DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3

Abstract

We combined Raman scattering and magnetic susceptibility to explore the properties of [(CH3)2NH2]Mn(HCOO)3 under compression. Analysis of the formate bending mode reveals a broad two-phase region surrounding the 4.2 GPa critical pressure that becomes increasingly sluggish below the order–disorder transition due to the extensive hydrogen-bonding network. Although the paraelectric and ferroelectric phases have different space groups at ambient-pressure conditions, they both drive toward P1 symmetry under compression. This is a direct consequence of how the order–disorder transition changes under pressure. We bring these findings together with prior magnetization work to create a pressure–temperature–magnetic field phase diagram, unveiling entanglement, competition, and a progression of symmetry-breaking effects that underlie functionality in this molecule-based multiferroic. Furthermore, that the high-pressure P1 phase is a subgroup of the ferroelectric Cc suggests the possibility of enhanced electric polarization as well as opportunity for strain control.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [3];  [2];  [4]; ORCiD logo [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Central Michigan Univ., Mount Pleasant, MI (United States); New Jersey Institute of Technology, Newark, NJ (United States)
  3. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab)
  4. Univ. of Illinois, Chicago, IL (United States)
Publication Date:
Research Org.:
Univ. of Illinois, Chicago, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1767059
Grant/Contract Number:  
NA0003975; AC98-06CH10886
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 59; Journal Issue: 14; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Group theory; Magnetic properties; Compression; Phase transitions; Polarization

Citation Formats

Clune, Amanda, Harms, Nathan, O’Neal, Kenneth R., Hughey, Kendall, Smith, Kevin A., Obeysekera, Dimuthu, Haddock, John, Dalal, Naresh S., Yang, Junjie, Liu, Zhenxian, and Musfeldt, Janice L. Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3. United States: N. p., 2020. Web. doi:10.1021/acs.inorgchem.0c01225.
Clune, Amanda, Harms, Nathan, O’Neal, Kenneth R., Hughey, Kendall, Smith, Kevin A., Obeysekera, Dimuthu, Haddock, John, Dalal, Naresh S., Yang, Junjie, Liu, Zhenxian, & Musfeldt, Janice L. Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3. United States. https://doi.org/10.1021/acs.inorgchem.0c01225
Clune, Amanda, Harms, Nathan, O’Neal, Kenneth R., Hughey, Kendall, Smith, Kevin A., Obeysekera, Dimuthu, Haddock, John, Dalal, Naresh S., Yang, Junjie, Liu, Zhenxian, and Musfeldt, Janice L. Tue . "Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3". United States. https://doi.org/10.1021/acs.inorgchem.0c01225. https://www.osti.gov/servlets/purl/1767059.
@article{osti_1767059,
title = {Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3},
author = {Clune, Amanda and Harms, Nathan and O’Neal, Kenneth R. and Hughey, Kendall and Smith, Kevin A. and Obeysekera, Dimuthu and Haddock, John and Dalal, Naresh S. and Yang, Junjie and Liu, Zhenxian and Musfeldt, Janice L.},
abstractNote = {We combined Raman scattering and magnetic susceptibility to explore the properties of [(CH3)2NH2]Mn(HCOO)3 under compression. Analysis of the formate bending mode reveals a broad two-phase region surrounding the 4.2 GPa critical pressure that becomes increasingly sluggish below the order–disorder transition due to the extensive hydrogen-bonding network. Although the paraelectric and ferroelectric phases have different space groups at ambient-pressure conditions, they both drive toward P1 symmetry under compression. This is a direct consequence of how the order–disorder transition changes under pressure. We bring these findings together with prior magnetization work to create a pressure–temperature–magnetic field phase diagram, unveiling entanglement, competition, and a progression of symmetry-breaking effects that underlie functionality in this molecule-based multiferroic. Furthermore, that the high-pressure P1 phase is a subgroup of the ferroelectric Cc suggests the possibility of enhanced electric polarization as well as opportunity for strain control.},
doi = {10.1021/acs.inorgchem.0c01225},
journal = {Inorganic Chemistry},
number = 14,
volume = 59,
place = {United States},
year = {Tue Jul 07 00:00:00 EDT 2020},
month = {Tue Jul 07 00:00:00 EDT 2020}
}

Works referenced in this record:

Controlling Magnetic Order and Quantum Disorder in Molecule-Based Magnets
journal, May 2014


A diamond anvil cell for the investigation of superconductivity under pressures of up to 50 GPa: Pb as a low temperature manometer
journal, September 1988


Conformational and phase transformations of chlorocyclohexane at high pressures by Raman spectroscopy
journal, February 2008

  • Dong, Zhaohui; Beilby, Nicholas G.; Huang, Yining
  • The Journal of Chemical Physics, Vol. 128, Issue 7
  • DOI: 10.1063/1.2829408

Structural Tuning of Energetic Material Bis(1 H -tetrazol-5-yl)amine Monohydrate under Pressures Probed by Vibrational Spectroscopy and X-ray Diffraction
journal, November 2014

  • Zhou, Liang; Shinde, Nilesh; Hu, Anguang
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp507291m

Designing new ferroelectrics with a general strategy
journal, January 2017


Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell
journal, December 2007


Magnetic field-temperature phase diagram of multiferroic [ ( CH 3 ) 2 NH 2 ] Mn ( HCOO ) 3
journal, September 2017


Multiferroics of spin origin
journal, July 2014


Magnetic field-temperature phase diagram of multiferroic (NH4)2FeCl5·H2O
journal, August 2019


Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite
journal, April 2017

  • Wang, Pan; Guan, Jiwen; Galeschuk, Draven T. K.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 10
  • DOI: 10.1021/acs.jpclett.7b00665

Above-Room-Temperature Magnetodielectric Coupling in a Possible Molecule-Based Multiferroic: Triethylmethylammonium Tetrabromoferrate(III)
journal, November 2012

  • Cai, Hong-Ling; Zhang, Yi; Fu, Da-Wei
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja3073319

Commensurate magnetic structures of R Mn 2 O 5 ( R = Y , Ho , Bi ) determined by single-crystal neutron diffraction
journal, April 2008


Why Are There so Few Magnetic Ferroelectrics?
journal, July 2000

  • Hill, Nicola A.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 29
  • DOI: 10.1021/jp000114x

There's Room in the Middle
journal, October 2007


Locking of Methylammonium by Pressure-Enhanced H-Bonding in (CH 3 NH 3 )PbBr 3 Hybrid Perovskite
journal, December 2017

  • Capitani, F.; Marini, C.; Caramazza, S.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 50
  • DOI: 10.1021/acs.jpcc.7b11461

Thermodynamic properties of the new multiferroic material (NH 4 ) 2 [FeCl 5 (H 2 O)]
journal, December 2013


Characterization of the Order−Disorder Dielectric Transition in the Hybrid Organic−Inorganic Perovskite-Like Formate Mn(HCOO) 3 [(CH 3 ) 2 NH 2 ]
journal, February 2010

  • Sánchez-Andújar, M.; Presedo, S.; Yáñez-Vilar, S.
  • Inorganic Chemistry, Vol. 49, Issue 4
  • DOI: 10.1021/ic901872g

Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar
journal, June 1978

  • Mao, H. K.; Bell, P. M.; Shaner, J. W.
  • Journal of Applied Physics, Vol. 49, Issue 6
  • DOI: 10.1063/1.325277

The Role of Order–Disorder Transitions in the Quest for Molecular Multiferroics: Structural and Magnetic Neutron Studies of a Mixed Valence Iron(II)–Iron(III) Formate Framework
journal, November 2012

  • Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J. Alberto
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja3082457

Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism
journal, August 2012

  • Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3400

Electric Control of Magnetization and Interplay between Orbital Ordering and Ferroelectricity in a Multiferroic Metal-Organic Framework
journal, May 2011

  • Stroppa, Alessandro; Jain, Prashant; Barone, Paolo
  • Angewandte Chemie International Edition, Vol. 50, Issue 26
  • DOI: 10.1002/anie.201101405

Phonon mode links ferroicities in multiferroic [ ( CH 3 ) 2 NH 2 ] Mn ( HCOO ) 3
journal, November 2017


Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure
journal, September 2014

  • Aoyama, T.; Yamauchi, K.; Iyama, A.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5927

Multiferroic Behavior Associated with an Order−Disorder Hydrogen Bonding Transition in Metal−Organic Frameworks (MOFs) with the Perovskite ABX 3 Architecture
journal, September 2009

  • Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J.
  • Journal of the American Chemical Society, Vol. 131, Issue 38
  • DOI: 10.1021/ja904156s

Multiferroic Materials Based on Organic Transition-Metal Molecular Nanowires
journal, August 2012

  • Wu, Menghao; Burton, J. D.; Tsymbal, Evgeny Y.
  • Journal of the American Chemical Society, Vol. 134, Issue 35
  • DOI: 10.1021/ja304199x

Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism
journal, March 2016


Magnetic Ordering-Induced Multiferroic Behavior in [CH 3 NH 3 ][Co(HCOO) 3 ] Metal–Organic Framework
journal, January 2016

  • Gómez-Aguirre, L. Claudia; Pato-Doldán, Breogán; Mira, J.
  • Journal of the American Chemical Society, Vol. 138, Issue 4
  • DOI: 10.1021/jacs.5b11688

Pressure-induced enhancement of the transition temperature of a genuine organic weak-ferromagnet up to 65 K
journal, May 2001


Disorder-order phase transition at high pressure in ammonium fluoride
journal, September 2017


Thin films of coordination polymer magnets
journal, January 2011

  • Talham, Daniel R.; Meisel, Mark W.
  • Chemical Society Reviews, Vol. 40, Issue 6
  • DOI: 10.1039/c1cs15015d

Structure–Property Relations in Multiferroic [(CH 3 ) 2 NH 2 ] M (HCOO) 3 ( M = Mn, Co, Ni)
journal, August 2018


Magnetoelectric coupling in the paramagnetic state of a metal-organic framework
journal, June 2013

  • Wang, W.; Yan, L. -Q.; Cong, J. -Z.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02024

Cross coupling between electric and magnetic orders in a multiferroic metal-organic framework
journal, August 2014

  • Tian, Ying; Stroppa, Alessandro; Chai, Yisheng
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06062

Bilbao Crystallographic Server: I. Databases and crystallographic computing programs
journal, January 2006

  • Aroyo, Mois Ilia; Perez-Mato, Juan Manuel; Capillas, Cesar
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 221, Issue 1
  • DOI: 10.1524/zkri.2006.221.1.15

Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups
journal, March 2006

  • Aroyo, Mois I.; Kirov, Asen; Capillas, Cesar
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 62, Issue 2
  • DOI: 10.1107/S0108767305040286

Classifying multiferroics: Mechanisms and effects
journal, March 2009


Emerging routes to multiferroics
journal, October 2009


Multiferroics by Rational Design: Implementing Ferroelectricity in Molecule-Based Magnets
journal, July 2012

  • Pardo, Emilio; Train, Cyrille; Liu, Hongbo
  • Angewandte Chemie International Edition, Vol. 51, Issue 33
  • DOI: 10.1002/anie.201202848

Multiferroics: a magnetic twist for ferroelectricity
journal, January 2007

  • Cheong, Sang-Wook; Mostovoy, Maxim
  • Nature Materials, Vol. 6, Issue 1
  • DOI: 10.1038/nmat1804

Pressure-induced enhancement of the magnetic anisotropy in Mn ( N ( CN ) 2 ) 2
journal, January 2015


Molecular analog of multiferroics: Electric and magnetic field effects in many-electron mixed-valence dimers
journal, July 2012

  • Bosch-Serrano, Cristian; Clemente-Juan, Juan M.; Coronado, Eugenio
  • Physical Review B, Vol. 86, Issue 2
  • DOI: 10.1103/PhysRevB.86.024432

Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials
journal, July 2004

  • Wang, Xin-Yi; Gan, Lin; Zhang, Shi-Wei
  • Inorganic Chemistry, Vol. 43, Issue 15
  • DOI: 10.1021/ic0498081

Ferroelectric space groups
journal, January 1986

  • Litvin, D. B.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 42, Issue 1
  • DOI: 10.1107/S0108767386099920

Competing magnetostructural phases in a semiclassical system
journal, November 2017


Switchable electric polarization and ferroelectric domains in a metal-organic-framework
journal, September 2016