DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals

Abstract

Under an applied magnetic field, superparamagnetic Fe3O4 nanoparticles with complementary DNA strands assemble into crystalline, pseudo-1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth. Increasing the dipole interaction between particles by increasing particle size or external field strength leads to a preference for a particular crystal morphology (e.g., rhombic dodecahedra, stacked clusters, and smooth rods). Molecular dynamics simulations show that an understanding of both DNA hybridization energetic and magnetic interactions is required to predict the resulting crystal morphology. Overall, taken together, the data show that applied magnetic fields with magnetic nanoparticles can be deliberately used to access nanostructures beyond what is possible with DNA hybridization alone.

Authors:
 [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [1];  [2];  [2];  [3];  [3]
  1. Northwestern Univ., Evanston, IL (United States). International Inst. for Nanotechnology
  2. Northwestern Univ., Evanston, IL (United States)
  3. Northwestern Univ., Evanston, IL (United States). International Inst. for Nanotechnology; Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES); Argonne National Laboratory (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1767512
Alternate Identifier(s):
OSTI ID: 1577880
Grant/Contract Number:  
SC0000989; AC02-06CH11357; FA9550-17-1-0348; FA8650-15-2-5518; ECCS-1542205; DMR-1720139; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 4; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; catalysis (homogeneous); solar (photovoltaic); bio-inspired; charge transport; mesostructured materials; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly); colloidal crystals; high-aspect ratio crystals; iron oxide nanoparticles; nanoparticle superlattices

Citation Formats

Park, Sarah S., Urbach, Zachary J., Brisbois, Chase A., Parker, Kelly A., Partridge, Benjamin E., Oh, Taegon, Dravid, Vinayak P., Olvera de la Cruz, Monica, and Mirkin, Chad A. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals. United States: N. p., 2019. Web. doi:10.1002/adma.201906626.
Park, Sarah S., Urbach, Zachary J., Brisbois, Chase A., Parker, Kelly A., Partridge, Benjamin E., Oh, Taegon, Dravid, Vinayak P., Olvera de la Cruz, Monica, & Mirkin, Chad A. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals. United States. https://doi.org/10.1002/adma.201906626
Park, Sarah S., Urbach, Zachary J., Brisbois, Chase A., Parker, Kelly A., Partridge, Benjamin E., Oh, Taegon, Dravid, Vinayak P., Olvera de la Cruz, Monica, and Mirkin, Chad A. Mon . "DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals". United States. https://doi.org/10.1002/adma.201906626. https://www.osti.gov/servlets/purl/1767512.
@article{osti_1767512,
title = {DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals},
author = {Park, Sarah S. and Urbach, Zachary J. and Brisbois, Chase A. and Parker, Kelly A. and Partridge, Benjamin E. and Oh, Taegon and Dravid, Vinayak P. and Olvera de la Cruz, Monica and Mirkin, Chad A.},
abstractNote = {Under an applied magnetic field, superparamagnetic Fe3O4 nanoparticles with complementary DNA strands assemble into crystalline, pseudo-1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth. Increasing the dipole interaction between particles by increasing particle size or external field strength leads to a preference for a particular crystal morphology (e.g., rhombic dodecahedra, stacked clusters, and smooth rods). Molecular dynamics simulations show that an understanding of both DNA hybridization energetic and magnetic interactions is required to predict the resulting crystal morphology. Overall, taken together, the data show that applied magnetic fields with magnetic nanoparticles can be deliberately used to access nanostructures beyond what is possible with DNA hybridization alone.},
doi = {10.1002/adma.201906626},
journal = {Advanced Materials},
number = 4,
volume = 32,
place = {United States},
year = {Mon Dec 09 00:00:00 EST 2019},
month = {Mon Dec 09 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations
journal, January 2013

  • Faraudo, Jordi; Andreu, Jordi S.; Camacho, Juan
  • Soft Matter, Vol. 9, Issue 29
  • DOI: 10.1039/c3sm00132f

Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles
journal, September 2015


Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
journal, January 2018


DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Stabilization of Colloidal Crystals Engineered with DNA
journal, October 2018

  • Oh, Taegon; Park, Sarah S.; Mirkin, Chad A.
  • Advanced Materials, Vol. 31, Issue 1
  • DOI: 10.1002/adma.201805480

Dual-Responsive Nanoparticles and their Self-Assembly
journal, August 2012

  • Das, Sanjib; Ranjan, Priyadarshi; Maiti, Pradipta Sankar
  • Advanced Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adma.201201734

Surface energy fluctuation effects in single crystals of DNA-functionalized nanoparticles
journal, December 2015

  • Li, Ting I. N. G.; Olvera de la Cruz, Monica
  • The Journal of Chemical Physics, Vol. 143, Issue 24
  • DOI: 10.1063/1.4938533

Using DNA to program the self-assembly of colloidal nanoparticles and microparticles
journal, March 2016

  • Rogers, W. Benjamin; Shih, William M.; Manoharan, Vinothan N.
  • Nature Reviews Materials, Vol. 1, Issue 3
  • DOI: 10.1038/natrevmats.2016.8

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


DNA-Encoded Protein Janus Nanoparticles
journal, June 2018

  • Hayes, Oliver G.; McMillan, Janet R.; Lee, Byeongdu
  • Journal of the American Chemical Society, Vol. 140, Issue 29
  • DOI: 10.1021/jacs.8b05640

Clathrate colloidal crystals
journal, March 2017


Driving diffusionless transformations in colloidal crystals using DNA handshaking
journal, January 2012

  • Casey, Marie T.; Scarlett, Raynaldo T.; Benjamin Rogers, W.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2206

Particle analogs of electrons in colloidal crystals
journal, June 2019


Directing Assembly of DNA-Coated Colloids with Magnetic Fields To Generate Rigid, Semiflexible, and Flexible Chains
journal, July 2014

  • Byrom, Julie; Han, Patric; Savory, Michael
  • Langmuir, Vol. 30, Issue 30
  • DOI: 10.1021/la5009939

Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State
journal, July 2012

  • Auyeung, Evelyn; Macfarlane, Robert J.; Choi, Chung Hang J.
  • Advanced Materials, Vol. 24, Issue 38
  • DOI: 10.1002/adma.201202069

Growth Dynamics for DNA-Guided Nanoparticle Crystallization
journal, November 2013

  • Dhakal, Subas; Kohlstedt, Kevin L.; Schatz, George C.
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404476f

Multifunctional biohybrid magnetite microrobots for imaging-guided therapy
journal, November 2017


A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
journal, October 2013

  • Zhang, Yugang; Lu, Fang; Yager, Kevin G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.209

Topotactic Interconversion of Nanoparticle Superlattices
journal, August 2013


Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism
journal, April 2016

  • Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.
  • Nanoscale Research Letters, Vol. 11, Issue 1
  • DOI: 10.1186/s11671-016-1406-9

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

The Importance of Salt-Enhanced Electrostatic Repulsion in Colloidal Crystal Engineering with DNA
journal, January 2019


Establishing the Design Rules for DNA-Mediated Programmable Colloidal Crystallization
journal, May 2010

  • Macfarlane, Robert J.; Jones, Matthew R.; Senesi, Andrew J.
  • Angewandte Chemie International Edition, Vol. 49, Issue 27
  • DOI: 10.1002/anie.201000633

Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals
journal, July 2016

  • Mason, Jarad A.; Laramy, Christine R.; Lai, Cheng-Tsung
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b05430

Colloidal Polymers via Dipolar Assembly of Magnetic Nanoparticle Monomers
journal, February 2014

  • Hill, Lawrence J.; Pyun, Jeffrey
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9
  • DOI: 10.1021/am405786u

Ultra-extensible ribbon-like magnetic microswarm
journal, August 2018


Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds
journal, October 2016

  • O’Brien, Matthew N.; Lin, Hai-Xin; Girard, Martin
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b09704

Enhanced Collective Magnetic Properties Induced by the Controlled Assembly of Iron Oxide Nanoparticles in Chains
journal, February 2016

  • Toulemon, Delphine; Rastei, Mircea V.; Schmool, David
  • Advanced Functional Materials, Vol. 26, Issue 15
  • DOI: 10.1002/adfm.201505086

Local Ionic Environment around Polyvalent Nucleic Acid-Functionalized Nanoparticles
journal, August 2011

  • Zwanikken, Jos W.; Guo, Peijun; Mirkin, Chad A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 33
  • DOI: 10.1021/jp205583j

Crystal engineering with DNA
journal, February 2019

  • Laramy, Christine R.; O’Brien, Matthew N.; Mirkin, Chad A.
  • Nature Reviews Materials, Vol. 4, Issue 3
  • DOI: 10.1038/s41578-019-0087-2

A general approach to DNA-programmable atom equivalents
journal, May 2013

  • Zhang, Chuan; Macfarlane, Robert J.; Young, Kaylie L.
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3647

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Motion of nanometer sized magnetic particles in a magnetic field gradient
journal, November 2008

  • Schaller, Vincent; Kräling, Ulli; Rusu, Cristina
  • Journal of Applied Physics, Vol. 104, Issue 9
  • DOI: 10.1063/1.3009686

Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices
journal, April 2019


Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering
journal, January 2016

  • Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem
  • Nanoscale, Vol. 8, Issue 43
  • DOI: 10.1039/C6NR06275J

pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds
journal, April 2018

  • Zhu, Jinghan; Kim, Youngeun; Lin, Haixin
  • Journal of the American Chemical Society, Vol. 140, Issue 15
  • DOI: 10.1021/jacs.8b02793

Transmutable nanoparticles with reconfigurable surface ligands
journal, February 2016


Aggregation of superparamagnetic colloids in magnetic fields: the quest for the equilibrium state
journal, January 2011

  • Andreu, Jordi S.; Camacho, Juan; Faraudo, Jordi
  • Soft Matter, Vol. 7, Issue 6
  • DOI: 10.1039/c0sm01424a

Nanomagnetism and spin electronics: materials, microstructure and novel properties
journal, February 2006


The Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization
journal, August 2004

  • Park, So-Jung; Lazarides, Anne A.; Storhoff, James J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 33
  • DOI: 10.1021/jp040242b

Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions
journal, January 2017

  • McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b11893

Self-Assembly of Magnetic Nanoparticles in Evaporating Solution
journal, February 2011

  • Ku, JiYeon; Aruguete, Deborah M.; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 133, Issue 4
  • DOI: 10.1021/ja107138x

Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors
journal, May 2013

  • Kim, Youngeun; Macfarlane, Robert J.; Mirkin, Chad A.
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja405988r

Highly crystalline anisotropic superstructures via magnetic field induced nanoparticle assembly
journal, January 2007

  • Park, Jong-Il; Jun, Young-wook; Choi, Jin-sil
  • Chemical Communications, Issue 47
  • DOI: 10.1039/b712513e

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks
journal, August 2015

  • Bharti, Bhuvnesh; Fameau, Anne-Laure; Rubinstein, Michael
  • Nature Materials, Vol. 14, Issue 11
  • DOI: 10.1038/nmat4364

Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose
journal, April 2012

  • Yan, Yunqi; Chen, Jennifer I. L.; Ginger, David S.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300739n

Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks
text, January 2015

  • D., Velev, Orlin; Michael, Rubinstein,; Bhuvnesh, Bharti,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/kfzr-ak09

Establishing the Design Rules for DNA-Mediated Programmable Colloidal Crystallization
journal, May 2010

  • Macfarlane, Robert J.; Jones, Matthew R.; Senesi, Andrew J.
  • Angewandte Chemie, Vol. 122, Issue 27, p. 4693-4696
  • DOI: 10.1002/ange.201000633