DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries

Abstract

Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm-2 at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI-) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Here, density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [5]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [6]; ORCiD logo [1]
  1. Univ. of Illinois, Chicago, IL (United States)
  2. Univ. of Illinois, Chicago, IL (United States); Polytechnic of Turin, Torino (Italy)
  3. Temple Univ., Philadelphia, PA (United States); Indian Inst. of Technology (IIT), Jodhpur (India)
  4. Department of Chemical EngineeringUniversity of Texas at Austin Austin TX 78712 USA; Univ. of Texas at Austin, TX (United States)
  5. Chemical Sciences and Engineering DivisionArgonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
  6. Univ. of Texas at Austin, TX (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); Robert A. Welch Foundation; US Army Research Office (ARO)
OSTI Identifier:
1764855
Grant/Contract Number:  
AC02-06CH11357; 1620901; CBET-17069698; DMR-1721512; CBET-1805938; 1625061; TG-DMR180106; F1599; W911NF-16-2-0189
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 32; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D materials; black phosphorous nanosheets; lithium batteries; polymer electrolytes

Citation Formats

Rojaee, Ramin, Cavallo, Salvatore, Mogurampelly, Santosh, Wheatle, Bill K., Yurkiv, Vitaliy, Deivanayagam, Ramasubramonian, Foroozan, Tara, Rasul, Md Golam, Sharifi‐Asl, Soroosh, Phakatkar, Abhijit H., Cheng, Meng, Son, Seoung‐Bum, Pan, Yayue, Mashayek, Farzad, Ganesan, Venkat, and Shahbazian‐Yassar, Reza. Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries. United States: N. p., 2020. Web. doi:10.1002/adfm.201910749.
Rojaee, Ramin, Cavallo, Salvatore, Mogurampelly, Santosh, Wheatle, Bill K., Yurkiv, Vitaliy, Deivanayagam, Ramasubramonian, Foroozan, Tara, Rasul, Md Golam, Sharifi‐Asl, Soroosh, Phakatkar, Abhijit H., Cheng, Meng, Son, Seoung‐Bum, Pan, Yayue, Mashayek, Farzad, Ganesan, Venkat, & Shahbazian‐Yassar, Reza. Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries. United States. https://doi.org/10.1002/adfm.201910749
Rojaee, Ramin, Cavallo, Salvatore, Mogurampelly, Santosh, Wheatle, Bill K., Yurkiv, Vitaliy, Deivanayagam, Ramasubramonian, Foroozan, Tara, Rasul, Md Golam, Sharifi‐Asl, Soroosh, Phakatkar, Abhijit H., Cheng, Meng, Son, Seoung‐Bum, Pan, Yayue, Mashayek, Farzad, Ganesan, Venkat, and Shahbazian‐Yassar, Reza. Mon . "Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries". United States. https://doi.org/10.1002/adfm.201910749. https://www.osti.gov/servlets/purl/1764855.
@article{osti_1764855,
title = {Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries},
author = {Rojaee, Ramin and Cavallo, Salvatore and Mogurampelly, Santosh and Wheatle, Bill K. and Yurkiv, Vitaliy and Deivanayagam, Ramasubramonian and Foroozan, Tara and Rasul, Md Golam and Sharifi‐Asl, Soroosh and Phakatkar, Abhijit H. and Cheng, Meng and Son, Seoung‐Bum and Pan, Yayue and Mashayek, Farzad and Ganesan, Venkat and Shahbazian‐Yassar, Reza},
abstractNote = {Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm-2 at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI-) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Here, density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.},
doi = {10.1002/adfm.201910749},
journal = {Advanced Functional Materials},
number = 32,
volume = 30,
place = {United States},
year = {Mon Jun 08 00:00:00 EDT 2020},
month = {Mon Jun 08 00:00:00 EDT 2020}
}

Works referenced in this record:

A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte
journal, May 2013


Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
journal, January 2017

  • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1571707jes

Polymer solid electrolytes - an overview
journal, December 1983


Spectroscopic and Theoretical Study of (CF 3 SO 2 ) 2 N - (TFSI - ) and (CF 3 SO 2 ) 2 NH (HTFSI)
journal, May 1998

  • Rey, I.; Johansson, P.; Lindgren, J.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 19
  • DOI: 10.1021/jp980375v

Anisotropic bias dependent transport property of defective phosphorene layer
journal, July 2015

  • Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12482

Computer Simulations of Ion Transport in Polymer Electrolyte Membranes
journal, June 2016


Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids
journal, January 2006

  • Lassègues, Jean-Claude; Grondin, Joseph; Talaga, David
  • Phys. Chem. Chem. Phys., Vol. 8, Issue 48
  • DOI: 10.1039/B615127B

High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes
journal, January 2015

  • Ye, Yun-Sheng; Wang, Hao; Bi, Shu-Guang
  • Journal of Materials Chemistry A, Vol. 3, Issue 35
  • DOI: 10.1039/C5TA02940F

Interplay of Surface Chemistry and Ion Content in Nanoparticle-Filled Solid Polymer Electrolytes
journal, May 2014

  • Ganapatibhotla, Lalitha V. N. R.; Maranas, Janna K.
  • Macromolecules, Vol. 47, Issue 11
  • DOI: 10.1021/ma500072j

2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage
journal, February 2018


Standard potential of the lithium electrode in aqueous solutions
journal, November 1968

  • Huston, Rima; Butler, James N.
  • The Journal of Physical Chemistry, Vol. 72, Issue 12
  • DOI: 10.1021/j100858a054

Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries
journal, August 2018


Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Ion conduction and relaxation in PEO-LiTFSI-Al 2 O 3 polymer nanocomposite electrolytes
journal, May 2015

  • Das, S.; Ghosh, A.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4919721

Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Sodium-Induced Reordering of Atomic Stacks in Black Phosphorus
journal, January 2017


Performance of “Polymer-in-Salt” Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler
journal, January 2016

  • Wu, Bo; Wang, Liping; Li, Zhiling
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0531610jes

Progress in electrolytes for rechargeable Li-based batteries and beyond
journal, April 2016


Ionic-Liquid-Based Polymer Electrolytes for Battery Applications
journal, November 2015

  • Osada, Irene; de Vries, Henrik; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 55, Issue 2
  • DOI: 10.1002/anie.201504971

2D materials for renewable energy storage devices: Outlook and challenges
journal, January 2016

  • Sahoo, Ramkrishna; Pal, Anjali; Pal, Tarasankar
  • Chemical Communications, Vol. 52, Issue 93
  • DOI: 10.1039/C6CC05357B

High performance solid polymer electrolyte with graphene oxide nanosheets
journal, January 2014

  • Yuan, Mengying; Erdman, Jeremy; Tang, Changyu
  • RSC Adv., Vol. 4, Issue 103
  • DOI: 10.1039/C4RA07919A

Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Modelling the Polymer Electrolyte/Li-Metal Interface by Molecular Dynamics simulations
journal, April 2017


High Ion Conducting Polymer Nanocomposite Electrolytes Using Hybrid Nanofillers
journal, February 2012

  • Tang, Changyu; Hackenberg, Ken; Fu, Qiang
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl202692y

Phosphorene oxides: Bandgap engineering of phosphorene by oxidation
journal, February 2015


Ultrathin and Flat Layer Black Phosphorus Fabricated by Reactive Oxygen and Water Rinse
journal, September 2016


Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene
journal, July 2017

  • Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin
  • Angewandte Chemie International Edition, Vol. 56, Issue 35
  • DOI: 10.1002/anie.201705071

Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives
journal, November 2016


Interfacial Reactions of Lithium-ion Batteries
journal, January 2010


A Mechanically Robust and Highly Ion-Conductive Polymer-Blend Coating for High-Power and Long-Life Lithium-Ion Battery Anodes
journal, November 2014


Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li
journal, February 2018

  • Foroozan, Tara; Soto, Fernando A.; Yurkiv, Vitaliy
  • Advanced Functional Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adfm.201705917

Effect of an inorganic additive on the cycling performances of lithium-ion polymer cells assembled with polymer-coated separators
journal, April 2009


Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review
journal, October 2017


Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery
journal, April 2005


Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries
journal, June 2019


High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
journal, March 2015

  • Lv, Dongping; Zheng, Jianming; Li, Qiuyan
  • Advanced Energy Materials, Vol. 5, Issue 16, Article No. 1402290
  • DOI: 10.1002/aenm.201402290

Selective Ionic Transport Pathways in Phosphorene
journal, March 2016


Effect of TiO 2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO 12 –LiTDI solid polymer electrolyte
journal, May 2016


Comparison of Li + -ion conductivity in linear and crosslinked poly(ethylene oxide)
journal, October 2018

  • Hasan, Nazmul; Pulst, Martin; Samiullah, Muhammad Haris
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 57, Issue 1
  • DOI: 10.1002/polb.24750

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Control of Surface and Edge Oxidation on Phosphorene
journal, March 2017

  • Kuntz, Kaci L.; Wells, Rebekah A.; Hu, Jun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 10
  • DOI: 10.1021/acsami.6b16111

2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries
journal, January 2017

  • Shim, Jimin; Kim, Hee Joong; Kim, Byoung Gak
  • Energy & Environmental Science, Vol. 10, Issue 9
  • DOI: 10.1039/C7EE01095H

Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte
journal, May 2016


Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics
journal, July 2014

  • Xia, Fengnian; Wang, Han; Jia, Yichen
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5458

Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties
journal, January 2012


Electrochemical stability and conductivity enhancement of composite polymer electrolytes
journal, March 2003


Creating a Stable Oxide at the Surface of Black Phosphorus
journal, June 2015

  • Edmonds, M. T.; Tadich, A.; Carvalho, A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 27
  • DOI: 10.1021/acsami.5b01297

Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
journal, May 2001


Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries
journal, December 2016


Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation
journal, November 2014

  • Wood, Joshua D.; Wells, Spencer A.; Jariwala, Deep
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5032293

Imidazolium Ionic Liquid Mediates Black Phosphorus Exfoliation while Preventing Phosphorene Decomposition
journal, May 2017

  • Chaban, Vitaly V.; Fileti, Eudes Eterno; Prezhdo, Oleg V.
  • ACS Nano, Vol. 11, Issue 6
  • DOI: 10.1021/acsnano.7b03074

Tuning Phosphorene Nanoribbon Electronic Structure through Edge Oxidization
journal, January 2016

  • Ding, Bangfu; Chen, Wei; Tang, Zilong
  • The Journal of Physical Chemistry C, Vol. 120, Issue 4
  • DOI: 10.1021/acs.jpcc.5b09159

Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte
journal, February 2017


Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries
journal, May 2019


Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Relationship between Ionic Mobility and Segmental Mobility in Polymers in the Liquid State
journal, September 1972


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties
journal, January 2015

  • Shalu, Shalu; Singh, Varun Kumar; Singh, Rajendra Kumar
  • Journal of Materials Chemistry C, Vol. 3, Issue 28
  • DOI: 10.1039/C5TC00940E

Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI
journal, August 2000

  • Edman, Ludvig
  • The Journal of Physical Chemistry B, Vol. 104, Issue 31
  • DOI: 10.1021/jp000082d

Safety-reinforced plastic crystal composite polymer electrolyte by 3D MoS2-based nano-hybrid for Li-metal batteries
journal, November 2018


Determination of Viscosity, Ionic Conductivity, and Diffusion Coefficients in Some Binary Systems:  Ionic Liquids + Molecular Solvents
journal, March 2006

  • Comminges, Clément; Barhdadi, Rachid; Laurent, Michel
  • Journal of Chemical & Engineering Data, Vol. 51, Issue 2
  • DOI: 10.1021/je0504515

AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes
journal, January 2012


Novel Organic–Inorganic Hybrid Electrolyte to Enable LiFePO 4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature
journal, November 2016

  • Tan, Rui; Gao, Rongtan; Zhao, Yan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 45
  • DOI: 10.1021/acsami.6b09008

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes
journal, April 2016


Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
journal, August 2014

  • Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05802

Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
journal, March 2016

  • Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2470

Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
journal, April 2011


Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life
journal, February 2016


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials
journal, September 2015


A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries
journal, August 2013


Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry
journal, May 2016

  • Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.
  • Nature Chemistry, Vol. 8, Issue 6
  • DOI: 10.1038/nchem.2505

Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Electrochemical Stability Window of Polymeric Electrolytes
journal, May 2019


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Voltage issue of aqueous rechargeable metal-ion batteries
journal, January 2020

  • Liu, Zhuoxin; Huang, Yan; Huang, Yang
  • Chemical Society Reviews, Vol. 49, Issue 1
  • DOI: 10.1039/C9CS00131J

Infrared and Raman study of the PEO-LiTFSI polymer electrolyte
journal, April 1998


Fractional Walden Rule for Electrolytes in Supercooled Disaccharide Aqueous Solutions
journal, April 2009

  • Longinotti, M. Paula; Corti, Horacio R.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 16
  • DOI: 10.1021/jp810253s

A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries
journal, December 2017


New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4
journal, March 2007