DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling superstructural ordering in the clathrate-I Ba8M16P30 (M = Cu, Zn) through the formation of metal–metal bonds

Abstract

Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16–xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in the additional substitution of Zn for P in Ba8M16+yP30–y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pmn). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates thatmore » local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.« less

Authors:
 [1]; ORCiD logo [2];  [1];  [3]; ORCiD logo [1]
  1. Univ. of California, Davis, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Centre National de la Recherche Scientifique (CNRS), Caen (France)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
OSTI Identifier:
1761506
Grant/Contract Number:  
SC0008931; AC02-06CH11357; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Dolyniuk, J., Whitfield, P. S., Lee, K., Lebedev, O. I., and Kovnir, K. Controlling superstructural ordering in the clathrate-I Ba8M16P30 (M = Cu, Zn) through the formation of metal–metal bonds. United States: N. p., 2017. Web. doi:10.1039/c7sc00354d.
Dolyniuk, J., Whitfield, P. S., Lee, K., Lebedev, O. I., & Kovnir, K. Controlling superstructural ordering in the clathrate-I Ba8M16P30 (M = Cu, Zn) through the formation of metal–metal bonds. United States. https://doi.org/10.1039/c7sc00354d
Dolyniuk, J., Whitfield, P. S., Lee, K., Lebedev, O. I., and Kovnir, K. Mon . "Controlling superstructural ordering in the clathrate-I Ba8M16P30 (M = Cu, Zn) through the formation of metal–metal bonds". United States. https://doi.org/10.1039/c7sc00354d. https://www.osti.gov/servlets/purl/1761506.
@article{osti_1761506,
title = {Controlling superstructural ordering in the clathrate-I Ba8M16P30 (M = Cu, Zn) through the formation of metal–metal bonds},
author = {Dolyniuk, J. and Whitfield, P. S. and Lee, K. and Lebedev, O. I. and Kovnir, K.},
abstractNote = {Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16–xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in the additional substitution of Zn for P in Ba8M16+yP30–y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pmn). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.},
doi = {10.1039/c7sc00354d},
journal = {Chemical Science},
number = 5,
volume = 8,
place = {United States},
year = {Mon Feb 20 00:00:00 EST 2017},
month = {Mon Feb 20 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Atomic Interactions in the p-Type Clathrate I Ba 8 Au 5.3 Ge 40.7
journal, February 2011

  • Zhang, Hui; Borrmann, Horst; Oeschler, Niels
  • Inorganic Chemistry, Vol. 50, Issue 4
  • DOI: 10.1021/ic1016559

Ba and Sr Binary Phosphides: Synthesis, Crystal Structures, and Bonding Analysis
journal, August 2015


Structure of monoclinic black zinc diphosphide, ZnP2
journal, November 1984

  • Fleet, M. E.; Mowles, T. A.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 40, Issue 11
  • DOI: 10.1107/S0108270184009513

X-ray single crystal refinements on some RT2Ge2 compounds (R = Ca, Y, La, Nd, U; T = Mn-Cu, Ru-Pd): evolution of the chemical bonds
journal, March 1996


Ordering of Vacancies in Type-I Tin Clathrate:  Superstructure of Rb 8 Sn 442
journal, March 2005

  • Dubois, Franck; Fässler, Thomas F.
  • Journal of the American Chemical Society, Vol. 127, Issue 10
  • DOI: 10.1021/ja043500r

Zintl Salts Ba2P7X (X = Cl, Br, and I): Synthesis, Crystal, and Electronic Structures
journal, August 2013


Introducing a Magnetic Guest to a Tetrel-Free Clathrate: Synthesis, Structure, and Properties of Eu x Ba 8– x Cu 16 P 30 (0 ≤ x ≤ 1.5)
journal, October 2011

  • Kovnir, Kirill; Stockert, Ulrike; Budnyk, Sergij
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic201474h

Darstellung, Eigenschaften und Kristallstruktur von Cu2P7 und Strukturverfeinerungen von CuP2 und AgP2
journal, August 1982

  • M�uller, M. H.; Jeitschko, W.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 491, Issue 1
  • DOI: 10.1002/zaac.19824910129

Thermoelectric properties of a clathrate compound Ba8Cu16P30
journal, April 2003

  • Huo, Dexuan; Sasakawa, Tetsuya; Muro, Yuji
  • Applied Physics Letters, Vol. 82, Issue 16
  • DOI: 10.1063/1.1568819

Atomic ordering and thermoelectric properties of the n-type clathrate Ba 8 Ni 3.5 Ge 42.10.4
journal, January 2010

  • Nguyen, L. T. K.; Aydemir, U.; Baitinger, M.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B919791P

The First Silicon-Based Cationic Clathrate III with High Thermal Stability: Si172−xPxTey (x=2y, y>20)
journal, June 2008

  • Zaikina, Julia V.; Kovnir, Kirill A.; Haarmann, Frank
  • Chemistry - A European Journal, Vol. 14, Issue 18
  • DOI: 10.1002/chem.200800453

Clathrate Ba 8 Au 16 P 30 : The “Gold Standard” for Lattice Thermal Conductivity
journal, August 2013

  • Fulmer, James; Lebedev, Oleg I.; Roddatis, Vladimir V.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja4052679

Effects of the order–disorder phase transition on the physical properties of A8Sn44□2 (A = Rb, Cs)
journal, January 2008

  • Kaltzoglou, Andreas; Fässler, Thomas; Christensen, Mogens
  • Journal of Materials Chemistry, Vol. 18, Issue 46
  • DOI: 10.1039/b810783a

Sn20.5□3.5As22I8: A Largely Disordered Cationic Clathrate with a New Type of Superstructure and Abnormally Low Thermal Conductivity
journal, June 2007

  • Zaikina, Julia V.; Kovnir, Kirill A.; Sobolev, Alexei V.
  • Chemistry - A European Journal, Vol. 13, Issue 18
  • DOI: 10.1002/chem.200601772

Clathrate thermoelectrics
journal, October 2016

  • Dolyniuk, Juli-Anna; Owens-Baird, Bryan; Wang, Jian
  • Materials Science and Engineering: R: Reports, Vol. 108
  • DOI: 10.1016/j.mser.2016.08.001

Chemistry and structural chemistry of phosphides and polyphosphides. 48. Bridging chasms with polyphosphides
journal, January 1988

  • Von Schnering, Hans Georg; Hoenle, Wolfgang
  • Chemical Reviews, Vol. 88, Issue 1
  • DOI: 10.1021/cr00083a012

Ba8Cu16P30 - eine neue tern�re Variante des Clathrat I-Strukturtyps
journal, February 1995

  • D�nner, J.; Mewis, A.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 621, Issue 2
  • DOI: 10.1002/zaac.19956210205

Copper position in type-I Ba8Cu4Si42 clathrate
journal, June 2005


Ba8Ge43 revisited: a 2a?�2a?�2a? Superstructure of the Clathrate-I Type with Full Vacancy Ordering
journal, November 2004

  • Carrillo-Cabrera, Wilder; Budnyk, Serhij; Prots, Yurii
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 630, Issue 13-14
  • DOI: 10.1002/zaac.200400268

Cationic Clathrate I Si 46- x P x Te y (6.6(1) ≤ y ≤ 7.5(1), x ≤ 2 y ): Crystal Structure, Homogeneity Range, and Physical Properties
journal, April 2009

  • Zaikina, J. V.; Kovnir, K. A.; Burkhardt, U.
  • Inorganic Chemistry, Vol. 48, Issue 8
  • DOI: 10.1021/ic8023887

The 2 a 0  × 2 a 0  × 2 a 0 Superstructure in the Clathrate-I K 8 Li x Ge 44- x /4 2-3 x /4 : Superstructure in the Clathrate-I K 8 Li x Ge 44- x /4 2-3 x /4
journal, January 2015

  • Liang, Ying; Carrillo-Cabrera, Wilder; Ormeci, Alim
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 641, Issue 2
  • DOI: 10.1002/zaac.201400565

Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba 8 M 24 P 28+ δ ( M =Cu/Zn)
journal, January 2017

  • Dolyniuk, Juli-Anna; Zaikina, Julia V.; Kaseman, Derrick C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 9
  • DOI: 10.1002/anie.201611510

Neue Vertreter des ThCr2Si2-Typs und dessen Verwandtschaft zum Anti-PbFCl-Gitter
journal, December 1970

  • Eisenmann, B.; May, N.; Müller, Wiking
  • Zeitschrift für Naturforschung B, Vol. 25, Issue 12
  • DOI: 10.1515/znb-1970-1207

Novel Compounds Sn10In14P22I8 and Sn14In10P21.2I8 with Clathrate I Structure: Synthesis and Crystal and Electronic Structure
journal, November 2001

  • Shatruk, Mikhail M.; Kovnir, Kirill A.; Lindsjö, Martin
  • Journal of Solid State Chemistry, Vol. 161, Issue 2
  • DOI: 10.1006/jssc.2001.9304

mP -BaP 3 : A New Phase from an Old Binary System
journal, May 2014

  • Dolyniuk, Juli-Anna; Kaseman, Derrick C.; Sen, Sabyasachi
  • Chemistry - A European Journal, Vol. 20, Issue 34
  • DOI: 10.1002/chem.201305078

Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba 8 M 24 P 28+ δ ( M =Cu/Zn)
journal, January 2017

  • Dolyniuk, Juli-Anna; Zaikina, Julia V.; Kaseman, Derrick C.
  • Angewandte Chemie, Vol. 129, Issue 9
  • DOI: 10.1002/ange.201611510

Works referencing / citing this record:

Synthesis, structure, and transport properties of Ba 8 Cu 16 –  x Au x P 30 clathrate solid solution
journal, February 2020

  • Wang, Jian; Voyles, Jackson; Grzybowski, Scott
  • Journal of Applied Physics, Vol. 127, Issue 5
  • DOI: 10.1063/1.5134080