DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM

Abstract

Lithium metal has been considered the “holy grail” anode material for rechargeable batteries despite the fact that its dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanying solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and mesostructures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterization techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)-electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nanoscale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation-dominated EDLi (5 min at 0.5 mA cm–2) is amorphous, while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Furthermore, our findings not only illustratemore » the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials but also yield crucial structural information on the EDLi evolution with and without electrolyte additives.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California San Diego, La Jolla, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; National Science Foundation (NSF)
OSTI Identifier:
1770699
Grant/Contract Number:  
EE0007744; ECCS-1542148; CHE-1338173; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 12; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Li metal; electrochemical deposition; SEI; cryogenic TEM; metals; electrodes; deposition; surface chemistry; electrolytes

Citation Formats

Wang, Xuefeng, Zhang, Minghao, Alvarado, Judith, Wang, Shen, Sina, Mahsa, Lu, Bingyu, Bouwer, James, Xu, Wu, Xiao, Jie, Zhang, Ji-Guang, Liu, Jun, and Meng, Ying Shirley. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.7b03606.
Wang, Xuefeng, Zhang, Minghao, Alvarado, Judith, Wang, Shen, Sina, Mahsa, Lu, Bingyu, Bouwer, James, Xu, Wu, Xiao, Jie, Zhang, Ji-Guang, Liu, Jun, & Meng, Ying Shirley. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. United States. https://doi.org/10.1021/acs.nanolett.7b03606
Wang, Xuefeng, Zhang, Minghao, Alvarado, Judith, Wang, Shen, Sina, Mahsa, Lu, Bingyu, Bouwer, James, Xu, Wu, Xiao, Jie, Zhang, Ji-Guang, Liu, Jun, and Meng, Ying Shirley. Wed . "New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM". United States. https://doi.org/10.1021/acs.nanolett.7b03606. https://www.osti.gov/servlets/purl/1770699.
@article{osti_1770699,
title = {New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM},
author = {Wang, Xuefeng and Zhang, Minghao and Alvarado, Judith and Wang, Shen and Sina, Mahsa and Lu, Bingyu and Bouwer, James and Xu, Wu and Xiao, Jie and Zhang, Ji-Guang and Liu, Jun and Meng, Ying Shirley},
abstractNote = {Lithium metal has been considered the “holy grail” anode material for rechargeable batteries despite the fact that its dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanying solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and mesostructures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterization techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)-electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nanoscale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation-dominated EDLi (5 min at 0.5 mA cm–2) is amorphous, while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Furthermore, our findings not only illustrate the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials but also yield crucial structural information on the EDLi evolution with and without electrolyte additives.},
doi = {10.1021/acs.nanolett.7b03606},
journal = {Nano Letters},
number = 12,
volume = 17,
place = {United States},
year = {Wed Nov 01 00:00:00 EDT 2017},
month = {Wed Nov 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 245 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Anion reduced ionic conductivity in LiF
journal, June 1969


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

Anharmonicity and the low-temperature phase in lithium metal
journal, July 1980


Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
journal, May 2013

  • Li, Xueming; Mooney, Paul; Zheng, Shawn
  • Nature Methods, Vol. 10, Issue 6
  • DOI: 10.1038/nmeth.2472

Characterization of a direct detection device imaging camera for transmission electron microscopy
journal, June 2010


General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes
journal, April 2015


Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
journal, February 2015

  • Lu, Yingying; Tikekar, Mukul; Mohanty, Ritesh
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402073

Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium
journal, September 2014


Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
journal, December 2000

  • Cohen, Yaron S.; Cohen, Yair; Aurbach, Doron
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002526b

The structure of the low temperature phase of lithium metal
journal, January 1986


Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


A comparative XPS surface study of Li 2 FeSiO 4 /C cycled with LiTFSI- and LiPF 6 -based electrolytes
journal, January 2009

  • Ensling, David; Stjerndahl, Mårten; Nytén, Anton
  • J. Mater. Chem., Vol. 19, Issue 1
  • DOI: 10.1039/B813099J

The development of cryo-EM into a mainstream structural biology technique
journal, December 2015


Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode
journal, August 2012

  • Chattopadhyay, Sudeshna; Lipson, Albert L.; Karmel, Hunter J.
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301584r

Behavior of lithium/electrolyte interface in organic solutions
journal, March 1993


Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

Electrolyte additives for lithium ion battery electrodes: progress and perspectives
journal, January 2016

  • Haregewoin, Atetegeb Meazah; Wotango, Aselefech Sorsa; Hwang, Bing-Joe
  • Energy Environ. Sci., Vol. 9, Issue 6
  • DOI: 10.1039/C6EE00123H

Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive
journal, April 2015

  • Kim, Joo-Seong; Kim, Dae Woo; Jung, Hee Tae
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm503447u

Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes
journal, September 1999

  • Ishikawa, Masashi; Machino, Shin-ichi; Morita, Masayuki
  • Journal of Electroanalytical Chemistry, Vol. 473, Issue 1-2
  • DOI: 10.1016/S0022-0728(99)00170-9

Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6 Li/ 7 Li NMR and SEM
journal, July 2015

  • Chang, Hee Jung; Trease, Nicole M.; Ilott, Andrew J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 29
  • DOI: 10.1021/acs.jpcc.5b03396

Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries
journal, January 2015

  • Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0021513jes

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques
journal, April 1995


The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes
journal, September 2015

  • Xiang, Hongfa; Mei, Donghai; Yan, Pengfei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 37
  • DOI: 10.1021/acsami.5b05552

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Electron Diffraction of Frozen, Hydrated Protein Crystals
journal, December 1974


Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries
journal, January 2014

  • Nie, Mengyun; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.054406jes

In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures
journal, January 2002

  • Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1454138

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Direct Visualization of the Solid Electrolyte Interphase and Its Effects on Silicon Electrochemical Performance
journal, August 2016

  • Sina, Mahsa; Alvarado, Judith; Shobukawa, Hitoshi
  • Advanced Materials Interfaces, Vol. 3, Issue 20
  • DOI: 10.1002/admi.201600438

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

2.2 A resolution cryo-EM structure of  -galactosidase in complex with a cell-permeant inhibitor
journal, May 2015


The 3.8 A resolution cryo-EM structure of Zika virus
journal, March 2016


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Works referencing / citing this record:

Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials
journal, October 2019

  • Zachman, Michael J.; Hachtel, Jordan A.; Idrobo, Juan Carlos
  • Angewandte Chemie, Vol. 132, Issue 4
  • DOI: 10.1002/ange.201902993

Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries
journal, May 2018


Review on Polymer-Based Composite Electrolytes for Lithium Batteries
journal, August 2019


Quantifying inactive lithium in lithium metal batteries
journal, August 2019


Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Do imaging techniques add real value to the development of better post-Li-ion batteries?
journal, January 2018

  • Conder, Joanna; Marino, Cyril; Novák, Petr
  • Journal of Materials Chemistry A, Vol. 6, Issue 8
  • DOI: 10.1039/c7ta10622j

Progress and Perspective of Solid-State Lithium-Sulfur Batteries
journal, March 2018


Electrolytes for Dual‐Carbon Batteries
journal, March 2019


In Situ Transmission Electron Microscopy for Energy Materials and Devices
journal, June 2019

  • Fan, Zheng; Zhang, Liqiang; Baumann, Daniel
  • Advanced Materials, Vol. 31, Issue 33
  • DOI: 10.1002/adma.201900608

Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Understanding solution processing of inorganic materials using cryo-EM
journal, December 2019

  • Dutta, Nikita S.; Shao, Paul; Gong, Kai
  • Optical Materials Express, Vol. 10, Issue 1
  • DOI: 10.1364/ome.10.000119

Electron microscopy and its role in advanced lithium-ion battery research
journal, January 2019

  • Wu, Jimmy; Fenech, Michael; Webster, Richard F.
  • Sustainable Energy & Fuels, Vol. 3, Issue 7
  • DOI: 10.1039/c9se00038k

Marginal Magnesium Doping for High‐Performance Lithium Metal Batteries
journal, September 2019

  • Choi, Seung Ho; Lee, Seung Jong; Yoo, Dong‐Joo
  • Advanced Energy Materials, Vol. 9, Issue 41
  • DOI: 10.1002/aenm.201902278

Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium-Sulfur Batteries
journal, March 2018

  • Zhao, Enyue; Nie, Kaihui; Yu, Xiqian
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707543

Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes
journal, January 2018

  • Jurng, Sunhyung; Brown, Zachary L.; Kim, Jiyeon
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/c8ee00364e

In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery
journal, January 2019

  • Sun, Ho-Hyun; Dolocan, Andrei; Weeks, Jason A.
  • Journal of Materials Chemistry A, Vol. 7, Issue 30
  • DOI: 10.1039/c9ta05063a

Challenges and opportunities towards fast-charging battery materials
journal, June 2019


Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery
journal, January 2020


Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition
journal, October 2019


Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials
journal, January 2020

  • Zachman, Michael J.; Hachtel, Jordan A.; Idrobo, Juan Carlos
  • Angewandte Chemie International Edition, Vol. 59, Issue 4
  • DOI: 10.1002/anie.201902993

Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li 3 PS 4 Ceramic Electrolyte
journal, January 2018

  • Seitzman, Natalie; Guthrey, Harvey; Sulas, Dana B.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0301816jes

Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics
journal, April 2019


Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

New Insights into Nail Penetration of Li‐Ion Batteries: Effects of Heterogeneous Contact Resistance
journal, July 2019


Designing polymers for advanced battery chemistries
journal, April 2019


Interphases in Electroactive Suspension Systems: Where Chemistry Meets Mesoscale Physics
journal, July 2019


A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries
journal, July 2018


Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries
journal, January 2019

  • Huang, Jiaqiang; Guo, Xuyun; Du, Xiaoqiong
  • Energy & Environmental Science, Vol. 12, Issue 5
  • DOI: 10.1039/c8ee03632b

Atomic‐Scale Visualization of Electrochemical Lithiation Processes in Monolayer MoS 2 by Cryogenic Electron Microscopy
journal, October 2019

  • Yu, Seung‐Ho; Zachman, Michael J.; Kang, Kibum
  • Advanced Energy Materials, Vol. 9, Issue 47
  • DOI: 10.1002/aenm.201902773

In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
journal, January 2019

  • Zhou, Hongyao; Liu, Haodong; Li, Yejing
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta02341k

Trimethylsilyl azide (C 3 H 9 N 3 Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries
journal, January 2019

  • Park, Seong-Jin; Hwang, Jang-Yeon; Sun, Yang-Kook
  • Journal of Materials Chemistry A, Vol. 7, Issue 22
  • DOI: 10.1039/c9ta03713f

In Operando Probing of Lithium‐Ion Storage on Single‐Layer Graphene
journal, March 2019


Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition
journal, October 2019