DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu3(BTC)2 Transmetalated with Rh2+ Ions

Abstract

Raman spectroscopy was used to establish direct evidence of heterometallic metal centers in a metal–organic framework (MOF). The Cu3(BTC)2 MOF HKUST-1 (BTC3– = benzenetricarboxylate) was transmetalated by heating it in a solution of RhCl3 to substitute Rh2+ ions for Cu2+ ions in the dinuclear paddlewheel nodes of the framework. In addition to the Cu–Cu and Rh–Rh stretching modes, Raman spectra of (CuxRh1–x)3(BTC)2 show the Cu–Rh stretching mode, indicating that mixed-metal Cu–Rh nodes are formed after transmetalation. Density functional theory studies confirmed the assignment of a Raman peak at 285 cm–1 to the Cu–Rh stretching vibration. Electron paramagnetic resonance spectroscopy experiments further supported the conclusion that Rh2+ ions are substituted into the paddlewheel nodes of Cu3(BTC)2 to form an isostructural heterometallic MOF, and electron microscopy studies showed that Rh and Cu are homogeneously distributed in (CuxRh1–x)3(BTC)2 on the nanoscale.

Authors:
 [1];  [1];  [2];  [1];  [1];  [2];  [1]; ORCiD logo [3];  [4];  [5];  [6];  [2];  [1];  [1];  [1];  [1]
  1. Univ. of South Carolina, Columbia, SC (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Stony Brook Univ., NY (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1716757
Report Number(s):
BNL-220600-2020-JAAM
Journal ID: ISSN 1948-7185
Grant/Contract Number:  
SC0012704; SC0019360; SC0001004
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 11; Journal Issue: 19; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; Ions; metal organic frameworks; Raman spectroscopy; electron paramagnetic resonance spectroscopy; quantum mechanics

Citation Formats

Metavarayuth, Kamolrat, Ejegbavwo, Otega, McCarver, Gavin, Myrick, Michael L., Makris, Thomas M., Vogiatzis, Konstantinos D., Manley, Olivia M., Senanayake, Sanjaya D., Ebrahim, Amani M., Frenkel, Anatoly I., Hwang, Sooyeon, Rajeshkumar, Thayalan, Jimenez, Juan D., Chen, Kexun, Shustova, Natalia B., and Chen, Donna A. Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu3(BTC)2 Transmetalated with Rh2+ Ions. United States: N. p., 2020. Web. doi:10.1021/acs.jpclett.0c02539.
Metavarayuth, Kamolrat, Ejegbavwo, Otega, McCarver, Gavin, Myrick, Michael L., Makris, Thomas M., Vogiatzis, Konstantinos D., Manley, Olivia M., Senanayake, Sanjaya D., Ebrahim, Amani M., Frenkel, Anatoly I., Hwang, Sooyeon, Rajeshkumar, Thayalan, Jimenez, Juan D., Chen, Kexun, Shustova, Natalia B., & Chen, Donna A. Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu3(BTC)2 Transmetalated with Rh2+ Ions. United States. https://doi.org/10.1021/acs.jpclett.0c02539
Metavarayuth, Kamolrat, Ejegbavwo, Otega, McCarver, Gavin, Myrick, Michael L., Makris, Thomas M., Vogiatzis, Konstantinos D., Manley, Olivia M., Senanayake, Sanjaya D., Ebrahim, Amani M., Frenkel, Anatoly I., Hwang, Sooyeon, Rajeshkumar, Thayalan, Jimenez, Juan D., Chen, Kexun, Shustova, Natalia B., and Chen, Donna A. Mon . "Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu3(BTC)2 Transmetalated with Rh2+ Ions". United States. https://doi.org/10.1021/acs.jpclett.0c02539. https://www.osti.gov/servlets/purl/1716757.
@article{osti_1716757,
title = {Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu3(BTC)2 Transmetalated with Rh2+ Ions},
author = {Metavarayuth, Kamolrat and Ejegbavwo, Otega and McCarver, Gavin and Myrick, Michael L. and Makris, Thomas M. and Vogiatzis, Konstantinos D. and Manley, Olivia M. and Senanayake, Sanjaya D. and Ebrahim, Amani M. and Frenkel, Anatoly I. and Hwang, Sooyeon and Rajeshkumar, Thayalan and Jimenez, Juan D. and Chen, Kexun and Shustova, Natalia B. and Chen, Donna A.},
abstractNote = {Raman spectroscopy was used to establish direct evidence of heterometallic metal centers in a metal–organic framework (MOF). The Cu3(BTC)2 MOF HKUST-1 (BTC3– = benzenetricarboxylate) was transmetalated by heating it in a solution of RhCl3 to substitute Rh2+ ions for Cu2+ ions in the dinuclear paddlewheel nodes of the framework. In addition to the Cu–Cu and Rh–Rh stretching modes, Raman spectra of (CuxRh1–x)3(BTC)2 show the Cu–Rh stretching mode, indicating that mixed-metal Cu–Rh nodes are formed after transmetalation. Density functional theory studies confirmed the assignment of a Raman peak at 285 cm–1 to the Cu–Rh stretching vibration. Electron paramagnetic resonance spectroscopy experiments further supported the conclusion that Rh2+ ions are substituted into the paddlewheel nodes of Cu3(BTC)2 to form an isostructural heterometallic MOF, and electron microscopy studies showed that Rh and Cu are homogeneously distributed in (CuxRh1–x)3(BTC)2 on the nanoscale.},
doi = {10.1021/acs.jpclett.0c02539},
journal = {Journal of Physical Chemistry Letters},
number = 19,
volume = 11,
place = {United States},
year = {Mon Sep 07 00:00:00 EDT 2020},
month = {Mon Sep 07 00:00:00 EDT 2020}
}

Works referenced in this record:

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Retrosynthesis of multi-component metal−organic frameworks
journal, February 2018


Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis
journal, May 2018

  • Huang, Ning; Wang, Kecheng; Drake, Hannah
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b02710

Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis
journal, August 2018


Methane storage in metal–organic frameworks
journal, January 2014

  • He, Yabing; Zhou, Wei; Qian, Guodong
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00032C

Hydrocarbon Separations in Metal–Organic Frameworks
journal, September 2013

  • Herm, Zoey R.; Bloch, Eric D.; Long, Jeffrey R.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402897c

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks
journal, January 2010

  • Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.
  • Accounts of Chemical Research, Vol. 43, Issue 1, p. 58-67
  • DOI: 10.1021/ar900116g

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations
journal, January 2015

  • Chughtai, Adeel H.; Ahmad, Nazir; Younus, Hussein A.
  • Chemical Society Reviews, Vol. 44, Issue 19
  • DOI: 10.1039/C4CS00395K

Applications of metal–organic frameworks in heterogeneous supramolecular catalysis
journal, January 2014

  • Liu, Jiewei; Chen, Lianfen; Cui, Hao
  • Chemical Society Reviews, Vol. 43, Issue 16, p. 6011-6061
  • DOI: 10.1039/C4CS00094C

Metal Organic Framework Catalysis: Quo vadis ?
journal, December 2013

  • Gascon, Jorge; Corma, Avelino; Kapteijn, Freek
  • ACS Catalysis, Vol. 4, Issue 2, p. 361-378
  • DOI: 10.1021/cs400959k

Metal-Organic Frameworks as Platforms for Catalytic Applications
journal, November 2017


Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

MOF-based electronic and opto-electronic devices
journal, January 2014

  • Stavila, V.; Talin, A. A.; Allendorf, M. D.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00096J

An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
journal, January 2017

  • Stassen, Ivo; Burtch, Nicholas; Talin, Alec
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00122C

Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions
journal, January 2017

  • Huang, Yuan-Biao; Liang, Jun; Wang, Xu-Sheng
  • Chemical Society Reviews, Vol. 46, Issue 1
  • DOI: 10.1039/C6CS00250A

Highly Conductive Bimetallic Ni–Fe Metal Organic Framework as a Novel Electrocatalyst for Water Oxidation
journal, May 2019


Ti 3+ -, V 2+/3+ -, Cr 2+/3+ -, Mn 2+ -, and Fe 2+ -Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5
journal, August 2013

  • Brozek, Carl K.; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4064475

Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity
journal, March 2017

  • Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.
  • Journal of the American Chemical Society, Vol. 139, Issue 14
  • DOI: 10.1021/jacs.7b01125

Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework
journal, July 2010

  • Kobayashi, Yoji; Jacobs, Benjamin; Allendorf, Mark D.
  • Chemistry of Materials, Vol. 22, Issue 14
  • DOI: 10.1021/cm101238m

Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks
journal, November 2019

  • Shakya, Deependra M.; Ejegbavwo, Otega A.; Rajeshkumar, Thayalan
  • Angewandte Chemie International Edition, Vol. 58, Issue 46
  • DOI: 10.1002/anie.201908761

Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air
journal, January 2016

  • Todaro, Michela; Alessi, Antonino; Sciortino, Luisa
  • Journal of Spectroscopy, Vol. 2016
  • DOI: 10.1155/2016/8074297

Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [Ru x Rh 3−x (BTC) 2 ]
journal, January 2019

  • Heinz, Werner R.; Kratky, Tim; Drees, Markus
  • Dalton Transactions, Vol. 48, Issue 32
  • DOI: 10.1039/C9DT01198F

A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2
journal, July 2015

  • Kim, Hong Ki; Yun, Won Seok; Kim, Min-Bum
  • Journal of the American Chemical Society, Vol. 137, Issue 31
  • DOI: 10.1021/jacs.5b06637

Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation
journal, May 2020

  • Song, Hye In; Bae, Jinhee; Lee, Eun Ji
  • The Journal of Physical Chemistry C, Vol. 124, Issue 24
  • DOI: 10.1021/acs.jpcc.0c02255

Molecular Geometry in an Excited Electronic State and a Preresonance Raman Effect
journal, April 1975


Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level
journal, June 2016

  • Todaro, Michela; Buscarino, Gianpiero; Sciortino, Luisa
  • The Journal of Physical Chemistry C, Vol. 120, Issue 23
  • DOI: 10.1021/acs.jpcc.6b03237

CW and Pulsed ESR Spectroscopy of Cupric Ions in the Metal−Organic Framework Compound Cu 3 (BTC) 2
journal, February 2008

  • Pöppl, Andreas; Kunz, Sebastian; Himsl, Dieter
  • The Journal of Physical Chemistry C, Vol. 112, Issue 7
  • DOI: 10.1021/jp7100094

Characterization of the Metal−Organic Framework Compound Cu 3 (benzene 1,3,5-tricarboxylate) 2 by Means of 129 Xe Nuclear Magnetic and Electron Paramagnetic Resonance Spectroscopy
journal, October 2006

  • Böhlmann, Winfried; Pöppl, Andreas; Sabo, Michal
  • The Journal of Physical Chemistry B, Vol. 110, Issue 41
  • DOI: 10.1021/jp063074r

Anomalous paramagnetism of copper acetate
journal, October 1952

  • Bleaney, Brebis; Powers, K. D.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 214, Issue 1119, p. 451-465
  • DOI: 10.1098/rspa.1952.0181

Titania-modified hydrodesulfurization catalysts
journal, August 1991


Synthesis, Structure, and Electron Paramagnetic Resonance Study of a Mixed Valent Metal–Organic Framework Containing Cu 2 Paddle-Wheel Units
journal, February 2015

  • Šimėnas, Mantas; Kobalz, Merten; Mendt, Matthias
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp512629c

Cooperative magnetic behavior in the coordination polymers [Cu3(TMA)2L3] (L=H2O, pyridine)
journal, May 2000

  • Zhang, Xi Xiang; Chui, Stephen S. -Y.; Williams, Ian D.
  • Journal of Applied Physics, Vol. 87, Issue 9
  • DOI: 10.1063/1.372595

Chemical principles underpinning the performance of the metal–organic framework HKUST-1
journal, January 2015

  • Hendon, Christopher H.; Walsh, Aron
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01489A

CO 2 /H 2 O Adsorption Equilibrium and Rates on Metal−Organic Frameworks: HKUST-1 and Ni/DOBDC
journal, September 2010

  • Liu, Jian; Wang, Yu; Benin, Annabelle I.
  • Langmuir, Vol. 26, Issue 17
  • DOI: 10.1021/la102359q

Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes
journal, March 2016

  • Wang, Yixian; Zhao, Meiting; Ping, Jianfeng
  • Advanced Materials, Vol. 28, Issue 21
  • DOI: 10.1002/adma.201600108

A catalytically active porous coordination polymer based on a dinuclear rhodium paddle-wheel unit
journal, January 2014

  • Nickerl, Georg; Stoeck, Ulrich; Burkhardt, Ulrich
  • J. Mater. Chem. A, Vol. 2, Issue 1
  • DOI: 10.1039/C3TA12795H

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Self-Consistent-Field X α Cluster Method for Polyatomic Molecules and Solids
journal, February 1972


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides
journal, September 2012

  • Gulde, Rebekka; Pollak, Patrik; Weigend, Florian
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 11
  • DOI: 10.1021/ct300302u

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

A density-functional model of the dispersion interaction
journal, October 2005

  • Becke, Axel D.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 123, Issue 15
  • DOI: 10.1063/1.2065267

A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
journal, May 2006

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 124, Issue 17
  • DOI: 10.1063/1.2190220

A post-Hartree–Fock model of intermolecular interactions
journal, July 2005

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 123, Issue 2
  • DOI: 10.1063/1.1949201

Arbitrary Angular Momentum Electron Repulsion Integrals with Graphical Processing Units: Application to the Resolution of Identity Hartree–Fock Method
journal, June 2017

  • Kalinowski, Jaroslaw; Wennmohs, Frank; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 7
  • DOI: 10.1021/acs.jctc.7b00030

Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided?
journal, September 2014

  • Kesharwani, Manoj K.; Brauer, Brina; Martin, Jan M. L.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 9
  • DOI: 10.1021/jp508422u

A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
journal, July 2004

  • Yanai, Takeshi; Tew, David P.; Handy, Nicholas C.
  • Chemical Physics Letters, Vol. 393, Issue 1-3, p. 51-57
  • DOI: 10.1016/j.cplett.2004.06.011