antisense expression of an Arabidopsis FAD7 compromised drought and salt tolerance in transgenic tobacco plants (Im et al., 2002).

An alternative way to adjust membrane fatty acid composition and lipid content is to alter the balance between the parallel plastid and ER pathways of glycerolipid biosynthesis (Yu L, 2020). Reports from Li et al. (2015, 2016) provides good examples of how the two glycerolipid biosynthesis pathways cooperate to regulate the fatty acid composition in plant response to temperature stress. They found that low temperature enhanced the plastid pathway of galactolipid biosynthesis and conversely, high temperature enhanced the ER pathway. Consistent with these observations, a recent study found that the synthesis of glycerolipids via the plastid pathway was severely compromised, whereas lipid assembly via the ER pathway was slightly enhanced during moderate heat stress (Qin *et al.*, 2020). Moreover, higher temperature caused an increase in the transport of DAG moieties with C16/C18 from the ER to the chloroplast for MGDG and DGDG biosynthesis at the expense of DAG moieties with C18/C18, while lower temperature resulted in the opposite (Li *et al.*, 2015).

Modifications of phospholipid composition

An alternative route for lipid remodeling is the head group exchange among different lipid classes. Remodeling of head groups might lead to substantial changes in the proportion of different lipid classes, consequently altering the biochemical and physical properties of membranes. It may play important roles in plant adaptation to adverse environmental conditions by preventing the phase transition from a liquid-crystalline phase to a non-bilayer phase or hexagonal II (HII) phase. Large negative curvature favoring lipids such as PA, PE, PS and MGDG tend to form a HII phase or cubic phase, whereas small curvature favoring lipids such as PC, PG, PI, DGDG and SQDG tend to form bilayers (Jouhet, 2013). Extensive membrane lipid profiling analysis in different plant species showed dynamic lipid compositional changes under different stress conditions (Zheng et al., 2011, Degenkolbe et al., 2012, Li et al., 2015, Legeret et al., 2016, Narayanan et al., 2016, Marla et al., 2017, Djanaguiraman et al., 2018, Kenchanmane Raju et al., 2018, Guo et al., 2019). For example, PC and PE levels were found to decrease in response to low temperature in Arabidopsis (Kenchanmane Raju et al., 2018) and in response water stress in wheat seedlings (Wang et al., 2020), whereas increases in relative abundance of these lipids were found in most natural Arabidopsis accessions during cold acclimation (Degenkolbe et al., 2012) and in wheat leaf at 4 °C(Li et al., 2015). Under high temperature stress, Narayanan et al. (2018) found that PC and PE generally decreased in wheat while Li et al. (2015) found that PC increased with no change in PE levels in leaves of Atriplex lentiformis. A significant increase in PC:PE ratio was observed

in wheat leaf and pollen at high temperatures (Narayanan *et al.*, 2016, 2018). Higher PC:PE ratios may reduce the propensity of membrane to form non-bilayer phases (de Vries *et al.*, 2004). However, changes of major phospholipids PC and PE are not very consistent under different stresses, probably due to dynamic turnover of these two lipids and differences in plant sources and growth conditions. PG levels were found to decrease consistently in Arabidopsis under low temperature with exception of one report, in which no significant changes were identified (Kenchanmane Raju *et al.*, 2018). Increases in SQDG and PG levels were observed in grasses during drought stress (Perlikowski *et al.*, 2016). Low temperature has been shown to activate phospholipase D (PLD) and diacylglycerol kinase (DGK) in Arabidopsis, leading to an increase in PA levels (Welti *et al.*, 2002, Tan *et al.*, 2018). Moreover, other environmental signals, including heat, drought, salinity, wounding, and pathogen attack, also can trigger a rapid synthesis of PA through activation of either PLD, the PLC/DGK pathway, or both. PA is not only a non-bilayer-forming lipid but also a key signal molecule in stress responses (Mishkind *et al.*, 2009, Testerink and Munnik, 2011, Hong *et al.*, 2016, Yao and Xue, 2018).

Modifications of galactolipid composition

The most pronounced effect of temperature stress on lipid composition is changes in levels of MGDG and DGDG. As a non-bilayer lipid, MGDG was mostly found to decrease under cold, heat or drought stresses in different organisms such as Arabidopsis (Li et al., 2015, Arisz et al., 2018, Higashi et al., 2018), sorghum (Marla et al., 2017), wheat (Li et al., 2015), tomato (Spicher et al., 2016), Chlamydomonas (Legeret et al., 2016), cowpea (Torres-Franklin et al., 2007) and Craterostigma plantagineum (Gasulla et al., 2013), while the bilayer-forming lipid DGDG was found to be increased. As a result, the ratio of DGDG to MGDG increased under these stress conditions. The DGDG to MGDG ratio is important for correct protein folding and insertion, chloroplast shape, JA production and intracellular protein trafficking in the chloroplast (Bruce, 1998, Lin et al., 2016, Yu et al., 2020). Higher DGDG to MGDG ratios have been suggested to enhance the stability of the thylakoid membrane in response to abiotic stresses (Suss and Yordanov, 1986, Torres-Franklin et al., 2007, Wang et al., 2014, Zhang et al., 2019). Mutations in the DGDG synthase1 (DGD1) reduce DGDG level and the ratio of DGDG to MGDG, leading to impaired plant growth and photosynthetic efficiency (Dörmann et al., 1995) as well as decreased basal and acquired thermotolerance (Chen et al., 2006). In contrast, overexpressing a rice MGDG synthase1 (MGD1) in tobacco resulted in significantly higher MGDG and DGDG contents, higher DGDG-MGDG ratios and enhanced salt tolerance (Wang et al., 2014b).

Several proteins including SFR2, PGD1, HIL1 and AGAP1 have been suggested to be involved in MGDG remodeling under various environmental stresses. The chloroplast localized SFR2 converts MGDG to oligogalactolipids and DGDGs (Moellering et al., 2010). This mechanism of remodeling stabilizes chloroplast membranes by increasing the ratio of bilayer-forming to nonbilayer-forming galactolipids and by removing extra membrane lipids as the cytoplasm and chloroplast shrinks due to dehydration during freezing and salt stress (Moellering *et al.*, 2010, Wang *et al.*, 2016). Chlamydomonas PGD1 is involved in adjusting thylakoid membrane lipid levels, in particular the ratio of DGDG/MGDG in response to various environmental stresses (Du *et al.*, 2018). Another chloroplastic MGDG lipase in Arabidopsis, HIL1, has been implicated in

enhancing thylakoid membrane stability in the response to heat, osmotic and high light stresses (Higashi *et al.*, 2018). More importantly, galactolipid remodeling are closely linked to the biosynthesis of oxylipins, such as JA, 12-oxo-phytodienoic acid (OPDA) and dinor-OPDA (dnOPDA), which are important signaling compounds involved in various abiotic and biotic stresses (Wasternack and Hause, 2013, Kazan, 2015, Dolan, 2020, Monte *et al.*, 2020). It is generally accepted that PUFAs (18:3, 16:3) released from galactolipids by acyl-hydrolyzing enzymes are the precursors of the JA and oxylipin pathway (Scherer *et al.*, 2010, Deboever *et al.*, 2020). Two Arabidopsis PLA1 lipases, PLIP2 and PLIP3, were found to be capable of releasing PUFAs from the chloroplast membrane lipids (primary MGDG and PG, respectively) for JA production. Transcripts of PLIP2 and PLIP3 were induced by ABA and possibly by abiotic stresses, such as cold and drought, thus providing a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling (Wang *et al.*, 2018).

Replacement of phospholipids with non-phosphorus lipids

Under Pi starvation, membrane phospholipids are replaced by non-phosphorus lipids, typically DGDG and SQDG, to conserve Pi (Essigmann et al., 1998, Härtel et al., 2000, Yu et al., 2002). This is achieved via degradation of phospholipids such as PC and plastidic PG by phospholipases to release DAG and Pi, recycling of DAG for glycolipid synthesis and transfer of DGDG from the plastid envelope to extraplastidic membranes including the plasma membrane, the tonoplast and mitochondrial membranes (Jouhet *et al.*, 2003, Andersson *et al.*, 2005, Nakamura *et al.*, 2005, Cruz-Ramirez *et al.*, 2006, Li *et al.*, 2006, Nakamura *et al.*, 2009), likely via intraorganellar membrane contact sites (Michaud and Jouhet, 2019).

The phospholipases involved in Pi starvation-induced phospholipid degradation include NPC4, NPC5, PLDζ1 and PLDζ2 (Nakamura *et al.*, 2005, Cruz-Ramirez *et al.*, 2006, Li *et al.*, 2006, Gaude *et al.*, 2008). PA, the product of the PLD-mediated phospholipid hydrolysis, can be further metabolized to generate DAG for DGDG biosynthesis by phosphatidic acid phosphatases (PAPs) including soluble phosphatide phosphohydrolases (PAHs) and membrane-bound PAP2 (Nakamura, 2013). The Arabidopsis genome harbors two *PAH* genes, *PAH1* and *PAH2*. Knockout of both genes resulted in reduced galactolipid level, increased PC content and impaired seedling growth under Pi starvation, suggesting a role of PAHs in Pi homeostasis (Nakamura *et al.*, 2009). An alternative pathway involves PLB and glycerophosphodiester phosphodiesterase (GDPD) (Nakamura, 2013). GDPD removes alcohols from glycerophosphodiester (GPD) to generate G3P, which can enter the G3P stepwise acylation pathway to produce DAG and subsequently DGDG (Figure 2).

Three isoforms, namely MGD1, 2 and 3, are responsible for MGDG synthesis in Arabidopsis (Awai *et al.*, 2001). Among them, the ubiquitously expressed *MGD1* is responsible for the bulk of MGDG synthesis in photosynthetic membrane under normal growth conditions. *MGD2* and *MGD3*, on the other hand, are expressed mainly in flowers and roots. Both *MGD2* and *MGD3* are induced by Pi starvation (Awai *et al.*, 2001) and knockout of both genes almost eliminates the ability of Arabidopsis roots to synthesize DGDG under Pi starvation, suggesting a major role of these two isoforms in membrane lipid remodeling (Kobayashi *et al.*, 2009).

DGDG is synthesized by the enzyme DGDG synthase, which catalyzes a galactose from UDP-galactose onto MGDG to produce DGDG (Dörmann *et al.*, 1999). The Arabidopsis genome harbors two genes for DGDG synthesis, *DGD1* and *DGD2*. Inactivation of DGD1 causes a 90% reduction in DGDG content, suggesting that this enzyme is dominant in DGDG synthesis under normal growth conditions (Dörmann *et al.*, 1995). Both *DGD1* and *DGD2* transcript levels are upregulated under Pi-limiting conditions and gene knockout studies showed that both enzymes contribute to the synthesis of Pi starvation-induced DGDG synthesis at the outer envelope of chloroplasts (Härtel *et al.*, 2000, Kelly and Dormann, 2002).

Under Pi starvation conditions, a decrease in the chloroplast PG level was found to be accompanied by an increase in the amount of the sulfolipid SQDG (Essigmann *et al.*, 1998, Yu *et al.*, 2002). Although the metabolic basis underlying PG to SQDG conversion remains largely unknown, it has been reported that the expression of *SQD1*, which encodes a UDP-sulfoquinovose synthase catalyzing the limiting step in SQDG synthesis, is induced under Pi starvation (Essigmann *et al.*, 1998). Disruption of the sulfolipid synthase2 (SQD2), which catalyzes the transfer of sulfoquinovose from UDP-sulfoquinovose onto DAG, results in reduced growth under Pi-limiting conditions, suggesting an important role for PG to SQDG conversion in plant acclimation to Pi starvation (Yu *et al.*, 2002). Interestingly, a recent study has shown that the conversion of PG to glycolipids also occurs in photosynthetic cells grown under low carbon dioxide (Jimbo *et al.*, 2021).

Protection against lipotoxicity during stress-induced lipid remodeling

Membrane lipid remodeling often results in the formation of cytotoxic lipid intermediates such as free fatty acids, DAG and other hydrolytic products as byproducts, and the accumulation of which can cause membrane disruption, oxidative stress and even cell death in a process collectively known as lipotoxicity (Garbarino *et al.*, 2009, Petschnigg *et al.*, 2009, Fan *et al.*, 2013a, Fan *et al.*, 2017, Lu *et al.*, 2020). During evolution, plants have acquired a series of adaptive mechanisms to combat lipotoxic stress, including sequestration of toxic lipids as TAG inside LDs and avoiding excessive exposure of the cytoplasm to free fatty acids by facilitating their trafficking through membrane contacts and by LD-peroxisome connections (Xu *et al.*, 2020).

Many environmental factors can boost TAG accumulation in leaves (Lu *et al.*, 2020), likely through regulating the expression of several key TAG biosynthesis genes (Figure 2). In line with this possibility, the *DGAT1* transcript has been shown to be induced by ABA, high salinity, hyperosmotic stress, nitrogen deprivation, heat and cold (Yang *et al.*, 2011, Kong *et al.*, 2013, Higashi *et al.*, 2015, Mueller *et al.*, 2017, Arisz *et al.*, 2018). *PDAT1* expression was significantly induced by heat (Higashi *et al.*, 2015), salt stress and drought (Yuan *et al.*, 2017).

As previously discussed, several enzymes, such as AGAP1 (Nilsson *et al.*, 2015), MGD1 (Du *et al.*, 2018) and HIL1 (Higashi *et al.*, 2018) are involved in the mobilization of unsaturation fatty acids from membrane lipids for TAG biosynthesis under stress conditions. SFR2 can generate a highly unsaturated pool of DAGs for TAG production by remodeling galactolipids in chloroplasts in response to freezing, drought and salt stress (Moellering *et al.*, 2010, Wang *et al.*, 2016). DGTT1 is induced by heat stress and plays roles in the conversion of MGDG to TAG in heat-stressed cells

(Legeret *et al.*, 2016). Deficiency in TAG synthesis leads to premature cell death when fatty acids are produced in excess of demand for membrane lipid synthesis (Fan *et al.*, 2013a). Blocking TAG hydrolysis by disrupting SDP1 impairs fatty acid β-oxidation, alters membrane lipid homeostasis in Arabidopsis, increases TAG accumulation in LDs and thus significantly enhancing plant tolerance to extended darkness (Fan *et al.*, 2014, Fan *et al.*, 2017). Disruption of DGAT1- and PDAT1-mediated TAG synthesis impairs plant freezing and heat tolerance, respectively (Mueller *et al.*, 2017, Arisz *et al.*, 2018, Tan *et al.*, 2018). Two *dgat1* mutants have been shown to be more susceptible to drought stress than wild-type plants, suggesting that TAG accumulation in vegetative tissues is required for drought tolerance (Lee *et al.*, 2019). Moreover, LD accumulation under salt stress exerts a positive impact on salt stress tolerance, likely through their involvement in providing fatty acids and enzymes to facilitate membrane reconstruction (You *et al.*, 2019). However, artificially boosting TAG accumulation by overexpression of PDAT1 in Arabidopsis resulted in an increase in sensitivity to salt stress and extended darkness, probably because high TAG accumulation resulted in an increase in the flux of fatty acids into the β-oxidation pathway, thereby enhancing ROS production (Yu *et al.*, 2019).

LDs can accumulate in chloroplasts as well as the cytoplasm under several stress conditions (Xu et al., 2020). Chloroplast LDs are often referred to as plastoglobules. They mainly consist of fatty acid phytyl esters, TAGs, carotenoids, tocopherols and quinones. By analogy with cytosolic lipid bodies, plastoglobules may act as a buffering reservoir for fatty acids during thylakoid membrane lipid remodeling (van Wijk and Kessler, 2017). Two plastoglobuli-localized proteins, phytyl ester synthases, PES1 and PES2, were found to contribute to the deposition of free phytol and fatty acids in the form of phytyl esters and TAGs, thus playing a role in maintaining the integrity of the photosynthetic membrane during senescence and abiotic stress (Lippold et al., 2012). There are seven plastoglobule-associated fibrillin (FIB) proteins found in Arabidopsis (Singh and McNellis, 2011). Loss-of-function and transcriptional analysis of FIB1a, -1b, -2 suggested they are involved in plant stress responses (Singh and McNellis, 2011). Study of another plastoglobule protein FIB4 revealed that deregulated plastoglobule accumulation results in broad stress sensitivity and altered photosynthetic activity (Singh et al., 2010). Plastoglobules are sites of initiation of JA biosynthesis, particularly during stress, by recycling of fatty acids from thylakoid lipids (van Wijk and Kessler, 2017). FIB1a, -1b, and -2 condition JA production during low-temperature induced photooxidative stress (Youssef et al., 2010). Plastoglobule-localized kinases ABC1 domain containing kinase1 (ABC1K1) and ABC1K3 are involved in adaptation of Arabidopsis to stresses and in thylakoid remodeling during growth (Lundquist et al., 2013).

CONCLUSIONS AND FUTURE DIRECTIONS

The biochemical characterization of acyltransferases, desaturases and lipases involved in membrane lipid remodeling and genetic analysis of mutants defective in various steps in lipid modification pathways provide the mechanistic basis to further understand the processes and functions of membrane lipid remodeling during development and in response to stress. It is likely that the combined action of these enzymes regulates the physicochemical properties of membranes, including fluidity, thickness, phase behavior, permeability, lipid-protein interactions and stability of cellular membranes. These factors ultimately affect membrane-associated functions and ultimately physiological processes such as stress tolerance. However, details of how changes in membrane lipid composition and content affect plant physiology remain largely unknown. In addition, although significant progress has been made towards understanding the enzymes involved in PC and MGDG modifications, we are only beginning to understand the molecular machinery involved in remodeling of other membrane glycerolipids such as PE, PG, PI, PS and cardiolipin. Changes in membrane lipid composition and content have been reported under a wide variety of developmental and environmental conditions, but how plant cells sense their membrane lipid compositions and how such signals regulate the transcript levels and activities of enzymes

Box1: Summary

- Plant cells remodel their membrane lipid composition to maintain normal physicochemical properties and hence their many functions.
- Membrane lipid remodeling can be achieved by modifying lipid head groups and/or their acyl chain length and degree of fatty acid unsaturation.
- Acyltransferases, lipases and desaturases are key players in membrane remodeling.
- Triacylglycerol metabolism plays an important role in membrane lipid remodeling by affecting acyl-CoA and DAG pools.
- Membrane lipid remodeling plays a critical role in many aspects of lipid metabolism and stress tolerance.

Box2: Open questions

- How do changes in membrane lipid composition affect membrane physiological properties?
- How do plant cells sense membrane lipid composition and relay the signals to regulate the activity of enzymes and the transcript levels of genes involved in lipid remodeling?
- What are the molecular identities of phospholipases involved in PC acyl remodeling?
- What are the roles of sterols and sphingolipids in membrane remodeling under stress?
- What is the role of intracellular lipid transport in membrane lipid remodeling?
- What are the mechanisms of PE, PI, PS and cardiolipin remodeling?

involved in membrane remodeling remains to be explored. In this context, additional studies are needed to dissect the transcriptional and posttranslational mechanisms underlying the regulation of lipid modification enzymes such as LPCATs and SFR2. Furthermore, fatty acids form the building blocks of membrane lipids, storage TAG and plant surface lipids, but whether changes in levels of membrane lipids and TAG during lipid remodeling impact surface lipid metabolism and accumulation is presently unknown. Other issues requiring further investigation include 1) the molecular identity of lipases involved in PC diacylation; 2) the relative contribution of the LPCAT back reaction and PDAT1 to PC remodeling; 3) the physiological relevance of thylakoid membrane lipid remodeling and the roles of GPCAT, PDCAT and AGAP1 in lipid remodeling in photosynthetic cells; and 4) the contribution of intracellular lipid transport in membrane lipid remodeling and organellar-specific changes in membrane lipid composition. In addition to glycerolipids, our knowledge regarding how abiotic stresses affect sterol and sphingolipid content and composition, roles of sterols and sphingolipids in membrane microdomain formation and their functional relevance in stress tolerance is very limited. Addressing these issues will reveal novel aspects of lipid metabolism,

lipid homeostasis and cellular mechanisms of stress tolerance, and will likely inform novel

strategies for crop improvement and other biotechnological applications such as enhancing TAG production in seeds and the vegetative tissues of plants.

ACKNOWLEDGEMENTS

This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420 and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-SC0012704, specifically through the Physical Biosciences program of the Chemical Sciences, Geosciences and Biosciences Division.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- Anaokar, S., Kodali, R., Jonik, B., Renne, M.F., Brouwers, J., Lager, I., de Kroon, A. and Patton-Vogt, J. (2019) The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. *J.Biol. Chem.* 294, 1189-1201.
- Andersson, M.X., Larsson, K.E., Tjellstrom, H., Liljenberg, C. and Sandelius, A.S. (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. *J. Biol. Chem.* **280**, 27578-27586.
- Arisz, S.A., Heo, J.Y., Koevoets, I.T., Zhao, T., van Egmond, P., Meyer, A.J., Zeng, W., Niu, X., Wang, B., Mitchell-Olds, T., Schranz, M.E. and Testerink, C. (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 contributes to freezing tolerance. *Plant Physiol.* 177, 1410-1424.
- **Aulakh, K. and Durrett, T.P.** (2019) The plastid lipase plip1 is critical for seed viability in diacylglycerol acyltransferase1 mutant seed. *Plant Physiol.* **180**, 1962-1974.
- Awai, K., Marechal, E., Block, M.A., Brun, D., Masuda, T., Shimada, H., Takamiya, K., Ohta, H. and Joyard, J. (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. USA*, **98**, 10960-10965.
- Awai, K., Xu, C., Tamot, B. and Benning, C. (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. *Proc. Natl. Acad. Sci. USA*, 103, 10817-10822.
- Ayme, L., Baud, S., Dubreucq, B., Joffre, F. and Chardot, T. (2014) Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast. *PloS One*, **9**, e92237.
- **Barnes, A.C., Benning, C. and Roston, R.L.** (2016) Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating SENSITIVE TO FREEZING2. *Plant Physiol.* **171**, 2140-2149.
- **Bates, P.D., Durrett, T.P., Ohlrogge, J.B. and Pollard, M.** (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. *Plant Physiol.* **150**, 55-72.
- Bates, P.D., Fatihi, A., Snapp, A.R., Carlsson, A.S., Browse, J. and Lu, C.F. (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiol.* **160**, 1530-1539.

- **Bates, P.D., Ohlrogge, J.B. and Pollard, M.** (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. *J. Biol. Chem.* **282**, 31206-31216.
- Bates, P.D., Stymne, S. and Ohlrogge, J. (2013) Biochemical pathways in seed oil synthesis. *Curr. Opin. Plant Biol.* **16**, 358-364.
- Berberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. and Kusano, T. (1998) Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. *Plant Mol. Biol.* 36, 297-306.
- Browse, J., Kunst, L., Anderson, S., Hugly, S. and Somerville, C. (1989) A Mutant of Arabidopsis Deficient in the Chloroplast 16:1/18:1 Desaturase. *Plant Physiol.* **90**, 522-529.
- Browse, J., McConn, M., James, D., Jr. and Miquel, M. (1993) Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. *J. Biol. Chem.* **268**, 16345-16351.
- **Browse, J., McCourt, P. and Somerville, C.R.** (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. *Science*, **227**, 763-765.
- **Browse, J. and Somerville, C.** (1991) Glycerolipid Synthesis Biochemistry and Regulation. *Annu. Rev. Plant Physiol.* **42**, 467-506.
- Bruce, B.D. (1998) The role of lipids in plastid protein transport. *Plant Mol. Biol.* 38, 223-246.
- Caldo, K.M.P., Shen, W., Xu, Y., Hanley-Bowdoin, L., Chen, G., Weselake, R.J. and Lemieux, M.J. (2018) Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. *Plant J.* **96**, 287-299.
- **Chapman, K.D., Dyer, J.M. and Mullen, R.T.** (2012) Biogenesis and functions of lipid droplets in plants. *J. Lipid Res.* **53**, 215-226.
- Chen, J., Burke, J.J., Xin, Z., Xu, C. and Velten, J. (2006) Characterization of the Arabidopsis thermosensitive mutant *atts02* reveals an important role for galactolipids in thermotolerance. *Plant Cell Environ.* 29, 1437-1448.
- Chen, M. and Thelen, J.J. (2013) ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. *Plant Cell*, **25**, 1430-1444.
- Chen, M.X., Du, X., Zhu, Y., Wang, Z., Hua, S.J., Li, Z.L., Guo, W.L., Zhang, G.P., Peng, J.R. and Jiang, L.X. (2012) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. *Plant Cell Environ.* 35, 2155-2169.
- Cruz-Ramirez, A., Oropeza-Aburto, A., Razo-Hernandez, F., Ramirez-Chavez, E. and Herrera-Estrella, L. (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. *Proc. Natl. Acad. Sci. USA*, **103**, 6765-6770.
- Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H. and Stymne, S. (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. *Proc. Natl. Acad. Sci. USA*, **97**, 6487-6492.
- Dar, A.A., Choudhury, A.R., Kancharla, P.K. and Arumugam, N. (2017) The FAD2 gene in plants: Occurrence, regulation, and role. *Front. Plant Sci.* 8, 1789.
- De Marcos Lousa, C., van Roermund, C.W., Postis, V.L., Dietrich, D., Kerr, I.D., Wanders, R.J., Baldwin, S.A., Baker, A. and Theodoulou, F.L. (2013) Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. *Proc. Natl. Acad. Sci. USA*, 110, 1279-1284.
- de Vries, A.H., Mark, A.E. and Marrink, S.J. (2004) The binary mixing behavior of phospholipids in a bilayer: A molecular dynamics study. *J. Phys. Chem.* 108, 2454-2463.
- **Deboever, E., Deleu, M., Mongrand, S., Lins, L. and Fauconnier, M.L.** (2020) Plant-pathogen interactions: Underestimated roles of phyto-oxylipins. *Trends Plant Sci.* **25**, 22-34.
- Degenkolbe, T., Giavalisco, P., Zuther, E., Seiwert, B., Hincha, D.K. and Willmitzer, L. (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of *Arabidopsis thaliana*. *Plant J.* **72**, 972-982.

- **Djanaguiraman, M., Boyle, D.L., Welti, R., Jagadish, S.V.K. and Prasad, P.V.V.** (2018) Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. *BMC Plant Biol.* **18**, 55.
- **Dolan, L.** (2020) Plant Evolution: An ancient mechanism protects plants and algae from heat stress. *Curr. Biol.* **30**, R277-R278.
- **Dörmann, P., Balbo, I. and Benning, C.** (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. *Science*, **284**, 2181-2184.
- **Dörmann, P., Hoffmann-Benning, S., Balbo, I. and Benning, C.** (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. *Plant Cell*, **7**, 1801-1810.
- Du, Z.Y., Lucker, B.F., Zienkiewicz, K., Miller, T.E., Zienkiewicz, A., Sears, B.B., Kramer, D.M. and Benning, C. (2018) Galactoglycerolipid lipase pgd1 is involved in thylakoid membrane remodeling in response to adverse environmental conditions in Chlamydomonas. *Plant Cell*, **30**, 447-465.
- **Eastmond**, **P.J.** (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. *Plant Cell*, **18**, 665-675.
- Ellinger, D., Stingl, N., Kubigsteltig, II, Bals, T., Juenger, M., Pollmann, S., Berger, S., Schuenemann, D. and Mueller, M.J. (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. *Plant Physiol.* 153, 114-127.
- Ernst, R., Ejsing, C.S. and Antonny, B. (2016) Homeoviscous adaptation and the regulation of membrane lipids. *J. Mol. Biol.* 428, 4776-4791.
- Essigmann, B., Guler, S., Narang, R.A., Linke, D. and Benning, C. (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. USA*, **95**, 1950-1955.
- **Falcone, D.L., Ogas, J.P. and Somerville, C.R.** (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. *BMC Plant Biol.* **4**, 17.
- Fan, J., Yan, C., Roston, R., Shanklin, J. and Xu, C. (2014) Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward beta-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis. *Plant Cell*, **26**, 4119-4134.
- Fan, J., Yan, C. and Xu, C. (2013a) Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. *Plant J.* 76, 930-942.
- Fan, J., Yan, C., Zhang, X. and Xu, C. (2013b) Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. *Plant Cell*, **25**, 3506-3518.
- Fan, J.L., Yu, L.H. and Xu, C.C. (2017) A central role for triacylglycerol in membrane lipid breakdown, fatty acid beta-oxidation, and plant survival under extended darkness. *Plant Physiol.* 174, 1517-1530.
- Fan, J.L., Yu, L.H. and Xu, C.C. (2019) Dual role for autophagy in lipid metabolism in Arabidopsis. *Plant Cell*, 31, 1598-1613.
- Fan, J.L., Zhai, Z.Y., Yan, C.S. and Xu, C.C. (2015) Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD44 to facilitate lipid transfer from the endoplasmic reticulum to plastids. *Plant Cell*, 27, 2941-2955.
- Footitt, S., Slocombe, S.P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A. and Holdsworth, M. (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. *EMBO J.* 21, 2912-2922.
- Garbarino, J., Padamsee, M., Wilcox, L., Oelkers, P.M., D'Ambrosio, D., Ruggles, K.V., Ramsey, N., Jabado, O., Turkish, A. and Sturley, S.L. (2009) Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. *J. Biol. Chem.* **284**, 30994-31005.

- Gasulla, F., Vom Dorp, K., Dombrink, I., Zahringer, U., Gisch, N., Dormann, P. and Bartels, D. (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in *Craterostigma plantagineum*: a comparative approach. *Plant J.* 75, 726-741.
- **Gaude, N., Nakamura, Y., Scheible, W.R., Ohta, H. and Dormann, P.** (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. *Plant J.* **56**, 28-39.
- Gigon, A., Matos, A.R., Laffray, D., Zuily-Fodil, Y. and Pham-Thi, A.T. (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). *Ann. Bot.* 94, 345-351.
- Glab, B., Beganovic, M., Anaokar, S., Hao, M.S., Rasmusson, A.G., Patton-Vogt, J., Banas, A., Stymne, S. and Lager, I. (2016) Cloning of glycerophosphocholine acyltransferase (gpcat) from fungi and plants: A NOVEL ENZYME IN PHOSPHATIDYLCHOLINE SYNTHESIS. *J. Biol. Chem.* 291, 25066-25076.
- Guo, Q., Liu, L. and Barkla, B.J. (2019) Membrane lipid remodeling in response to salinity. *Int. J. Mol. Sci.* 20.
- **Harayama, T. and Riezman, H.** (2018) Understanding the diversity of membrane lipid composition. *Nat. Rev. Mol. Cell Biol.* **19**, 281-296.
- Härtel, H., Dormann, P. and Benning, C. (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. *Proc. Natl. Acad. Sci. USA*, **97**, 10649-10654.
- He, M., Qin, C.X., Wang, X. and Ding, N.Z. (2020) Plant unsaturated fatty acids: biosynthesis and regulation. *Front. Plant Sci.* 11, 390.
- **Heemskerk, J.W.M., Bogemann, G., Helsper, J.P.F.G. and Wintermans, J.F.G.M.** (1988) Synthesis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol in isolated spinach-chloroplasts. *Plant Physiol.* **86**, 971-977.
- Heemskerk, J.W.M., Jacobs, F.H.H., Scheijen, M.A.M., Helsper, J.P.F.G. and Wintermans, J.F.G.M. (1987) Characterization of Galactosyltransferases in Spinach Chloroplast Envelopes. *Biochim. Bophys. Acta*, **918**, 189-203.
- **Hellgren, L.I. and Sandelius, A.S.** (2001) Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.). *J. Exp. Bot.* **52**, 2275-2282.
- Hermansson, M., Hokynar, K. and Somerharju, P. (2011) Mechanisms of glycerophospholipid homeostasis in mammalian cells. *Prog. Lipid Res.* **50**, 240-257.
- Hernandez, M.L., Whitehead, L., He, Z.S., Gazda, V., Gilday, A., Kozhevnikova, E., Vaistij, F.E., Larson, T.R. and Graham, I.A. (2012) A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. *Plant Physiol.* 160, 215-225.
- Higashi, Y., Okazaki, Y., Myouga, F., Shinozaki, K. and Saito, K. (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. *Sci. Rep.* 5, 10533.
- Higashi, Y., Okazaki, Y., Takano, K., Myouga, F., Shinozaki, K., Knoch, E., Fukushima, A. and Saito, K. (2018) HEAT INDUCIBLE LIPASE1 remodels chloroplastic monogalactosyldiacylglycerol by liberating alpha-linolenic acid in Arabidopsis leaves under heat stress. *Plant Cell*, **30**, 1887-1905.
- Hong, Y., Zhao, J., Guo, L., Kim, S.C., Deng, X., Wang, G., Zhang, G., Li, M. and Wang, X. (2016) Plant phospholipases D and C and their diverse functions in stress responses. *Prog. Lipid Res.* **62**, 55-74
- Hugly, S., Kunst, L., Browse, J. and Somerville, C. (1989) Enhanced Thermal Tolerance of Photosynthesis and Altered Chloroplast Ultrastructure in a Mutant of Arabidopsis Deficient in Lipid Desaturation. *Plant Physiol.* **90**, 1134-1142.
- **Hugly, S. and Somerville, C.** (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. *Plant Physiol.* **99**, 197-202.
- **Hurlock, A.K., Wang, K., Takeuchi, T., Horn, P.J. and Benning, C.** (2018) In vivo lipid 'tag and track' approach shows acyl editing of plastid lipids and chloroplast import of phosphatidylglycerol precursors in Arabidopsis thaliana. *Plant J.* **95**, 1129-1139.

- Hyun, Y., Choi, S., Hwang, H.J., Yu, J., Nam, S.J., Ko, J., Park, J.Y., Seo, Y.S., Kim, E.Y., Ryu, S.B., Kim, W.T., Lee, Y.H., Kang, H. and Lee, I. (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. *Developmental cell*, 14, 183-192.
- **Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S. and Somerville, C.** (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. *J. Biol. Chem.* **268**, 24099-24105.
- Im, Y.J., Han, O., Chung, G.C. and Cho, B.H. (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. *Mol. cells*, 13, 264-271.
- **Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I. and Okada, K.** (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. *Plant Cell*, **13**, 2191-2209.
- **Jimbo, H., Izuhara, T., Hirashima, T., Endo, K., Nakamura, Y. and Wada, H.** (2021) Membrane lipid remodeling is required for photosystem II function under low CO2. *Plant J.* **105**, 245-253.
- **Jouhet**, **J.** (2013) Importance of the hexagonal lipid phase in biological membrane organization. *Front. Plant Sci.* **4**, 494.
- Jouhet, J., Marechal, E., Bligny, R., Joyard, J. and Block, M.A. (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. *FEBS Lett.* **544**, 63-68.
- Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A. and Farmaki, T. (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (*Gossypium hirsutum*). *J. Ex.p Bot.* **59**, 2043-2056.
- **Karki, N., Johnson, B.S. and Bates, P.D.** (2019) Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. *Plant Cell*, **31**, 2768-2788.
- Karunarathna, N.L., Wang, H.Y., Harloff, H.J., Jiang, L.X. and Jung, C. (2020) Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. *Plant Biotech. J.* 18, 2251-2266.
- Katavic, V., Reed, D.W., Taylor, D.C., Giblin, E.M., Barton, D.L., Zou, J.T., Mackenzie, S.L., Covello, P.S. and Kunst, L. (1995) Alteration of seed fatty-acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. *Plant Physiol.* 108, 399-409.
- **Kazan, K.** (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. *Trends Plant Sci.* **20**, 219-229.
- **Kelly, A.A. and Dormann, P.** (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. *J. Biol. Chem.* **277**, 1166-1173.
- Kenchanmane Raju, S.K., Barnes, A.C., Schnable, J.C. and Roston, R.L. (2018) Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? *Plant J.* **276**, 73-86.
- **Kennedy**, E.P. and Weiss, S.B. (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. *J. Biol. Chem.* 222, 193-214.
- Klinkenberg, J., Faist, H., Saupe, S., Lambertz, S., Krischke, M., Stingl, N., Fekete, A., Mueller, M.J., Feussner, I., Hedrich, R. and Deeken, R. (2014) Two fatty acid desaturases, STEAROYL-ACYL CARRIER PROTEIN Delta9-DESATURASE6 and FATTY ACID DESATURASE3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls. *Plant Physiol.* **164**, 570-583.
- **Kobayashi, K.** (2016) Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. *Journal of plant research*, **129**, 565-580.
- **Kobayashi, K., Awai, K., Nakamura, M., Nagatani, A., Masuda, T. and Ohta, H.** (2009) Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. *Plant J.* **57**, 322-331.

- **Kong, Y., Chen, S., Yang, Y. and An, C.** (2013) ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. *FEBS Lett.* **587**, 3076-3082.
- Kourtchenko, O., Andersson, M.X., Hamberg, M., Brunnstrom, A., Gobel, C., McPhail, K.L., Gerwick, W.H., Feussner, I. and Ellerstrom, M. (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. *Plant Physiol.* 145, 1658-1669.
- Kunst, L., Browse, J. and Somerville, C. (1989a) Enhanced Thermal Tolerance in a Mutant of Arabidopsis Deficient in Palmitic Acid Unsaturation. *Plant Physiol.* **91**, 401-408.
- **Kunst, L., Browse, J. and Somerville, C.** (1989b) A Mutant of Arabidopsis Deficient in Desaturation of Palmitic Acid in Leaf Lipids. *Plant Physiol.* **90**, 943-947.
- Kunz, H.H., Scharnewski, M., Feussner, K., Feussner, I., Flugge, U.I., Fulda, A. and Gierth, M. (2009) The ABC transporter pxa1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of arabidopsis during extended darkness. *Plant Cell*, **21**, 2733-2749.
- Lager, I., Glab, B., Eriksson, L., Chen, G., Banas, A. and Stymne, S. (2015) Novel reactions in acylediting of phosphatidylcholine by lysophosphatidylcholine transacylase (LPCT) and acyleoA:glycerophosphocholine acyltransferase (GPCAT) activities in microsomal preparations of plant tissues. *Planta*, 241, 347-358.
- Lager, I., Yilmaz, J.L., Zhou, X.R., Jasieniecka, K., Kazachkov, M., Wang, P., Zou, J.T., Weselake, R., Smith, M.A., Bayon, S., Dyer, J.M., Shockey, J.M., Heinz, E., Green, A., Banas, A. and Stymne, S. (2013) Plant Acyl-CoA: Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions. *J. Biol. Chem.* 288, 36902-36914.
- **Lands, W.E.** (1960) Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. *J. Biol. Chem.* **235**, 2233-2237.
- Lee, H.G., Park, M.E., Park, B.Y., Kim, H.U. and Seo, P.J. (2019) The arabidopsis myb96 transcription factor mediates ABA-dependent triacylglycerol accumulation in vegetative tissues under drought stress conditions. *Plants*, **8**.
- Lee, K.S., Patton, J.L., Fido, M., Hines, L.K., Kohlwein, S.D., Paltauf, F., Henry, S.A. and Levin, D.E. (1994) The *Saccharomyces cerevisiae* PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. *J. Biol. Chem.* **269**, 19725-19730.
- Legeret, B., Schulz-Raffelt, M., Nguyen, H.M., Auroy, P., Beisson, F., Peltier, G., Blanc, G. and Li-Beisson, Y. (2016) Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ. 39, 834-847.
- Levental, I., Levental, K.R. and Heberle, F.A. (2020) Lipid rafts: Controversies resolved, mysteries remain. *Trends Cell Biol.* **30**, 341-353.
- Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P., Franke, R.B., Graham, I.A., Katayama, K., Kelly, A.A., Larson, T., Markham, J.E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K.M., Wada, H., Welti, R., Xu, C., Zallot, R. and Ohlrogge, J. (2013) Acyl-lipid metabolism. *Arabidopsis Book*, 11, e0161.
- Li, A., Wang, D., Yu, B., Yu, X. and Li, W. (2014) Maintenance or collapse: responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant *Paraisometrum mileense*. *PLoS One*, **9**, e103430.
- Li, H.M. and Yu, C.W. (2018) Chloroplast galactolipids: The link between photosynthesis, chloroplast shape, jasmonates, phosphate starvation and freezing tolerance. *Plant Cell Physiol*, **59**, 1695-1695.
- **Li, M.Y., Welti, R. and Wang, X.M.** (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. *Plant Physiol.* **142**, 750-761.
- Li, Q., Shen, W., Zheng, Q., Fowler, D.B. and Zou, J. (2016) Adjustments of lipid pathways in plant adaptation to temperature stress. *Plant Signal. Behav.* 11, e1058461.

- Li, Q., Zheng, Q., Shen, W., Cram, D., Fowler, D.B., Wei, Y. and Zou, J. (2015) Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. *Plant Cell*, **27**, 86-103.
- Li, X.B., Moellering, E.R., Liu, B.S., Johnny, C., Fedewa, M., Sears, B.B., Kuo, M.H. and Benning, C. (2012) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in *Chlamydomonas reinhardtii*. *Plant Cell*, **24**, 4670-4686.
- Lin, Y.T., Chen, L.J., Herrfurth, C., Feussner, I. and Li, H.M. (2016) Reduced biosynthesis of digalactosyldiacylglycerol, a major chloroplast membrane lipid, leads to oxylipin overproduction and phloem cap lignification in Arabidopsis. *Plant Cell*, **28**, 219-232.
- Lippold, F., vom Dorp, K., Abraham, M., Holzl, G., Wewer, V., Yilmaz, J.L., Lager, I., Montandon, C., Besagni, C., Kessler, F., Stymne, S. and Dormann, P. (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. *Plant Cell*, **24**, 2001-2014.
- Liu, X., Zhai, S., Zhao, Y., Sun, B., Liu, C., Yang, A. and Zhang, J. (2013) Overexpression of the phosphatidylinositol synthase gene (*ZmPIS*) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. *Plant Cell Environ.* **36**, 1037-1055.
- Los, D.A. and Murata, N. (2004) Membrane fluidity and its roles in the perception of environmental signals. *Biochim. Biophys. Acta*, **1666**, 142-157.
- Lu, B., Xu, C., Awai, K., Jones, A.D. and Benning, C. (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. *J. Biol. Chem.* 282, 35945-35953.
- Lu, C., Xin, Z., Ren, Z., Miquel, M. and Browse, J. (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. *Proc. Natl. Acad. Sci. USA*, **106**, 18837-18842.
- Lu, J., Xu, Y., Wang, J., Singer, S.D. and Chen, G. (2020) The role of triacylglycerol in plant stress response. *Plants*, 9.
- Lundquist, P.K., Poliakov, A., Giacomelli, L., Friso, G., Appel, M., McQuinn, R.P., Krasnoff, S.B., Rowland, E., Ponnala, L., Sun, Q. and van Wijk, K.J. (2013) Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. *Plant Cell*, 25, 1818-1839.
- Marla, S.R., Shiva, S., Welti, R., Liu, S., Burke, J.J. and Morris, G.P. (2017) Comparative transcriptome and lipidome analyses reveal molecular chilling responses in chilling-tolerant sorghums. *Plant Genome*, 10.
- Matsuda, O., Sakamoto, H., Hashimoto, T. and Iba, K. (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. *J. Biol. Chem.* **280**, 3597-3604.
- McConn, M., Hugly, S., Browse, J. and Somerville, C. (1994) A mutation at the *fad8* Locus of Arabidopsis identifies a second chloroplast [omega]-3 desaturase. *Plant Physiol.* **106**, 1609-1614.
- **Michaud, M. and Jouhet, J.** (2019) Lipid trafficking at membrane contact sites during plant development and stress response. *Front. Plant Sci.* **10**.
- **Miquel, M. and Browse, J.** (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. *J. Biol. Chem.* **267**, 1502-1509.
- Miquel, M., James, D., Jr., Dooner, H. and Browse, J. (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. *Proc. Natl. Acad. Sci. USA*, **90**, 6208-6212.
- **Mishkind, M., Vermeer, J.E., Darwish, E. and Munnik, T.** (2009) Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. *Plant J.* **60**, 10-21.
- **Moellering, E.R. and Banning, C.** (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. *Trends Plant Sci.* **16**, 98-107.
- Moellering, E.R., Muthan, B. and Benning, C. (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. *Science*, **330**, 226-228.
- Monte, I., Kneeshaw, S., Franco-Zorrilla, J.M., Chini, A., Zamarreno, A.M., Garcia-Mina, J.M. and Solano, R. (2020) An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. *Curr. Biol.* 30, 962-971 e963.

- Morimoto, R., Shindou, H., Oda, Y. and Shimizu, T. (2010) Phosphorylation of lysophosphatidylcholine acyltransferase 2 at Ser34 enhances platelet-activating factor production in endotoxin-stimulated macrophages. *J. Biol. Chem.* **285**, 29857-29862.
- Mueller, S.P., Unger, M., Guender, L., Fekete, A. and Mueller, M.J. (2017) Phospholipid:diacylglycerol acyltransferase-mediated triacylglyerol synthesis augments basal thermotolerance. *Plant Physiol.* **175**, 486-497.
- Munro, S. (2003) Lipid rafts: Elusive or illusive? *Cell*, 115, 377-388.
- Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000) Trienoic fatty acids and plant tolerance of high temperature. *Science*, **287**, 476-479.
- **Nakamura**, Y. (2013) Phosphate starvation and membrane lipid remodeling in seed plants. *Prog. Lipid Res.* **52**, 43-50.
- Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K. and Ohta, H. (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. *J. Biol. Chem.* **280**, 7469-7476.
- Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M.R., Ito, T. and Ohta, H. (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. *Proc. Natl. Acad. Sci. USA*, **106**, 20978-20983.
- Narayanan, S., Prasad, P.V.V. and Welti, R. (2018) Alterations in wheat pollen lipidome during high day and night temperature stress. *Plant Cell Environ.* 41, 1749-1761.
- Narayanan, S., Tamura, P.J., Roth, M.R., Prasad, P.V. and Welti, R. (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. *Plant Cell Environ.* **39**, 787-803.
- Nilsson, A.K., Johansson, O.N., Fahlberg, P., Kommuri, M., Topel, M., Bodin, L.J., Sikora, P., Modarres, M., Ekengren, S., Nguyen, C.T., Farmer, E.E., Olsson, O., Ellerstrom, M. and Andersson, M.X. (2015) Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana. *Plant J.* 84, 1152-1166.
- **Nyholm, T.K.** (2015) Lipid-protein interplay and lateral organization in biomembranes. *Chem. Phys. Lipids*, **189**, 48-55.
- Nyholm, T.K.M., Jaikishan, S., Engberg, O., Hautala, V. and Slotte, J.P. (2019) The affinity of sterols for different phospholipid classes and its impact on lateral segregation. *Biophys. J.* 116, 296-307.
- **Nystrom, J.H., Lonnfors, M. and Nyholm, T.K.** (2010) Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. *Biophys. J.* **99**, 526-533.
- Ohlrogge, J. and Browse, J. (1995) Lipid biosynthesis. Plant Cell, 7, 957-970.
- **Patton-Vogt, J. and de Kroon, A.** (2020) Phospholipid turnover and acyl chain remodeling in the yeast ER. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids*, **1865**, 158462.
- Perlikowski, D., Kierszniowska, S., Sawikowska, A., Krajewski, P., Rapacz, M., Eckhardt, A. and Kosmala, A. (2016) Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Rehydration Conditions in Grasses from the Lolium-Festuca Complex. *Front. Plant Sci.* 7, 1027.
- Petschnigg, J., Wolinski, H., Kolb, D., Zellnig, G., Kurat, C.F., Natter, K. and Kohlwein, S.D. (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. *J. Biol. Chem.* **284**, 30981-30993.
- Qin, F., Lin, L., Jia, Y., Li, W. and Yu, B. (2020) Quantitative profiling of arabidopsis polar glycerolipids under two types of heat stress. *Plants*, 9.
- **Quinn, P.J.** (2012) Lipid-lipid interactions in bilayer membranes: Married couples and casual liaisons. *Prog. Lipid Res.* **51**, 179-198.
- Renne, M.F., Bao, X., De Smet, C.H. and de Kroon, A.I. (2015) Lipid acyl chain remodeling in yeast. *Lipid insights*, **8**, 33-40.
- **Roston, R.L., Wang, K., Kuhn, L.A. and Benning, C.** (2014) Structural determinants allowing transferase activity in SENSITIVE TO FREEZING 2, classified as a family I glycosyl hydrolase. *J. Biol. Chem.* **289**, 26089-26106.

- Routaboul, J.M., Benning, C., Bechtold, N., Caboche, M. and Lepiniec, L. (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. *Plant Physiol. Biochem.* 37, 831-840.
- Sakaki, T., Kondo, N. and Yamada, M. (1990a) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. *Plant Physiol.* **94**, 773-780.
- Sakaki, T., Saito, K., Kawaguchi, A., Kondo, N. and Yamada, M. (1990b) Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. *Plant Physiol.* **94**, 766-772.
- Scherer, G.F., Ryu, S.B., Wang, X., Matos, A.R. and Heitz, T. (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. *Trends Plant Sci.* **15**, 693-700.
- Sezgin, E., Levental, I., Mayor, S. and Eggeling, C. (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. *Nat. Rev. Mol. Cell Biol.* **18**, 361-374.
- **Shanklin, J. and Cahoon, E.B.** (1998) Desaturation and Related Modifications of Fatty Acids. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **49**, 611-641.
- Singer, S.J. and Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes. *Science*, 175, 720-731.
- Singh, A., Bhatnagar, N., Pandey, A. and Pandey, G.K. (2015) Plant phospholipase C family: Regulation and functional role in lipid signaling. *Cell Calcium*, **58**, 139-146.
- Singh, D.K., Maximova, S.N., Jensen, P.J., Lehman, B.L., Ngugi, H.K. and McNellis, T.W. (2010) FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. *Plant Physiol.* **154**, 1281-1293.
- Singh, D.K. and McNellis, T.W. (2011) Fibrillin protein function: the tip of the iceberg? *Trends Plant Sci.* 16, 432-441.
- **Sperling, P. and Heinz, E.** (1993) Isomeric Sn-1-Octadecenyl and Sn-2-Octadecenyl Analogs of Lysophosphatidylcholine as Substrates for Acylation and Desaturation by Plant Microsomal-Membranes. *Eur. J. Biochem.* **213**, 965-971.
- Spicher, L., Glauser, G. and Kessler, F. (2016) Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. *Front. Plant Sci.* 7, 167.
- Stahl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Banas, W., Banas, A. and Stymne, S. (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. *Plant Physiol.* **135**, 1324-1335.
- **Stalberg, K., Neal, A.C., Ronne, H. and Stahl, U.** (2008) Identification of a novel GPCAT activity and a new pathway for phosphatidylcholine biosynthesis in S. cerevisiae. *J. Lipid Res.* **49**, 1794-1806.
- Sui, N. and Han, G. (2014) Salt-induced photoinhibition of PSII is alleviated in halophyte *Thellungiella halophila* by increases of unsaturated fatty acids in membrane lipids. *Acta Physiol. Plant*, **36**, 983–992.
- Sui, N., Wang, Y., Liu, S., Yang, Z., Wang, F. and Wan, S. (2018) Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. *Front. Plant Sci.* **9.** 7.
- Sunshine, H. and Iruela-Arispe, M.L. (2017) Membrane lipids and cell signaling. *Curr. Opin. Lipidol.* **28**, 408-413.
- **Suss, K.H. and Yordanov, I.T.** (1986) Biosynthetic cause of in vivo acquired thermotolerance of photosynthetic light reactions and metabolic responses of chloroplasts to heat stress. *Plant Physiol.* **81**, 192-199.
- Tan, W.J., Yang, Y.C., Zhou, Y., Huang, L.P., Xu, L., Chen, Q.F., Yu, L.J. and Xiao, S. (2018) DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. *Plant Physiol.* 177, 1303-1318.
- **Testerink, C. and Munnik, T.** (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. *J. Exp. Bot.* **62**, 2349-2361.
- **Thorlby, G., Fourrier, N. and Warren, G.** (2004) The SENSITIVE TO FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a beta-glucosidase. *Plant Cell*, **16**, 2192-2203.

- **Torres-Franklin, M.L., Gigon, A., de Melo, D.F., Zuily-Fodil, Y. and Pham-Thi, A.T.** (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. *Physiol. Plant.* **131**, 201-210.
- Troncoso-Ponce, M.A., Cao, X., Yang, Z.L. and Ohlrogge, J.B. (2013) Lipid turnover during senescence. *Plant Sci.* 205, 13-19.
- van Meer, G., Voelker, D.R. and Feigenson, G.W. (2008) Membrane lipids: where they are and how they behave. *Nat. Rev. Mol. Cell Biol.* 9, 112-124.
- van Wijk, K.J. and Kessler, F. (2017) Plastoglobuli: Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. *Annu. Rev. Plant Biol.* **68**, 253-289.
- Vu, H.S., Roth, M.R., Tamura, P., Samarakoon, T., Shiva, S., Honey, S., Lowe, K., Schmelz, E.A., Williams, T.D. and Welti, R. (2014a) Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress. *Physiol. Plant.* **150**, 517-528.
- Vu, H.S., Roth, M.R., Tamura, P., Samarakoon, T., Shiva, S., Honey, S., Lowe, K., Schmelz, E.A., Williams, T.D. and Welti, R. (2014b) Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress. *Physiol. Plant.* **150**, 517-528.
- Wada, H., Gombos, Z. and Murata, N. (1990) Enhancement of chilling tolerance of a Cyanobacterium by genetic manipulation of fatty acid desaturation. *Nature*, **347**, 200-203.
- Wang, H.S., Yu, C., Tang, X.F., Wang, L.Y., Dong, X.C. and Meng, Q.W. (2010) Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. *J Integr. Plant Biol.* **52**, 568-577.
- Wang, K., Froehlich, J.E., Zienkiewicz, A., Hersh, H.L. and Benning, C. (2017) A Plastid phosphatidylglycerol lipase contributes to the export of acyl groups from plastids for seed oil biosynthesis. *Plant Cell*, **29**, 1678-1696.
- Wang, K., Guo, Q., Froehlich, J.E., Hersh, H.L., Zienkiewicz, A., Howe, G.A. and Benning, C. (2018) Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in *Arabidopsis thaliana*. *Plant Cell*, **30**, 1006-1022.
- Wang, K., Hersh, H.L. and Benning, C. (2016) SENSITIVE TO FREEZING2 aides in resilience to salt and drought in freezing-sensitive tomato. *Plant Physiol.* 172, 1432-1442.
- Wang, L.P., Shen, W.Y., Kazachkov, M., Chen, G.Q., Chen, Q.L., Carlsson, A.S., Stymne, S., Weselake, R.J. and Zou, J.T. (2012) Metabolic interactions between the lands cycle and the kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. *Plant Cell*, 24, 4652-4669.
- Wang, S., Uddin, M.I., Tanaka, K., Yin, L., Shi, Z., Qi, Y., Mano, J., Matsui, K., Shimomura, N., Sakaki, T., Deng, X. and Zhang, S. (2014) Maintenance of chloroplast structure and function by overexpression of the rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE gene leads to enhanced salt tolerance in tobacco. *Plant Physiol.* 165, 1144-1155.
- Wang, X.M. (2001) Plant phospholipases. Annu. Rev. Plant Physiol. 52, 211-226.
- Wang, Y., Zhang, X., Huang, G., Feng, F., Liu, X., Guo, R., Gu, F., Zhong, X. and Mei, X. (2020) Dynamic changes in membrane lipid composition of leaves of winter wheat seedlings in response to PEG-induced water stress. *BMC Plant Biol.* 20, 84.
- Warren, G., McKown, R., Marin, A.L. and Teutonico, R. (1996) Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. *Plant Physiol.* 111, 1011-1019.
- **Wasternack, C. and Hause, B.** (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. *Ann. Bot.* **111**, 1021-1058.
- Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D. and Wang, X. (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. *J. Biol. Chem.* 277, 31994-32002.

- Xu, C., Fan, J., Cornish, A.J. and Benning, C. (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. *Plant Cell*, **20**, 2190-2204.
- Xu, C., Fan, J., Riekhof, W., Froehlich, J.E. and Benning, C. (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. *EMBO J.* 22, 2370-2379.
- Xu, C., Fan, J. and Shanklin, J. (2020) Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. *Prog. Lipid Res.* **80**, 101069.
- **Xu, C. and Shanklin, J.** (2016) Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. *Annu. Rev. Plant Biol.* **67**, 179-206.
- Xu, J.Y., Carlsson, A.S., Francis, T., Zhang, M., Hoffman, T., Giblin, M.E. and Taylor, D.C. (2012) Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. *BMC Plant Biol.* 12.
- Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., Waku, K. and Sugiura, T. (2014) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. *Prog. Lipid Res.* 53, 18-81.
- **Yang, Y. and Benning, C.** (2018) Functions of triacylglycerols during plant development and stress. *Curr. Opin. Biotech.* **49**, 191-198.
- Yang, Y., Yu, X., Song, L. and An, C. (2011) ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. *Plant Physiol.* **156**, 873-883.
- Yao, H.Y. and Xue, H.W. (2018) Phosphatidic acid plays key roles regulating plant development and stress responses. *J. Integr Plant Biol.* **60**, 851-863.
- You, Z., Zhang, Q., Peng, Z. and Miao, X. (2019) Lipid droplets mediate salt stress tolerance in *Parachlorella kessleri*. *Plant Physiol.* 181, 510-526.
- Youssef, A., Laizet, Y., Block, M.A., Marechal, E., Alcaraz, J.P., Larson, T.R., Pontier, D., Gaffe, J. and Kuntz, M. (2010) Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. *Plant J.* 61, 436-445.
- Yu, B., Xu, C. and Benning, C. (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. *Proc. Natl. Acad. Sci. USA*, 99, 5732-5737.
- Yu, C., Wang, H.S., Yang, S., Tang, X.F., Duan, M. and Meng, Q.W. (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. *Plant Physiol. Biochem.* 47, 1102-1112.
- Yu, C.W., Lin, Y.T. and Li, H.M. (2020) Increased ratio of galactolipid MGDG: DGDG induces jasmonic acid overproduction and changes chloroplast shape. *New Phytol.* 228, 1327-1335.
- Yu, L., Fan, J. and Xu, C. (2019) Peroxisomal fatty acid beta-oxidation negatively impacts plant survival under salt stress. *Plant Signal. Behav.* 14, 1561121.
- Yu L, F.J., Zhou C, Xu C. (2020) Chloroplast lipid synthesis is fine-tuned to thylakoid membrane lipid remodeling during light acclimation. *Plant Physiol.* in press.
- Yu, L.H., Fan, J.L., Yan, C.S. and Xu, C.C. (2018) Starch deficiency enhances lipid biosynthesis and turnover in leaves. *Plant Physiol.* 178, 118-129.
- Yuan, L., Mao, X., Zhao, K., Ji, X., Ji, C., Xue, J. and Li, R. (2017) Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from *Camelina sativa* and their roles in stress responses. *Biol. Open*, 6, 1024-1034.
- **Zechner, R., Madeo, F. and Kratky, D.** (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. *Nat. Rev. Mol. Cell Biol.* **18**, 671-684.
- **Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S. and Zhang, H.** (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. *PLoS One*, **7**, e30355.
- Zhang, J.T., Zhu, J.Q., Zhu, Q., Liu, H., Gao, X.S. and Zhang, H.X. (2009a) Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. *Biochem. Biophys. Res. Commun.* **390**, 469-474.

- Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S. and Ben-Hayyim, G. (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. *Plant J.* 44, 361-371.
- **Zhang, M., Fan, J., Taylor, D.C. and Ohlrogge, J.B.** (2009b) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. *Plant Cell*, **21**, 3885-3901.
- **Zhang, X., Xu, Y. and Huang, B.** (2019) Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (*Festuca arundinacea*). *Plant Cell Environ.* **42**, 947-958.
- **Zheng, G., Tian, B., Zhang, F., Tao, F. and Li, W.** (2011) Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels. *Plant Cell Environ.* **34**, 1431-1442.
- **Zhou, X.R., Shrestha, P., Yin, F., Petrie, J.R. and Singh, S.P.** (2013) AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. *FEBS Lett.* **587**, 2371-2376.
- **Zolman, B.K., Silva, I.D. and Bartel, B.** (2001) The Arabidopsis *pxa1* mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. *Plant Physiol.* **127**, 1266-1278.
- **Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. and Taylor, D.C.** (1999) The *Arabidopsis thaliana* TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. *Plant J.* **19**, 645-653.