DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes

Abstract

Anionic oxygen redox has aroused great interests in developing high-capacity Li-ion battery cathode materials. The fundamental understanding of this concept, compared to cationic redox, has promoted extensive studies on lithium transition metal oxides including those of 4d and 5d transition metals. Lithium ruthenium oxide has been found to exhibit a reversible anionic redox upon cycling. However, lithium-rich layered oxide with anionic redox is still facing great challenges such as sluggish kinetics. Here we investigate the effect of cationic redox on the kinetics of anionic reaction when they are strongly coupled. We report the cobalt substituted lithium ruthenium oxide, where all Ru, Co and O redox participate in the charge compensation mechanism in relatively defined voltage regions. Additionally, the improved anionic kinetics is attributed to the fast cationic Co redox process that serves as a redox mediator. Our work sheds light into the potential direction to address the commonly believed sluggish anionic kinetics in high-capacity oxygen-redox cathode materials.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [6]; ORCiD logo [7]; ORCiD logo [6]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Xiamen Univ., Fujian (China). State Key Lab. for Physical Chemistry of Solid Surfaces
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  4. Univ. of California, Berkeley, CA (United States)
  5. Dongguan Neutron Science Center (China)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1763338
Report Number(s):
BNL-220928-2021-JAAM
Journal ID: ISSN 2380-8195
Grant/Contract Number:  
SC0012704; AC02-05CH11231; AC02-76SF00515; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 5; Journal Issue: 11; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Redox reactions; oxides; oxygen; kinetics; materials

Citation Formats

Li, Ning, Wu, Jue, Hwang, Sooyeon, Papp, Joseph K., Kan, Wang Hay, Zhang, Liang, Zhu, Chenhui, McCloskey, Bryan D., Yang, Wanli, and Tong, Wei. Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes. United States: N. p., 2020. Web. doi:10.1021/acsenergylett.0c01880.
Li, Ning, Wu, Jue, Hwang, Sooyeon, Papp, Joseph K., Kan, Wang Hay, Zhang, Liang, Zhu, Chenhui, McCloskey, Bryan D., Yang, Wanli, & Tong, Wei. Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes. United States. https://doi.org/10.1021/acsenergylett.0c01880
Li, Ning, Wu, Jue, Hwang, Sooyeon, Papp, Joseph K., Kan, Wang Hay, Zhang, Liang, Zhu, Chenhui, McCloskey, Bryan D., Yang, Wanli, and Tong, Wei. Thu . "Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes". United States. https://doi.org/10.1021/acsenergylett.0c01880. https://www.osti.gov/servlets/purl/1763338.
@article{osti_1763338,
title = {Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes},
author = {Li, Ning and Wu, Jue and Hwang, Sooyeon and Papp, Joseph K. and Kan, Wang Hay and Zhang, Liang and Zhu, Chenhui and McCloskey, Bryan D. and Yang, Wanli and Tong, Wei},
abstractNote = {Anionic oxygen redox has aroused great interests in developing high-capacity Li-ion battery cathode materials. The fundamental understanding of this concept, compared to cationic redox, has promoted extensive studies on lithium transition metal oxides including those of 4d and 5d transition metals. Lithium ruthenium oxide has been found to exhibit a reversible anionic redox upon cycling. However, lithium-rich layered oxide with anionic redox is still facing great challenges such as sluggish kinetics. Here we investigate the effect of cationic redox on the kinetics of anionic reaction when they are strongly coupled. We report the cobalt substituted lithium ruthenium oxide, where all Ru, Co and O redox participate in the charge compensation mechanism in relatively defined voltage regions. Additionally, the improved anionic kinetics is attributed to the fast cationic Co redox process that serves as a redox mediator. Our work sheds light into the potential direction to address the commonly believed sluggish anionic kinetics in high-capacity oxygen-redox cathode materials.},
doi = {10.1021/acsenergylett.0c01880},
journal = {ACS Energy Letters},
number = 11,
volume = 5,
place = {United States},
year = {Thu Oct 22 00:00:00 EDT 2020},
month = {Thu Oct 22 00:00:00 EDT 2020}
}

Works referenced in this record:

Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 11
  • DOI: 10.1149/1.1407994

Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Electrochemical and Ex Situ X-Ray Study of Li(Li[sub 0.2]Ni[sub 0.2]Mn[sub 0.6])O[sub 2] Cathode Material for Li Secondary Batteries
journal, January 2003

  • Kang, S. -H.; Sun, Y. K.; Amine, K.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1594411

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, August 2016

  • Luo, Kun; Roberts, Matthew R.; Guerrini, Niccoló
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05111

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Reversible Oxygen Participation to the Redox Processes Revealed for Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2
journal, January 2013

  • Koga, Hideyuki; Croguennec, Laurence; Ménétrier, Michel
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.038306jes

Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2
journal, August 2013


Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese
journal, January 2012

  • Yu, Haijun; Zhou, Haoshen
  • Journal of Materials Chemistry, Vol. 22, Issue 31
  • DOI: 10.1039/c2jm33484d

Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides
journal, January 2015

  • Knight, James C.; Nandakumar, Pat; Kan, Wang Hay
  • Journal of Materials Chemistry A, Vol. 3, Issue 5
  • DOI: 10.1039/C4TA05178E

Structure and bonding in lithium ruthenate, Li2RuO3
journal, June 1988


The electrochemical behavior of xLiNiO2·(1 − x)Li2RuO3 and Li2Ru1−yZryO3 electrodes in lithium cells
journal, June 2003


Li-Ion Capacity Enhancement in Composite Blends of LiCoO[sub 2] and Li[sub 2]RuO[sub 3]
journal, January 2005

  • Stux, Arnold M.; Swider-Lyons, Karen E.
  • Journal of The Electrochemical Society, Vol. 152, Issue 10
  • DOI: 10.1149/1.2013147

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Oxygen-participated electrochemistry of new lithium-rich layered oxides Li 3 MRuO 5 (M = Mn, Fe)
journal, January 2015

  • Laha, S.; Natarajan, S.; Gopalakrishnan, J.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP05052E

Lithium Rich Composition of Li 2 RuO 3 and Li 2 Ru 1-x Ir x O 3 Layered Materials as Li-Ion Battery Cathode
journal, January 2014

  • Sarkar, S.; Mahale, P.; Mitra, S.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.030406jes

Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries
journal, April 2018


Understanding the Stability for Li-Rich Layered Oxide Li 2 RuO 3 Cathode
journal, February 2016

  • Li, Biao; Shao, Ruiwen; Yan, Huijun
  • Advanced Functional Materials, Vol. 26, Issue 9
  • DOI: 10.1002/adfm.201504836

Electronic structure and properties of Li-insertion materials: Li 2 Ru O 3 and Ru O 2
journal, February 2008


Influence of Ti 4+ on the Electrochemical Performance of Li-Rich Layered Oxides - High Power and Long Cycle Life of Li 2 Ru 1– x Ti x O 3 Cathodes
journal, March 2015

  • Kalathil, Abdul Kareem; Arunkumar, Paulraj; Kim, Da Hye
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 13
  • DOI: 10.1021/am507951x

Solid-State NMR of the Family of Positive Electrode Materials Li 2 Ru 1– y Sn y O 3 for Lithium-Ion Batteries
journal, December 2014

  • Salager, Elodie; Sarou-Kanian, Vincent; Sathiya, M.
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm503280s

Layered Li2RuO3–LiCoO2 composite as high-performance cathode materials for lithium-ion batteries
journal, September 2016


Direct Quantification of Anionic Redox over Long Cycling of Li-Rich NMC via Hard X-ray Photoemission Spectroscopy
journal, October 2018


Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries
journal, January 2016

  • Assat, Gaurav; Delacourt, Charles; Corte, Daniel Alves Dalla
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0531614jes

Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
journal, December 2017


The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
journal, January 2016

  • Saubanère, M.; McCalla, E.; Tarascon, J. -M.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03048J

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Unraveling the Voltage Decay Phenomenon in Li‐Rich Layered Oxide Cathode of No Oxygen Activity
journal, October 2019

  • Li, Ning; Hwang, Sooyeon; Sun, Meiling
  • Advanced Energy Materials, Vol. 9, Issue 47
  • DOI: 10.1002/aenm.201902258

New rock salt-related oxides Li3M2RuO6 (M=Co, Ni): Synthesis, structure, magnetism and electrochemistry
journal, July 2013


CoO2, The End Member of the LixCoO2 Solid Solution
journal, January 1996

  • Amatucci, G. G.; Tarascon, J. M.; Klein, L. C.
  • Journal of The Electrochemical Society, Vol. 143, Issue 3, p. 1114-1123
  • DOI: 10.1149/1.1836594

In Situ Structural and Electrochemical Study of Ni1−xCoxO2 Metastable Oxides Prepared by Soft Chemistry
journal, October 1999

  • Tarascon, J. M.; Vaughan, G.; Chabre, Y.
  • Journal of Solid State Chemistry, Vol. 147, Issue 1
  • DOI: 10.1006/jssc.1999.8465

Application of first-principles calculations to the design of rechargeable Li-batteries
journal, May 1997


Identification of cathode materials for lithium batteries guided by first-principles calculations
journal, April 1998

  • Ceder, G.; Chiang, Y. -M.; Sadoway, D. R.
  • Nature, Vol. 392, Issue 6677
  • DOI: 10.1038/33647

Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
journal, June 2019


Oxygen Contribution on Li-Ion Intercalation−Deintercalation in LiCoO 2 Investigated by O K-Edge and Co L-Edge X-ray Absorption Spectroscopy
journal, March 2002

  • Yoon, Won-Sub; Kim, Kwang-Bum; Kim, Min-Gyu
  • The Journal of Physical Chemistry B, Vol. 106, Issue 10
  • DOI: 10.1021/jp013735e

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries
journal, December 2018

  • Wang, Qin-Chao; Meng, Jing-Ke; Yue, Xin-Yang
  • Journal of the American Chemical Society, Vol. 141, Issue 2
  • DOI: 10.1021/jacs.8b08638

Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode
journal, October 2019


Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-ray Scattering
journal, January 2019


Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


Spectroscopic Signature of Oxidized Oxygen States in Peroxides
journal, October 2018

  • Zhuo, Zengqing; Pemmaraju, Chaitanya Das; Vinson, John
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 21
  • DOI: 10.1021/acs.jpclett.8b02757

Anionic Redox in Rechargeable Lithium Batteries
journal, June 2017


Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Examining Hysteresis in Composite x Li 2 MnO 3 ·(1– x )LiMO 2 Cathode Structures
journal, March 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp312658q

Quantifying Hysteresis and Voltage Fade in xLi 2 MnO 3 (1-x)LiMn 0.5 Ni 0.5 O 2 Electrodes as a Function of Li 2 MnO 3 Content
journal, December 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.049403jes

Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes
journal, August 2013

  • Gallagher, Kevin G.; Croy, Jason R.; Balasubramanian, Mahalingam
  • Electrochemistry Communications, Vol. 33
  • DOI: 10.1016/j.elecom.2013.04.022

Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes
journal, July 1995


Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries
journal, December 2013

  • Ju, Jin-Wook; Lee, Eung-Ju; Yoon, Chong S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 1
  • DOI: 10.1021/jp4097887

Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, January 2013

  • Zheng, Jianming; Shi, Wei; Gu, Meng
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.090311jes

Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


Defect Chemistry and Li-ion Diffusion in Li2RuO3
journal, January 2019

  • Kuganathan, Navaratnarajah; Kordatos, Apostolos; Chroneos, Alexander
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-018-36865-4

Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials
journal, August 2017