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metal—organic frameworks (MOFs). However, interpenetration in zirconium cluster-
based MOFs is rarely observed. Herein, we study the evolution of one zirconium cluster-
based, 3,8-connected MOF from its non-interpenetrated (NU-1200) to interpenetrated
(STA-26) isomer. We observe this transient catenation process indirectly using
ensemble methods, such as nitrogen porosimetry and X-ray diffraction, and directly,
using high-resolution transmission electron microscopy. The approach detailed here will
serve as a template for other researchers to monitor the interpenetration of their MOF
samples at the bulk and single-particle limits. We investigate the mechanical stability of
both lattices experimentally by pressurized in situ X-ray diffraction and nanoindentation
as well as computationally with density functional theory calculations. Both lines of
study reveal that STA-26 is considerably more mechanically stable than NU-1200. We
conclude this study by demonstrating the potential of these MOFs and their mixed

Interpenetrated

TEM Mapping with Automated Script

2
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22 l INTRODUCTION

23 Metal—organic frameworks (MOFs) are hybrid materials
24 obtained by the self-assembly of inorganic nodes and organic
25 linkers into periodic multidimensional structures with high
26 surface areas and porosities.”> Among the thousands of MOFs
27 synthesized to date, zirconium cluster-based MOFs are
28 particularly robust due to the strength of the Zr(IV)—
29 carboxylate bond.’™> As such, Zr-based MOFs have been
30 explored for applications that may require demanding
31 conditions such as catalysis,”” water sorption,® " and gas
32 separations.“’12

33 Interpenetration is defined by the presence of two or more
34 mechanically interlocked periodic networks where, although no
35 chemical bonds exist between the frameworks, disentanglement
36 can only be achieved by breaking chemical bonds (Figure 1)."’
37 Interpenetration typically enhances the stability of a supra-
38 molecular framework by filling void space, which increases the
39 density and the abundance of repulsive forces that prevent
40 framework collapse.'* These attributes of interlocked networks
41 increase the mechanical strength of the material,'” although they
42 decrease the surface area and porosity of the structures as
43 compared to their non-interpenetrated counterparts. Never-
44 theless, many interpenetrated MOFs exhibit excellent gas
45 separation and selectivity characteristics due to their tunable

—
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phases for the capture of gaseous n-hexane, used as a structural mimic for the chemical warfare agent sulfur mustard gas.

pore sizes.'®”'® In addition to the interpenetrated Zr-based 46
MOF investigated in this study, other interpenetrated Zr-based 47
MOFs have been reported.'” > Among these, the UiO-66 type 4s
interpenetrated MOFs have been well known.”>™*’ Other 49
systems that exhibit interpenetration were found during so
isoreticular expansion of the linkers and have either ditopic’* ™" s
or tetratopic linkers,”>** which makes the relatively short s
tritopic linker used in this study a unique case. Herein, we s3
explore the transient catenation processes between two different s4
interpenetrations of a 3,8-connected Zr-based MOF, known as ss
NU-1200 and STA-26 in its non-interpenetrated and inter- s6
penetrated forms, respectively. 57

Contemporary framework interpenetration studies rely ss
heavily on bulk characterization techniques.18 However, 59
investigations into catenation processes via direct imaging at 6o
the single-particle limit have not yet been performed. While 61
single-crystal X-ray diffraction (SCXRD) can be used to study 62
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Figure 2. (A) NU-1200 and its interpenetrated analogue STA-26. (B) PXRD patterns of non-interpenetrated NU-1200 transiently transforming to
interpenetrated STA-26 over variable reaction times. (C) Nitrogen sorption isotherms and (D) NLDFT-calculated pore size distributions of NU-1200

crystals transforming to STA-26 crystals over variable reaction times.

single particles, the indirectly obtained structure is extracted
from the average positions of atoms in a crystal. This can become
challenging to interpret when positional or substitutional
disorder is present. Furthermore, single-crystal X-ray diffraction
evaluates individual particles, which may not be representative of
the bulk. In this work, we examine the zirconium cluster-based
non-interpenetrated NU-1200 MOF and the analogous doubly
interpenetrated STA-26 MOF at the single-particle level using
high-resolution transmission electron microscopy (TEM)
coupled with an automated postprocessing script that analyzes
interpenetration across many images. These single-particle
studies are complemented by ensemble characterization
techniques such as powder X-ray diffraction (PXRD) and
adsorption isotherms with several probe molecules, including a
structural mimic for a chemical warfare agent. These
investigations reveal that catenation occurs in a near-stepwise
process within individual particles, which leads to mixtures of
pure phases of the interpenetrated and non-interpenetrated
structures rather than partially catenated particles. This

observation led us to study the thermodynamics and mechanical

82

properties of both pure phases via density functional theory s3

(DFT), in situ synchrotron X-ray diffraction, and nano-
indentation experiments. Collectively, these studies enable the
reliable characterization of two different interpenetrated and
non-interpenetrated Zr-based MOFs and reveal their promise
for applications where demanding mechanical stresses are

encountered, including the storage of toxic chemical warfare
39,40

B RESULTS AND DISCUSSION

Herein, we characterize the properties of two distinct zirconium
cluster-based, 3,8-connected MOFs (Figure 2A). Each MOF
features 4,4’,4”-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic
acid (TMTB) linkers and Zrg(u;-OH),(u5-0),(OH),(OH,),
Zrg-ox0 cluster metal nodes. The tritopic TMTB linkers and 8-
connected Zrg-oxo clusters assemble to form the non-inter-
penetrated NU-1200, which possesses 14 A diameter sodalite
cages and mesoporous 1D channels that are 20 A in width. The
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Figure 3. High-resolution transmission electron micrographs of pure-phase (A, B) NU-1200 and (D, E) STA-26. Fourier transforms of (C) NU-1200
and (F) STA-26. (G) Transmission electron micrograph obtained after 40 min of reaction revealing a predominant non-interpenetrated structure.
Lattice-resolution image of the blue boxed region in G, showing a NU-1200 structure. (H) Transmission electron micrograph obtained after 110 min
of reaction revealing a predominant interpenetrated structure. Lattice-resolution image of the red boxed region in G, showing an STA-26 structure.
Gray regions indicate void space, lacey carbon substrate, or damaged crystallites.

100 NU-1200 MOF features the topology (cubic clusters and
101 triangular ligands) and crystallizes in the Pm3m space group.*"**
102 Additional characterization data are available in the SI (Figures
103 S1-S3).

104  Wright, Prasad, and co-workers reported that the same TMTB
105 linker and Zrg-oxo cluster metal node produces STA-26, a
106 doubly interpenetrated analogue of NU-1200.** The authors
107 synthetically targeted the structure by changing the identity and
108 concentration of the modulating species present during the
109 synthesis. The STA-26 MOF possesses the same topology but is
110 microporous rather than mesoporous as a result of the second

—_

. %%%] from the original non-
112 interpenetrated NU-1200 framework. This displacement
113 means that the vertex of one sublattice is in the exact center of
114 the sodalite cages of the other, while the diameter of the
115 octahedral cages remains the same (14 A). The STA-26 MOF
116 exhibits Im3m symmetry.

117 However, we observed that the interpenetration can be
118 initiated postsynthetically, and the degree of interpenetration
119 between these two networks could be controlled by regulating
120 the reaction time. We initiated the interpenetration of NU-1200
121 to STA-26 by exposing 20 mg of thermally activated NU-1200 to
122 a solution of DMF/HCOOH that is 2.5:1 by volume at 120 °C
123 for 40, 110, or 180 min and referred to as NU-1200-x or STA-26-
124 x where x indicates the time that MOF particles spend in the
125 DMF/HCOOH solution. We found that this transient
126 catenation process was complete after 110 min. We monitored
127 this transition using PXRD (Cu Kal radiation, 4 = 1.540 56 A)
128 by tracking the disappearance of the peak at 26 = 3.1°, which
129 corresponds to the NU-1200 (100) Bragg feature, and the
130 growth of the 4.42° feature, which corresponds to the (110)

lattice being displaced by [

—

reflection of STA-26 (Figure 2B). We posit a mechanism for this 131
process, but it is preliminary, as we do not have comprehensive 132
experimental data to explain the process.”* Nitrogen isotherms 133
obtained along the course of this transition demonstrated a 134
decrease in gravimetric adsorption capacity consistent with the 135
interpenetrated framework decreasing the total void space of the 136
MOF. Similarly, the extracted pore sizes calculated from the 137
nonlocal density functional theory (NLDFT) model for pillared 133
clay reveal that during this transition the mesopore of NU-1200 139
(20 A) disappears, and after 110 min of soaking in formic acid/ 140
DMEF solution, only the STA-26 micropore (10 A) is observed. 141
To determine if the phase transition to the denser STA-26 142
interpenetrated phase could be reversed to the mesoporous NU- 143
1200, which could imply entropic control between the two, we 144
applied the original synthesis conditions to activated STA-26. 14s
However, we found that we could not reverse the inter- 146
penetration trend we observe (Figure S4). 147

TEM Imaging and Automated Interpenetration Map- 14s
ping. Despite the numerous investigations into framework 149
catenation processes,18 there still exists a limited understanding 1s0
of how this process occurs within single particles. Recently, high- 151
resolution transmission electron microscopy (HR-TEM) 152
hardware and imaging techniques have been developed to 1s3
study beam-sensitive materials, such as MOFs.*® Here, we 154
combine those advances with an automated postprocessing 1ss
Fourier transform mapping technique to explore the transition 1s6
of NU-1200 to STA-26 at the single-particle limit (Figure 3). We 1573
first imaged samples of the non-interpenetrated NU-1200 and 158
interpenetrated STA-26. Fast Fourier transforms (FFTs) of 159
MOF particles on the [100] zone axis showed the expected 160
lattice symmetries of Pm3m and Im3m for NU-1200 and STA- 161

https://dx.doi.org/10.1021/jacs.0c11266
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A B

Cc

| | ‘
Bulk Modulus Young’s Modulus Shear Modulus
MOF Bulk modulus (K)  Young’s modulus (E) Shear modulus (G)
NU-1200 8.1 GPa 2.3 GPa 0.8 GPa
STA-26 15.1 GPa 3.8 GPa 1.3 GPa

Figure 4. Illustrations of elastic properties studied in this article. (A) Bulk modulus (K): measure of elastic resistance to hydrostatic compression. (B)
Young’s modulus (E): measure of resistance in length during uniaxial tension or compression. (C) Shear modulus (G): measure of the resistance when
subjected to opposing shear forces. Computational mechanical properties of non-interpenetrated NU-1200 and interpenetrated STA-26.

162 26, respectively (Figure S5). Due to this difference in symmetry
163 and accompanying difference in electron density contrast, these
164 two lattices can be resolved by evaluating the relative intensity
165 ratios of the FFT features at 0.36 and 0.49 nm™" that correspond
166 to real spacings of 2.8 and 2.0 nm, respectively. Using this
167 understanding, we developed a postprocessing script, which
168 automatically rasters a small region-of-interest across an image,
169 extracts the Fourier transform of that subimage, and then assigns
170 the dominant interpenetration within that region based on the
171 relative intensity ratios of the FFT features mentioned above
172 (Figure S6). This method allows us to spatially resolve the
173 interpenetration of entire crystallites across a series of images.
174 When this method was applied to pure crystal phases, we found
175 that the script could reliably disambiguate the two phases
176 (Figures S7 and S8).

177 We then applied the same technique to microtome-cut
178 intermediate time point samples, NU-1200 40 min and STA-26
179 110 min, which we obtained along the course of the
180 interpenetration transition. This approach allows us to statisti-
181 cally investigate the process of transient catenation. In particular,
182 we investigated whether interpenetration occurs gradually
183 across all crystals within a sample or whether two predominantly
184 pure phases are present at all times, which would be challenging
185 to resolve using bulk techniques such as powder X-ray
186 diffraction or nitrogen adsorption at 77 K.

187 From our postimaging analysis, we predominantly observed
188 that pure phases were present at all times, which suggests that
189 once an interpenetration transition is initialized, it occurs rapidly
190 and completely. Across several images of NU-1200 40 min
191 (Figures S9 and S10), we found that nearly all particles were
192 obtained as pure non-interpenetrated NU-1200 (Figure S13).
193 However, a select number of particles were obtained as the pure
194 STA-26 phase. In contrast, we found the images of the STA-26
195 110 min sample (Figures S11 and S12) dominated by the
196 interpenetrated STA-26 crystallites (Figure S14). In rare
197 instances, we observed minor, residual NU-1200 non-inter-
198 penetrated domains at the fringes of these crystallites (Figures
199 S15—S18), which may account for the minor X-ray diffraction
200 features observed at prolonged reaction times. The non-
201 interpenetrated lattice being confined at the edge of these
202 intermixed particles indicates that edges are the final location to
203 interpenetrate. Taken together, these results suggest that
204 catenation occurs rapidly from NU-1200 to STA-26 within
205 single particles. This contrasts with the possibility that the
206 catenation process occurs gradually across all crystallites, which
207 would lead to the prevalent observation of intermixed phases

~

within single particles. This finding has implications for the 208
physical properties of samples undergoing catenation, which in 209
this case are likely to behave similarly to physical mixtures of 210
pure phases. More investigation is needed to resolve the 211
thermodynamic and kinetic underpinnings of this transition. 212

Physical Mixtures of Multiple Phases. From our findings 213
that intermediate samples were predominantly single-phase 214
particles, we decided to compare our ensemble measurements 215
performed on intermediate samples with those of physical 216
mixtures of pure NU-1200 and pure STA-26 phases. We 217
observed the same decrease in nitrogen sorption capacity, 218
reduction in the differential pore volume and pore size, and 219
change in PXRD pattern for the physical mixtures (Figure S19) 220
as MOF samples measured during the interpenetration process 221
(Figure 2). 22

Our ensemble and direct imaging findings lead us to conclude 223
that the interpenetration of NU-1200 occurs very quickly, with 224
some percentage of crystals in intermediate samples being 225
doubly interpenetrated STA-26 or non-interpenetrated NU- 226
1200. This contrasts with our initial hypothesis that we 227
synthesized MOFs exhibiting partial interpenetration. Com- 228
bined with our TEM mapping results, we conclude that the 229
decrease in adsorbed nitrogen and concurrent decrease in pore 230
volume dominantly arise from different ratios of the two phases. 231
The total uptake of N, from the nitrogen sorption isotherms of 232
the physical mixtures (Figure S19) displays a linear relationship 233
(R?=0.96) from non-interpenetrated to doubly interpenetrated 234
(Figure S20). Additionally, we observed a linear relationship (R* 235
=0.96) between the total pore volume (cm® g™") plotted and the 236
ratio of pure crystals that are mixed (Figure S21). These 237
observations are largely consistent with our observation of a 238
stepwise transition from the NU-1200 to the STA-26 phase, 239
rather than gradual framework interpenetration within single 240
particles. 241

Reinforced Mechanical Strength of Interpenetrated 24
Lattices. Previous work in the MOF field has established 243
interesting pressure-induced behavior in framework materials, 244
including the discovery of new phases, polymorphism, negative 245
linear compressibility, and sin§le crystal to single crystal phase 246
transitions, among others.*”>" While it is generally understood 247
that physical properties of MOFs are affected by inter- 248
penetration, very few studies have explored the differences 249
between mechanical strength of differentially interpenetrated 250
chemically identical networks."> To our knowledge this is the 251
first study to combine DFT computations and experimental 252
work to determine the effect of interpenetration on the 253
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254 hydrostatic, uniaxial, and shear stress on a MOF structure.
255 Studying the bulk mechanical properties of differently inter-
256 penetrated structures®’ is crucial for the use of MOFs in
257 commercial applications which require that powdered MOF
258 samples be processed into shaped constructs such as pellets,
259 extrudates, or composite materials.””~>*

260  We investigated NU-1200 and STA-26 using DFT to obtain
261 values for the bulk modulus (K), the Young’s modulus (E), and
262 the shear modulus (G) (Figure 4).”> Each structural model
263 behaved well under energy minimization, with lattice parameters
264 in good agreement with the experimentally obtained crystal
265 structures. The interpenetrated STA-26 structure is 223 kJ
266 mol™' more stable than the non-interpenetrated NU-1200
267 framework. This value agrees with other large-pore inter-
268 penetrated frameworks'® and reveals that the non-inter-
269 penetrated phase is metastable compared to its denser
270 interpenetrated analogue (see Supporting Information for
271 additional computational details). This finding is in line with
272 other additional classes of porous materials (mesoporous silicas
273 and siliceous zeolites) >’ along with other MOF frame-
274 works.”**’

275 The bulk modulus (K) of a material is a measure of the elastic
276 resistance to hydrostatic compression and related to the ratio of
277 volumetric stress over the volumetric strain (K = —V dP/dV) in
278 an isothermal process. The Young’s modulus (E) is a measure of
279 a material’s ability to deform under uniaxial constraint (tension
280 or compression). The Young’s modulus is equivalent to the
281 tensile stress over the tensile strain (E = o/¢). The shear
282 modulus (G = FI/AAx) is the measure of deformation of one
283 surface of a material while an opposite face of the material
284 experiences an opposing force. The shear modulus is the ratio of
285 shear stress to shear strain. Our DFT results show that
286 interpenetration nearly doubles the value of the bulk modulus
287 and increases the Young’s and shear moduli by 60%. These
288 calculations reveal that the interpenetrated STA-26 framework is
289 stiffer and more mechanically robust than the NU-1200 non-
290 interpenetrated structure.

—

Table 1. Experimental Properties of Non-interpenetrated
NU-1200 and Interpenetrated STA-26

experimental bulk modulus ~ experimental Young’s modulus

MOF (K) (E)
NU-1200 5.7 + 0.3 GPa 2.3 GPa
STA-26 21.1 + 0.5 GPa 3.8 GPa

291  We determined the bulk modulus (K) for the NU-1200 and
292 STA-26 MOFs using in situ synchrotron PXRD using a diamond
203 anvil cell (DAC) pressure apparatus at the 17-BM beamline (4 =
204 0.454 18 A) at the Advanced Photon Source at Argonne
295 National Laboratory. The PXRD peaks of the two MOFs shift to
296 higher angles of diffraction upon the application of modest
297 pressures, which we applied up to 0.55 GPa (Figures S28 and
298 $29) and indicate compression along all crystallographic axes of
299 the MOF sample. By first extracting the unit cell volume from
300 the location of our diffraction features and then using a second-
301 order Birch—Murnaghan equation of state, we determine the
302 bulk modulus of each MOF (Figure SA). The plots of the unit
303 cell volumes vs pressure reveal the interpenetrated STA-26
304 MOF has a higher bulk modulus (K = 21.1 + 0.5 GPa) than the
305 non-interpenetrated NU-1200 (K = 5.7 + 0.3 GPa) (Figure
306 S27). The experimental data for the interpenetrated STA-26
307 MOF align well with the second-order model, even though the

computationally derived value for the bulk modulus of the 308
interpenetrated MOF is 6.0 GPa lower than the experimental 309
value. The difference between the values for the bulk modulus of 310
NU-1200 is only 2.4 GPa. However, the experimental data 311
exhibit deviations from the best fit using a second-order Birch— 312
Murnaghan equation of state (Figure S27). This discontinuity at 313
low pressures may indicate mechanically induced phase 314
transitions.*”®" 315

Indeed, the computationally derived elastic tensors support 316
that phase transitions may occur at low pressures in NU-1200. 317
We found that the tetragonal shear modulus, C;;—C,,, value of 318
NU-1200 is the lowest eigenvalue of all calculated elastic tensors 319
for both structures, which suggests that this system is the least 320
robust to elastic mechanical deformation and is therefore prone 321
to phase transitions. In particular, C;;—C,, is 0.6 GPa for the 322
non-interpenetrated NU-1200 phase, meaning the system will 323
likely undergo a phase transition upon the application of modest 324
amounts of pressure (Figure $25). Due to the large coordination 325
number of NU-1200, it remains mechanically stable at ambient 326
pressure, while other highly porous MOFs with low shear 327
moduli have been shown to be unstable under guest removal.”” 328
Therefore, the tetragonal shear is the softest mode of 329
deformation. 330

In addition to the bulk modulus, we also determined the 331
Young’s moduli (E) using single-crystal nanoindentation 332
methods (Figure SB). We plotted the load—displacement data 333
(Figures S30 and S31) from each indentation and obtained the 334
Young’s modulus and hardness as a function of indentation 335
depth using the method proposed by Oliver and Pharr.”> By 336
averaging measurements over five indentations, we assign the 337
Young’s modulus of NU-1200 as 2.9 GPa with a hardness of 100 338
MPa and the Young’s modulus of STA-26 as 4.6 GPa with a 339
hardness of 300 MPa. These values agree well with those 340
determined using computational methods, which also reveal that 341
the non-interpenetrated NU-1200 is softer than the STA-26 34
under uniaxial compression. Collectively, our experimental and 343
computational findings reveal that STA-26 is considerably more 344
structurally robust than NU-1200. These findings demonstrate 34s
that interpenetrated MOFs are likely more stable to all forms of 346
mechanical stress, including those listed here (hydrostatic, 347
uniaxial, and shear) than their non-interpenetrated, chemically 34s
identical analogues. This indicates that if a sample includes a 349
mixture of interpenetrated and non-interpenetrated crystals, 350
processing conditions are limited by the less stable MOF. 3s1
Moreover, this observation suggests that if you have mixed 352
phases, they are more likely to deform under mechanical stress. 353

Complementary Gas Sorption of Physically Mixed 3s4
MOF Systems. One potential application for MOFs is the 3ss
capture and detoxification of chemical warfare agents such as a 3s6
potent blistering agent, mustard gas.64’65 Since the inter- 3s7
penetrated STA-26 and non-interpenetrated NU-1200 MOFs 3s8
exhibit different pore structures and N, uptake capacities, we 359
hypothesized that they would likely exhibit different adsorption 360
characteristics for n-hexane, which we used as a structural mimic 361
for mustard gas due to similarity in size and hydrophobicity of 362
these two molecules.”® The uptake trends we report can only be 363
directly applied to n-hexane; however, we can use this 364
hydrocarbon as a model to begin to understand more complex 365
compounds, such as mustard gas. We collected n-hexane 366
adsorption isotherms in both pure-phase MOFs and variable 367
mixtures of the two pure phases. We observed a much greater 368
uptake of n-hexane at lower partial pressure in the inter- 369
penetrated microporous STA-26 MOF than in the mesoporous 370
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371 non-interpenetrated NU-1200 MOF. The 100% STA-26 sample
372 reaches saturation at 0.01 P/P, while the 100% NU-1200
373 sample reaches saturation at 0.05 P/P, (Figure 6). This suggests
374 that the interpenetrated MOF will exhibit better performance
375 for low-concentration capture of mustard gas, but the non-
376 interpenetrated NU-1200 will have an overall higher capacity for
377 toxic gas capture. To support this observation, we plotted the
378 total uptake of hexanes (cm® g!) plotted against each sample
379 (Figure S23) and found a linear relationship (R* = 0.98)
380 between the two. This indicates that benefits may exist by
381 combining different interpenetrations of MOF crystallites
382 within a single capture device.

o

S =

333 l CONCLUSIONS

384 In summary, we have investigated the interpenetration of the
38s zirconium cluster-based mesoporous NU-1200 MOF to the
386 chemically identical microporous STA-26 MOF at the bulk and
387 single-particle limits. Using bulk methods, one may propose that
388 we have obtained partially interpenetrated crystallites. However,
389 we find that our X-ray diffraction, gas adsorption, and
390 transmission electron microscopy measurements better describe
391 our system as statistical mixtures of crystallites with integral
392 values of interpenetration, rather than fractionally occupied
393 phases. This suggests that interpenetration, once initialized,
394 occurs rapidly. Experimental and computational evaluation of
395 the mechanical properties for each framework revealed that the

~N N

interpenetrated phase is more mechanically robust and 394
thermodynamically stable than its non-interpenetrated counter- 397
part. Finally, we find that these two phases exhibit radically ;gq
different uptake behavior for n-hexane. Isotherms of mixed- 399
phase systems show intermediate uptake behavior, which 40
suggests that an opportunity exists to systematically tune 4
adsorption characteristics by mixtures of variably interpene- 40,
trated crystallites, which we have shown can be obtained by de 493
novo synthetic methods. Future studies should aim to explore 404
mechanistic processes and physical characteristics related to 45
interpenetrated MOFs more broadly, which we suspect will be 46
an important area of study for the commercial deployment of 4o,

these materials. 408
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