

LA-UR-19-22175 (Accepted Manuscript)

Phoresy in animals: review and synthesis of a common but understudied mode of dispersal

Bartlow, Andrew William Agosta, Salvatore J.

Provided by the author(s) and the Los Alamos National Laboratory (2020-11-04).

To be published in: Biological Reviews

DOI to publisher's version: 10.1111/brv.12654

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-22175

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Biol. Rev. (2020), pp. 000–000. doi: 10.1111/brv.12654

Phoresy in animals: review and synthesis of a common but understudied mode of dispersal

Andrew W. Bartlow^{1*} and Salvatore J. Agosta²

ABSTRACT

Phoresy is a type of interaction in which one species, the phoront, uses another species, the dispersal host, for transportation to new habitats or resources. Despite being a widespread behaviour, little is known about the ecology and evolution of phoresy. Our goal is to provide a comprehensive review of phoretic dispersal in animals and to bring renewed attention to this subject. We surveyed literature published between 1900 and 2020 to understand the extent of known higher-level taxonomic diversity (phyla, classes, and orders) and functional aspects of animals that use phoretic dispersal. Species dispersing phoretically have been observed in at least 13 animal phyla, 25 classes, and 60 orders. The majority of known phoronts are arthropods (phylum Euarthropoda) in terrestrial habitats, but phoronts also occur in freshwater and marine environments. Marine phoronts may be severely under-represented in the literature due to the relative difficulty of studying these systems. Phoronts are generally small with low mobility and use habitats or resources that are ephemeral and/or widely dispersed. Many phoronts are also parasites. In general, animals that engage in phoresy use a wide variety of morphological and behavioural traits for locating, attaching to, and detaching from dispersal hosts, but the exact mechanisms behind these activities are largely unknown. In addition to diversity, we discuss the evolution of phoresy including the long-standing idea that it can be a precursor to parasitism and other forms of symbioses. Finally, we suggest several areas of future research to improve our understanding of phoresy and its ecological and evolutionary significance.

Key words: animal-animal interaction, animal-mediated dispersal, arthropod, dispersal host, hitch-hiking, parasitism, phoront, species interaction, symbiosis, zoochory

CONTENTS

I.	Introduction
II.	What is phoresy?
	(1) Stages of phoretic dispersal
	(a) Stage 1: locating the host
	(b) Stage 2: attaching to the host
	(c) Stage 3: detaching from the host
	(2) A working definition of phoresy
	(3) Similarity with dispersal in plants
III.	Survey of the diversity of phoronts
	(1) Surveying the literature
	(2) Results of the survey
	(3) Some common characteristics among phoronts
IV.	Evolution of phoretic dispersal
	(1) Is phoresy 'risky'?
	(2) Effects on dispersal hosts
	(3) Host associations
	(4) A precursor to parasitism?

¹Biosecurity and Public Health, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM, 87545, U.S.A.

²Center for Environmental Studies, VCU Life Science, Virginia Commonwealth University, 1000 W. Cary St., Richmond, VA, 23284, U.S.A.

^{*} Address for correspondence (Tel: +505 665 1761; E-mail: bartlow.andrew@gmail.com)

64 65

66

67

68

69

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

106

109

110

111

112

113

114

1	
2	
3	
4	
5	
6	
6 7 8 9	
8	
9	
10	
11	
12	
13	
12 13 14 15	
15	
16	
17	
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
19	
20	
21	
22	
94	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	

56

V.	Outstanding questions and future directions	8
VI.	Conclusions	8
VII.	Acknowledgements	9
VIII.	References	9

I. INTRODUCTION

From the several cases now given, there can, I think, be no doubt that living bivalve shells must often be carried from bond to bond, and by the aid of birds occasionally even to great distances. (Darwin, 1882)

In his final publication, Darwin (1882) described several species of freshwater bivalves that use their shells to attach to the bodies of ducks, beetles, frogs, and newts. He hypothesized that the bivalves were using these other animals for dispersal, and that this could explain the observation that individuals from distant areas were remarkably similar in appearance and in fact the same species. Over a century later, it is clear that Darwin was remarking on the dispersal behaviour now known as phoresy (Lesne, 1896).

Dispersal is a critical component in the life history of most organisms. Dispersing away from one area to another can affect not only the fitness of individuals, but also the genetics of populations and the distribution and abundance of species (Bowler & Benton, 2005; Clobert et al., 2012). Dispersal by both parents and offspring can, for example, decrease competition with conspecifics, reduce the probability of inbreeding, and allow populations to respond to environmental change (Bowler & Benton, 2005; Jackson & Sax, 2010; Clobert et al., 2012). It can also decrease density-dependent predation and disease, which has been shown for some plant species (Connell, 1970; Janzen, 1970; Comita et al., 2014). Phoresy, or phoresis (from the Greek 'phoresis' meaning 'being carried'), has been defined traditionally as a type of animal-mediated dispersal where an animal, the phoront, searches for and attaches to another animal, the dispersal host, for the sole purpose of being transported to a 'suitable' habitat (i.e. a habitat that supports continued survival and reproduction; Farish & Axtell, 1971). A second, more recent definition is not necessarily restricted to animals, with phoresy being "a phenomenon in which one organism (the phoretic) receives an ecological or evolutionary advantage by migrating from the natal habitat while superficially attached to a selected interspecific host for some portion of the individual phoretic's lifetime" (Houck & OConnor, 1991, p. 613). These definitions are similar but differ in the context under which they consider phoresy to occur. Specifically, Farish & Axtell (1971) consider phoresy to involve dispersal to and from any suitable habitat, whereas Houck & OConnor (1991) are more restrictive and consider only dispersal from the natal habitat. Both definitions agree that the goal of phoresy is dispersal and that, unlike parasites that consume parts of their hosts, phoronts are essentially passive 'hitchhikers' that have little or no net negative effects on their hosts (although, as discussed in later sections, this may not always

be true and in some instances the lines between phoresy and other forms of symbioses can be blurred).

The goal of this paper is to assess the diversity of animals using phoretic dispersal through both taxonomic and functional lenses to reveal previously overlooked patterns of this relatively understudied type of species interaction and mode of dispersal. To date, there have been dozens of reviews on specific taxa, for example lice (Keirans, 1975a, 1975b), mites (Houck & OConnor, 1991), pseudoscorpions (Poinar, Curcic, & Cokendolpher, 1998), and nematodes (Giblin-Davis, Kanzaki, & Davies, 2013), but no large-scale comprehensive review of this subject. First, we briefly review the concept of phoresy and present a working definition. Next, we present a synthesis of the literature to reveal the higher-level taxonomic breadth (phyla, classes, and orders) of known phoretic animals and the functional similarities among them. In the discussion that follows, we speculate on the evolution of phoresy including the long-standing idea that it can be a precursor to parasitism and other types of symbiotic relationships. We end by offering suggestions for future research needed for an improved understanding of phoresy and its ecological and evolutionary significance.

II. WHAT IS PHORESY?

(1) Stages of phoretic dispersal

Phoresy generally comprises three distinct stages that are each critical for success of the phoront: locating a dispersal host, attaching to the host, and detaching from the host. If a phoront is unable to complete one of these stages, dispersal will fail.

(a) Stage 1: locating the host

Recognizing a suitable host is the first step to phoretic dispersal. To do so, phoronts must perceive host-specific cues. These may be cues related to being in the right habitat or sensing the proper host species or host developmental stage. The majority of species with documented cases of hostrelated cues are arthropods (Table 1). The cues that have **10**5 been documented have been mostly chemical, although it seems likely that other types of cues involving visual, tactile, and auditory information are common but unrecorded. Examples include lice that use CO₂ released by their hippoboscid fly host (Harbison et al., 2009), wasps that use sex pheromones produced by their moth host (Arakaki et al., 1997), and nematodes that use volatiles and cuticular hydrocarbons emitted by their hosts (Hong & Sommer, 2006a; Krishnan et al., 2010; Okumura, Tanaka, & Yoshiga, 2012). To locate

Table 1. List of phoretic orders of animals identified during the literature survey. Examples are arranged by phylum, subphylum, class, and order. We also list up to three families Thoretic stages observed' summarizes the phoretic behavioural stages that have been observed for at least one species within each group: 1, locating dispersal host; 2, attaching to and indicate if there are more known. Common dispersal hosts, ecosystem and microhabitat type, and examples of specific traits used for phoresy are also given. Column labelled the host; 3, detaching from the host (see Section II.1). Although all three behavioural stages are required, not all stages have been documented for most groups (see text for details).

	1
	2
	2
	4
	T
	C
	6
	/
	8
	9
1	0
1	1
	2
1	3
1	4
1	5
1	6
	7
1	8
1	9
2	0
2	1
	2
	3
2	4
2	5
2	
	7
2	
	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
	0
4	1
	9
4	_
4	
_	4
4	5
4	
4	7
4	8
4	9
5	
5	1
5	-
J	3
5	
	5
5	6

Table 1. (Cont.)

Reference(s)	Moss (1966); Schabel (1982); Brown & Wilson (1992); Hechtmann & Baggio (1993); Seeman & Walter (1995); Gibbs & Stanton (2001); Bajerlein & Mullens (2004); Owen & Mullens (2004); Moser & al. (2005, 2010); Niogret, Lumaret, & Bertrand (2006); Lindquist & Moraza (2008); Nims & al. (2008); Hodgkin & al. (2010); López-Orozco & Cañon- Franco (2013); Bajerlein, Witaliński, & Adamski (2013); Gettinger & Gardner (2017); Paraschiv, Martinez- Rui, & Gardner (2017); Paraschiv, Martinez- Rui, & Hornok (2018); Kontschân (2018); Kontschân (2018); Kontschân (2019); Kontschân (2019); Gutowski, & Hornok (2019); Gutowski, & Hornok (2019);	Petrova & Basikhin (1993); Flechtmann & Baggio (1993); Saloña-Bordas et al. (2015)
Examples of R traits	Modified M chelicerae and claws of legs, anal pedicels, specific phoreic life stages, response to chemical cues	Unknown
Phoretic stages observed	2.4. C	51
Common dispersal host(s)	Various arthropods, birds, and mammals	Beedes, flies
Microhabitat of phoront	Nests, plants, flowers, feathers, hair, carrion, dung, fungi	Mammals and birds
Major ecosystem	Terrestrial	Terrestrial
Life stage(s) involved	Adults, nymphs	Larvae, nymphs
Common name	Mires	Ticks
Families	Dermanyssidae, Uropodidae, Macrochelidae, and many others	Ixodidae
Order	Mesostigmata	Ixodida
Class	Arachnida	Arachnida
Subphylum	Chelicerata	Chelicerata
Phylum	Euarthropoda	Euarthropoda

	,
	1
	2
	3
	4
	5
	6
	7
	/
	8
	9
1	
	0
1	1
1	2
	_
1	4
1	5
1	
1	7
1	8
1	9
1	9
	0
2	1
9	2
4	4
2	3
2	4
2	5
2	6
2	7
2	
	9
3	0
3	1
3	4
	3
3	4
3	5
J	J
3	6
3	7
2	8
	9
_	-
4	0
4	1
Ť	0
4	4
4	3
4	4
-	5
_	_
4	6
4	7
4	8
	_
4	9
5	0
5	1
_	_
J	2
5	3
5	4
_	5
J	
5	6
5	7

Reference(s)	Behura (1956); Schabel (1982); Durden & Wilson (1991); Houck & Ocomnor (1991); Houck & Cohie (2001); Fashing & Chua (2002); Macchioni et al. (2005); Moser et al. (2005); Perotti & Braig (2009); Hodgkin et al. (2010); Okabe & Makino (2010); Sarangi, Gupta, & Saha (2014); Paraschiv et al. (2018); Waleckx et al. (2018); Ermilov et al. (2018); Ermilov	Lchinose, Rinaldi, & Forti (2004) Haack & Wilkinson (1987); Zeh & Zeh (1991), 1992, 1997); Magowski (1995); Poinar et al. (1998); Santos, Tizo- Pedroso, & Fernanckes (2005); Francke & Villegas- Guzmán (2006); Szymkowiak, Górski, & Bajerlein (2007); Tizo-Pedroso & Del- Claro (2007); Finlayson et al. (2015); Fombong et al. (2015)
Examples of R traits	Specific phoretic Bilic stages, ventral suckers (hypopodes), possible response to chemical cues	Unknown Ic Use of H pedipalpal chelae, silk harnesses, response to chemical cues, modified reproduction
Phoretic stages observed	1, 2, 3	2
Common dispersal host(s)	Various arthropods, birds, and mammals	Winged sexual ants Insects, rodents, opilionids
Microhabitat of phoront	Nests, plants, flowers, frathers, hair, carrion, dung, fungi	Ant nests Animal nests, decaying trees
Major ecosystem	Terrestrial, freshwater	Terrestrial Terrestrial
Life stage(s) involved	Adults, nymphs	Adults and immatures Adults
Common name	Mites	Spiders Adults imm Pseudoscorpions Adults
Families	Oppiidae, Chaetodactylidae, Trhypochthoniidae, and many others	Corrinidae Chernetidae, Chthoniidae, Withiidae, and many others
Order	Sarcopulormes	Arancae Pseudoscorpiones
Class	Arachmida	Arachnida Arachnida
Subphylum	Chelicerata	Chelicerata
Phylum	Euarthropoda	Euarthropoda

Table 1. (Cont.)

Reference(s)	Pages, Corbera, & Lindsay (2007) Hopkins (1946); Keirans (1975a, 1975b); Durden (1990); Macchioni et al. (2005); Harbison, Jacobsen, & Clayron (2009);	Barttow et al. (2016) Marshall (1977); Hastriter et al. (2017) Alves-Silva & Del-	Claro (2011) Roubik & Wheeler (1982); Peck (1982); Ashe & Timm (1987); Durden & Wilson (1991); Saul- Gershenz & Millar (2006); Crees & Debinski (2018); Topitzhofer ### (2018); Scholtz, #### (2018); Scholtz, ###################################	Botograf (2015) Takagi (2001); Magsig- Castillo et al. (2010); Gish & Inbar (2018); Leppanen & Simberdoff (2018)	Waage & Montgomery (1976); Waage (1979); Davis	Clausen (1976); Arakaki, Wakamura, & Yasuda (1995); Arakaki et al. (1997); Huigens et al. (2009); Fatouros & Huigens (2011) (Continues)
Examples of traits	Unknown Tarsal claws, mandibles, response to chemical cues	Unknown Unknown	Specialized mandibles, attracts host	Hair suction cups	Unknown	Response to chemical cues
Phoretic stages observed	2 <u>,</u> 2,	0 0	ر. م	21	2	2.
Common dispersal host(s)	Jellyfish Insects	Earwig (Arixenia esau) Treehopper	Rodents, shrews	Insects	Animal dung Rodents, sloths 2	Insects
Microhabitat of phoront	Mesopelagic Jellyfist zone Feathers, hair Insects	Bats Flowers,	moss, fungi Animal dung, animal nests	Plants	Animal dung	Moth eggs
Major ecosystem	Marine Terrestrial	Terrestrial Terrestrial	Terrestrial	Terrestrial	Terrestrial	Terrestrial
Life stage(s) involved	Adults, juveniles Adults, nymphs	Adults Adults,	nymphs Adults, larvae	Nymphs	Adults	os Adults
Соттоп пате	Sea spiders Lice	Fleas Thrips	Beetles	True bugs	Moths	Parasitoid wasps Adults
Families	Pallenopsidae Philopteridae, Bovicoliidae, Trichodectidae, and many others	Ischnopsyllidae Heterothripidae	Leiodidae, Staphylinidae, Meloidae, and a few others	Diaspididae, Adelgidae, Aphididae, and a few others	Pyralidae, Acrolophidae	Scelionidae, Trichogrammatidae
Order	Pantopoda Pluhiraptera	Siphonaptera Thysanaptera	Coleoptera	Hemiptera	Lepidoptera	Hymenoptera
Class	Pycnogonida Insecta	Insecta Insecta	Insecta	Insecta	Insecta	Insecta
Subphylum	Chelicerata Hexapoda	Hexapoda Hexapoda	Hexapoda	Hexapoda	Hexapoda	Hexapoda
Phylum	Euarthropoda Euarthropoda	Euarthropoda Euarthropoda	Euarthropoda	Euarthropoda	Euarthropoda Hexapoda	Euarthropoda

54 55 57

Subphylum	Class	Order	Families	Common name	Life stage(s) involved	Major ecosystem	Microhabitat of phoront	Common dispersal host(s)	Phoretic stages observed	Examples of traits	Reference(s)
Hexapoda	Insecta	Diptera	Phoridae, Chironomidae, Simuliidae	Phorid flies, non-biting midges, blackflies	Larvae, eggs, pupae	Terrestrial, freshwater	Decaying organic matter, rivers, streams	Blowflies, molluscs, freshwater insects, fish, crustaceans	6	Proleg and abdominal hooks	Disney (1971); White, Weaver, & Fox (1980); Tracy & Hazelwood (1983); Tokeshi (1993); de Moor (1999); Callisto & Goulart (2000); Stauder & Kiel (2004); Batista- Da-Silva (2012);
Hexapoda	Insecta	Trichoptera	Hydroptilidae	Caddisflies	Larvae	Freshwater	Rivers,	Crustaceans	2	Silk attachment	Inoue $at al. (2015)$ Lewis & Fairchild (1984)
Hexapoda	Insecta	Orthoptera	Unknown	Grasshoppers	Adults	Terrestrial	streams Grasslands	Sheep	2	mechanism Unknown	Warkus, Beinlich, &
Hexapoda	Insecta	Strepsiptera	Stylopidae	Twisted-wing parasites	Larvae	Terrestrial	Nests of hunting	Hunting wasps	61	Unknown	Kathirithamby et al. (2012)
Hexapoda	Insecta	Neuroptera	Mantispidae	Mantid lacewings	Larvae	Terrestrial	Spider egg sacs	Spiders	cı	Unknown	Redborg & Macleod (1983); O'Brien & Dollower (2007)
Hexapoda	Insecta	Blattodea	Blaberidae	Cockroaches	Adults, juveniles	Terrestrial	Ant nests	Ants	1, 2	Well-developed tarsal pads for	Nemborg (2007) Phillips, Zhang, & Mueller (2017)
Hexapoda	Collembola	Entomobryomorpha Cyphoderidae, Sminthuridae	Cyphoderidae, Sminthuridae	Springtails	Adults	Terrestrial	Ant tunnels	Ants	61	Unknown	Moser & Blomquist (2011);
Hexapoda	Collembola	Poduromorpha	Poduridae	Springtails	Unknown	Freshwater	Still water	Nutria	2	Unknown	Waterkeyn <i>et al.</i> (2010)
Hexapoda Crustacea	Collembola Ostracoda	Symphypleona Podocopida	Unknown Cyclocyprididae, Linmocytheridae	Springtails Ostracods	Unknown Adults	Terrestrial Freshwater	Unknown Bromeliads	Nutria Frogs, snakes, mammals	0.0	Unknown Closes skin between shell	Waterkeyn et al. (2010) Seidel (1989); Lopez, Rodrigues, & Riss (1999); Lopez et al. (2002, 2005); Sabach et al. (2011)
Crustacea	Hexanauplia	Cyclopoida	Lubbockiidae	Copepods	Adults,	Marine	Deep ocean	Jellyfish	2	Unknown	Ohtsuka et al. (2009)
Crustacea	Hexanauplia	Lepadiformes	Lepadidae, Poecilasmatidae	Barnacles	Adults, larvae	Marine	Rocks and hard surfaces	Marine mammals, copepods, crabs	5	Unknown	Williams (1986); Ambom & Lundberg (1995); Jacobsen, Scott- Holland, & Bennett (2013)
Crustacea	Hexanauplia	Sessilia	Coronulidae	Barnacles	Unknown	Marine	Rocks and hard surfaces	Dolphins	64	Unknown	Waerebeek, Reyes, & Alfaro (1993); Toth-Brown & Hohn (2007)
Crustacea	Branchiopoda	Anostraca	Chirocephalidae	Fairy shrimp	Eggs	Freshwater	Isolated lakelets	Trout	61	Can survive digestion process of fish	Beladjal, Dierckens, & Mertens (2007)

Foley et al. (2018) Lopez et al. (1999, 2005)

Thomas (2018);

Carta &

Khan & Frick (1997)

Unknown

Unknown Unknown

2

Frogs, snakes

Bromeliads

Freshwater Freshwater

Ponds Ponds

Unknown

Annelids

Leeches Leeches

Glossiphoniidae

Erpobdellidae

Arhynchobdellida

Haplotaxida

Clitellata Clitellata Clitellata

A Z Z

Annelida Annelida

Rhynchobdellida

Naididae

Adults

Freshwater

Salamander Crabs, frogs

Maia-Carneiro

et al. (2012); Badets & Schiaparelli et al. (2010)

Du Preez (2014)

Barnhart, Haag, &

Fryer (1961);

Darwin (1882);

Closing shell on

Unknown

C CV

Sea cucumber

Shallow

Marine

Unknown

polychaete

Polynoid

Polynoidae Unionidae

Phyllodocida

Polychaeta

ΝA NA

Annelida Mollusca

Unionoida

Bivalvia

Fish

Streams,

Freshwater

Larvae

ponds waters

fin, forked

holdfasts acting as

anchor

Roston (2008)

2 3 4 5 6 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 52 53 54 55 56 57

Table 1. (Cont.)

Suzuki (1965); Marliave Strong (2005); Moser Krishnan et al. (2010); Kerchev et al. (2017); Tanaka *et al.* (2014); Kanzaki *et al.* (2014, Brown (2013); Zhao Okumura, Tanaka, et al. (2013); Ramos Marcogliese (1995) Mertz et al. (2014); Georgieva (1993); & Yoshiga (2013); Ragsdale (2015); Eng, Preisser, & Giblin-Davis, & Sudhaus (2008); 2018); Kanzaki, Shapiro-Ilan & Davenport, & Wirtz (1997); Haddad (2005) & Mills (1993); Vanschoenwinkel Fajovsky (2001) Nogueira & Poinar (1978); et al. (2005); et al. (2008) Dellinger, Reference(s) Peck (1975) Jackson & development, synchronous phoretic life Phoretic Examples of Response to Can survive digestion chemical specific process Unknown Unknown Unknown Unknown observed 1, 2, 3 stages C CV 2 CV dispersal host(s) myriapods, fellyfish, sea annelids isopods, shrimp Common Wild boar beaver Opossum insects, turtles Lakes, ponds Muskrat, Various Bird nests on Birds Plants, insects Microhabitat of phoront Sublittoral lakelets zones Isolated Fish Freshwater Freshwater Terrestrial Terrestrial ecosystem Marine Marine Major Life stage(s) juveniles Unknown (zoea), larvae involved Juveniles Adults, Larvae Adults Common name Shrimp, spider swimming Columbus Amphipods Water fleas Millipedes Nematodes crabs, crabs Fish lice crabs, Diplogastridae, and Pandalidae, Majidae, Aphelenchoididae, Macrotrichidae, and Portunidae Hyalellidae, Gammaridae Rhabditidae, Daphniidae many more Chydoridae, Polyxenidae Argulidae Families Anomopoda Amphipoda Rhabditida Polyxenida Arguloida Order Branchiopoda Chromadorea Malacostraca Malacostraca Ichthyostraca Diplopoda Class Subphylum Myriapoda Crustacea Crustacea Crustacea Crustacea $^{\rm N}$ Euarthropoda Euarthropoda Euarthropoda Euarthropoda Euarthropoda Nematoda Phylum

(Continues) 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 102 104 106 109 110 111 112

54 55 56 57

Table 1. (Cont.)

Phylum	Subphylum	Class	Order	Families	Common name	Life stage(s) involved	Major ecosystem	Microhabitat of phoront	Common dispersal host(s)	Phoretic stages observed	Examples of traits	Reference(s)
Mollusca	NA	Bivalvia	Cardiida	Cardiidae	Cockles	Unknown	Marine	Sheltered	Shorebirds	2	Closing shell on	Green &
Mollusca	NA	Bivalvia	Myida	Dreissenidae	Zebra mussel	Juvenile	Freshwater	beaches Rivers, lakes	Killer shrimp	23	bird teet Attaching using byssal threads	Figuerola (2016) Kenderov (2017)
Mollusca	NA	Bivalvia	Sphaeriida	Sphaeriidae	Fingernail clams Juveniles	Juveniles	Freshwater	Lakes, ponds	Insects,	2	Closing shell on	Darwin (1882); Zelaya
			C						salamanders		msect and salamander legs	& Marinone (2012)
Mollusca	NA	Gastropoda	Patellogastropoda (subclass)	Lottiidae	Limpets	Adults	Freshwater	Lakes, isolated ponds	Freshwater and terrestrial insects	64	Unknown	Brewer (1975); Walther et al. (2008)
Mollusca	NA	Gastropoda	Neogastropoda	Nassariidae	Whelks	Juveniles	Marine	Rocky shores	Crabs	2	Unknown	Davenport et al. (2015)
Mollusca		Gastropoda	Stylommatophora	Clausilidae, Helicidae, Discidae, and others	Snails	Adults, juveniles	Terrestrial	Woodlands	Birds, frogs	61	Can survive digestion process of	Dorge <i>et al.</i> (1999); Simonová <i>et al.</i> (2016); Kolenda
Mollusca	NA	Gastropoda	Hygrophila	Lymnaeidae,	Aquatic snails	Adults	Freshwater	Wetlands	Waterbirds	2	birds Unknown	et al. (2017) van Leeuwen & van der
:		, ,	(superorder)	Planorbidae,		:			;	,		Velde (2012)
Cnidaria	NA	Anthozoa	Асплапа	Actinostolidae, Hormathiidae	Sea anemones	Adults	Marme	Sublittoral zones	Molluscs, hermit crabs	24	Unknown	Brooks & Mariscal (1986); Luzzatto &
												Pastorino (2006)
Platyhelminthes	Rhabditophora	Monogenea	Capsalidea	Capsalidae	Flukes	(Marine	Fish	Isopods	2	Unknown	Goto (1894)
Platyhelminthes	Rhabditophora		Mazocraeidea	Diclidophoridae	Flukes	Unknown	Marine	Fish	Isopods	2 0	Unknown	Llewellyn (1941)
Pornera	NA	Demospongrae	Spongulida	Spongulidae	Sponges	Gemmules	Freshwater	Fonds, lakes	birds	:4	Unknown	Van Leeuwen et al. (2017)
Rotifera	NA	Eurotatoria	Ploima	Brachionidae, Lepadellidae, and	Rotifers	Adults	Freshwater	Ponds, lakes	Mammals	2	Can survive digestion	Vanschoenwinkel et al. (2008)
Rotifera	NA VA	Eurotatoria	Flosculariaceae	Lecanidae Conochilidae	Rotifers	Adults	Freshwater	Ponds, lakes	Mammals	2	process Can survive	Vanschoenwinkel
											digestion process	et al. (2008)
Bryozoa	NA	Phylactolaemata	Plumatellida	Plumatellidae	Bryozoans	Statoblasts	Freshwater	Ponds, lakes, rivers	Birds, insects	6	Hooks, spines	Ogbogu (1993); Okamura, Hartikainen, & Trew (2019)
Echinodermata	NA	Ophiuroidea	Amphilepidida	Amphilepididae, Ophiotrichidae	Brittle stars	Adults	Marine	Subtidal sandy areas	Jellyfish	2	Arm hooklets	Ohtsuka et al. (2009)
Entoprocta (Kamptozoa)	NA	Entoprocta	Solitaria	Urnatellidae	Kamptozoan	Larvae	Freshwater	River	Dobsonfly	2	Unknown	Tracy & Hazelwood (1983)
Tardigrada	NA	Eutardigrada	Apochela	Milnesium	Water bears	Adults,	Terrestrial,	Mosses,	Birds	2	Unknown	Mogle et al. (2018)
Tardigrada	NA	Eutardigrada	Parachela	Hypsibiidae,	Water bears	Juvenmes Adults,	Terrestrial,	Mosses,	Birds	2	Unknown	Mogle et al. (2018)
				Macrobiotidae		juveniles	H	lichens				
Tardigrada	NA	Heterotardigrada Echiniscoidea	Echiniscoidea	Echinsicidae	Water bears	Adults, juveniles	Terrestrial, freshwater	Mosses, lichens	Birds	5	Unknown	Mogle <i>et al.</i> (2018)

60

61

62

63

64

65

66

67 68 69

70

71 72

73

74

75

76 77

78

79

80

81

82

84 85

86

87

89

90

91

92

93

94

95

96 97

98 99

100

106

109

110

112

114

	1
	2
	3
	4
	5
	5 6
	7
	/
	8
	9
1	
1	1
1	2
	3
1	4
1	5
1	
	7
1	8
1	9
0	0
9	1
4	1 2
2	2
	3
2	
	5
2	6
2	7
	8
2	9
3	0
3	1
3	2
3	
3	4
3	5
2	6
0	7
3	8
	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8
4	9
5	
5	1
5	_
_	3
5	
J	5
5	_
5	7

Phylum	Subphylum Class	Class	Order	Families	Соттоп пате	Life stage(s) Major involved ecosystem	Major ecosystem	Microhabitat of phoront	Microhabitat Common Phoretic Examples of of phoront dispersal host(s) observed traits	tic Examples of traits	Reference(s)
Chordata	Vertebrata	Chordata Vertebrata Actinopterygii Perciformes	Perciformes	Echeneidae, Centrolophidae	Remora fish, Adults, butterfish juveniles	Adults, juveniles	Marine	Pelagic zones	Pelagic zones Sharks, turtles, 2 rays, jellyfish	Specialized mouthparts for attachment to	Sazima & Grossman (2006); Ohtsuka et al. (2009)
Chordata	Vertebrata	Actinopterygii Siluriformes	Siluriformes	Trichomycteridae	Pencil catfish Unknown Freshwater Rivers	Unknown	Freshwater	Rivers	Catfish 2	marine animals Attachment with Zuanon & mouthparts Sazima	nature animals tachment with Zuanon & mouthparts Sazima (2005)

suitable hosts, phoronts may also alter their life history. Again, the known cues are chemical in nature. An example is nematodes parasitic on pine trees that use beetles as dispersal hosts (Zhao *et al.*, 2013). The nematodes use chemical cues given off by eclosing adult beetles to synchronize development with the mobile stage of their host. Chemical cues are also used to attract dispersal hosts. This is seen in larvae of the blister beetle *Meloe franciscanus* Van Dyke, which produce chemicals that mimic sex pheromones of their bee host (Saul-Gershenz & Millar, 2006).

(b) Stage 2: attaching to the host

Attaching to and staying on the host is the second step in phoretic dispersal. Many phoronts have specific structures and life stages adapted for this task (Table 1). For example, mites in the infraorder Uropodina attach in the deutonymph stage using anal pedicels that stick to the dispersal host (Klompen, Lekveishvili, & Black, 2007; Bajerlein et al., 2013). Mites in other groups also disperse in the deutonymph stage but attach to hosts using claws (Athias-Binche,-1995) and suckers (Houck & OConnor, 1991; Seeman & Walter, 1995). Species in groups such as beetles (Roubik & Wheeler, 1982), pseudoscorpions (Zeh & Zeh, 1991), and lice (Marshall, 1981) use modified mouthparts to attach to hosts. Other mechanisms of attachment include bivalve shells and holdfasts (Darwin, 1882; Fryer, 1961; Seidel, 1989; Barnhart et al., 2008). Some phoronts attach to very specific structures on their dispersal hosts. Mites from several families are transported in the abdominal pouches of bees and wasps (Houck & OConnor, 1991) and the pinewood nematode Bursaphelenchus xylophilus Steiner and Buhrer is transported in the spiracles of its beetle host (Zhao et al., 2013). Many pseudoscorpions (Poinar et al., 1998), mites (Bajerlein & Błoszyk, 2004), and nematodes (Moser et al., 2005) attach under the elytra of beetles, perhaps because the area is well protected. Another example is the nematode Caenorhabditis drosophilae Kiontke, which attaches to a specific structure (an inflatable sac called the retracted ptilinium) on its fly host's head.

(c) Stage 3: detaching from the host

The final step of phoretic dispersal is detachment from the host. Little is known about how phoronts determine the right time or place to disengage from the host. Most information comes from mites (Table 1). Brennandania lambi Krczal is phoretic on mushroom flies (Diptera: Sciaridae and Phoridae). It only detaches from the host in the presence of one particular species of fungus (Clift & Larsson, 1987), suggesting a habitat-related cue. Another mite, Histiostoma polypore Oud., stays attached while the host develops from larva to adult. Upon death of the host, the mite uses cues given off by waxy secretions from the host to moult to the adult stage, after which it begins feeding on the dead host (Behura, 1956). The nematode Caenorhabditis japonica Kiontke, Hironaka & Sudhaus detaches from its adult hemipteran host in the

3

4

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

35

36

39

40

41 42

43

44

45

46

47

48

49

50

52

54

55

56

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96 97

98

99

100

102

104

105

106

109 110

111

112

113 114

presence of host nymphs (Okumura *et al.*, 2013), maintaining synchrony and a continued association with the host. The precise mechanisms of detachment are almost entirely unknown. In mites, the structural integrity of anal pedicels used to attach to hosts is influenced by humidity; detachment occurs when the pedicel breaks during low humidity (Szymkowiak *et al.*, 2007).

(2) A working definition of phoresy

While phoronts may be passive hitch-hikers once attached, the process of finding and attaching to the host occurs along a spectrum of behaviours (as described in Section II.1) ranging from more active (e.g. moving towards the host) to more passive (e.g. sitting and waiting for the host). In the extreme, phoronts may simply wait for a dispersal host to pass by and make contact before attaching, as in the case of bivalves using their shells to clamp onto their hosts (Darwin, 1882; Barnhart et al., 2008). According to Farish & Axtell (1971), phoresy specifically involves actively finding and attaching to a host; however, animals that sit and wait for hosts to find them are often reported as phoretic in the literature. For example, water fleas and rotifers are picked up by wild boar and transported to new areas (Vanschoenwinkel et al., 2008) and eggs of fairy shrimp (Chirocephalus diaphanous Prévost) are swallowed by juvenile trout and transported among lakes via interconnecting streams (Beladjal et al., 2007). Based on Farish & Axtell's (1971) definition, it is not entirely clear if some of these would be considered examples of phoretic dispersal. Instead, we agree with Houck & OConnor (1991) that a more expansive definition is needed that encompasses the full spectrum of host-seeking behaviours, from what might be considered 'actively searching' to 'more passively sitting and waiting'. At the same time, we believe Houck & OConnor's (1991) definition restricting phoresy to dispersal from the "natal habitat" is too narrow and instead agree with Farish & Axtell's (1971) more expansive view on this issue.

More recently, two broad definitions for phoresy have been offered. Camerik (2010, p. 334) defined phoresy as "a dynamic interspecific, temporary relationship whereby the phoretic...attaches to the host...for the duration of migration from one habitat to another, with the primary outcome being dispersal". Walter & Proctor (2013, p. 355) defined it as "a type of temporary symbiosis whose function is to allow a smaller individual (the phoretic) to move from one place to another on a larger individual (the host or carrier)". We believe these definitions are complementary, and that phoresy can be defined most broadly as the behaviour of one organism (the phoront) to disperse from one location to another with the aid of another organism (the dispersal host) by attaching to that organism, regardless of whether the phoront actively searches for or more passively waits for the host. Note that Camerik (2010) and some previous authors specifically restrict the definition of phoresy to interspecific interactions. While we restricted our review to interspecific cases, which represent the vast majority reported in the literature, we note that a small number of intraspecific cases have been reported, for example, aphid nymphs that

attach to adults of the same species to disperse onto their food plants (Gish & Inbar, 2018).

(3) Similarity with dispersal in plants

Of course, animal-mediated dispersal is also used by many other types of organisms, including many species of plants [see reviews by Howe & Smallwood (1982), Vander Wall & Beck (2012) and Lichti, Steele, & Swihart (2017)]. The evolutionary and ecological significance of phoresy in animals is analogous to animal-mediated seed dispersal (zoochory) in plants. A seed attaching to or being carried by an animal functions in the same way as an animal attaching to another animal. Structures on seeds used for clinging to fur and feathers and energy-rich fruits and nuts used to attract dispersers can all be viewed as traits that function to move offfrom parent spring away plants (Howe Smallwood, 1982). Likewise, as shown below, phoretic animals have a diversity of structures and other traits used to attract and attach to other animals. One major difference between seed dispersal and phoretic dispersal is that in many cases animals are offered nutritional rewards by plants to disperse seeds, resulting in mutualism. Interestingly, mutualism may also be the case in some phoretic systems (Kinn, 1980; Wilson & Knollenberg, 1987; Barbaro, Dutoit, & Cozic, 2001; Okabe & Makino, 2008), which we discuss below (see Section IV.2 and IV.4). Another major difference is that in animals, different life stages, including adults, can be the phoront, whereas in most plants it is only the seeds or spores that disperse. But despite the differences, whether speaking of plants or animals, both form and function converge to result in the organism being taken to other, possibly more favourable locations, such as seeds being taken to locations that favour germination and establishment (Howe & Smallwood, 1982; Wenny & Levey, 1998) or animals being taken to more resource-rich habitats (Saul-Gershenz & Millar, 2006). In the remainder of this review, we deal exclusively with phoresy in animals but acknowledge the fundamental similarities with zoochory in plants.

III. SURVEY OF THE DIVERSITY OF PHORONTS

(1) Surveying the literature

We used the following search terms to find records of phoretic dispersal by animals in the literature: 'phoresy animals', 'phoresis', 'phoresy', 'phoretic association', 'phoretic dispersal', 'animal-mediated dispersal', 'hitch-hiking', 'endozoochory', and 'ectozoochory'. We searched *Google Scholar* and *Web of Science* (1900–2020) initially between September and November 2014 and again in June 2020 to find new articles published since the initial search. Our goal was not to track down every single species or article on phoresy in the literature, but rather to uncover the major patterns of known diversity, and specifically to record all the taxonomic orders with animals known to be phoretic. In total, our search

60 61

62

63

64

65

66

67

68

69

71

72

73

74 75

76

77

78

79

80

81

82

83

84

85

87

88

89

90

91

92

94

95

96

97

98

99

100

106

109 110

111

112

113

114

2

3

5

8

9

11

19

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

34

35

36

39

40

41

42

43

44

45

46

47

48

49

50

52

54

56

produced more than 1,800 articles dealing with phoresy. We screened this initial collection of articles to identify studies reporting direct observations of phoretic associations, reviews, records, and checklists summarizing phoretic associations, and descriptions of behaviours and traits involved in phoretic dispersal. This exercise eliminated 475 articles that did not meet our criteria. We then scanned the remaining 1,325 articles to (i) record all animal orders with at least one species reported to disperse phoretically and (ii) provide ancillary information (e.g. behaviours, morphology, life stages, habitats, resources, dispersal hosts) on phoretic interactions for each group. Thus, not all articles that could have been cited are included in our review – again the goal was not to count every article or species, but to quantify ordinal-level diversity and capture the major patterns. Also note that we did not count the few papers that referred to epibionts or epizoic species as examples of phoresy since these animals, such as whale barnacles (Killingley, 1980; White, Morran, & de Roode, 2017), spend most of their lives living on the host rather than using the host for dispersal.

We chose to restrict our review to higher taxonomic levels because the diversity of known phoretic species is very large, and summarizing the information at this level was beyond our intended scope. For example, there are at least 212 species of phoretic mites that have been found by examining animal carcasses alone (Perotti & Braig, 2009). Note that many of the references herein contain more detailed information on the species involved in phoretic interactions. For our analysis, we focused on diversity at the level of orders within classes. This included comparisons of the absolute number of orders with known phoretic species per class and scaled comparisons of the relative number of orders with known phoretic species divided by the total number of orders per class. We obtained information on the total number of orders per class from the World Register of Marine Species (WoRMS Editorial Board, 2020) for marine taxa, freshwater taxa, taxa that fell into more than one category (Gastropoda, Bivalvia, Eutardigrada, Heterotardigrada), and the nematode class Chromadorea [cross-referenced with the World Database of Nematodes (Bezerra et al., 2019)]. For the classes Arachnida, Insecta, Collembola, and Diplopoda, data were obtained from Wheeler et al. (2001), Brewer, Sierwald, & Bond (2012), Proctor et al. (2015), Beron (2018), and Leo et al. (2019). The name Entoprocta is used for both the phylum and class, which has two orders (Fuchs et al., 2010; Conway, 2015; ITIS, 2020). For Arachnida, two sources differed in the number of orders: 15 (Proctor et al., 2015) and 16 (Beron, 2018), and so we chose to use the most recent estimate. Finally, to obtain estimates of total numbers of phyla, classes, and orders in the animal kingdom, we used the WoRMS database (WoRMS Editorial Board, 2020). These data were compared with the numbers of phyla, classes, and orders where phoresy has been observed.

(2) Results of the survey

The results of our literature survey show that phoretic dispersal has been observed in multiple animal phyla (Table 1;

and see Szymkowiak et al., 2007), including at least two vertebrates [both are species of bony fish (Zuanon & Sazima, 2005; Sazima & Grossman, 2006)]. In total, we found 13 phyla (out of 33), 25 classes (out of 93), and 60 orders (out of 529) of animals in which at least one species has been recorded as dispersing phoretically (Table 1; note that within Gastropoda, the superorder Hygrophila and subclass Patellogastropoda were counted as orders for the purposes of this analysis). Most records are anecdotal and come from observational studies in which dispersal hosts were collected for another reason and phoronts were inadvertently found attached. Some records come from fossilized amber. Fossilized accounts of phoresy include mites, springtails, and pseudoscorpions (Magowski, 1995; Poinar et al., 1998; Penney et al., 2012), with some records of mites dating back 85 million years (Magowski, 1995), and pseudoscorpion records dating back 40 million years (Poinar et al., 1998). A less commonly observed phoretic interaction described in the literature is hyperphoresy, which occurs when a phoretic individual itself carries another phoretic individual (Szymkowiak et al., 2007). We found records of hyperphoresy in animals that involve mites attaching to other mites (Bajerlein & Błoszyk, 2003). A second example involves species of ciliates (Kingdom Chromista, Phylum Ciliophora) attached to ostracods, which are themselves attached to treefrogs (Sabagh et al., 2011).

The majority of known phoretic animals are small invertebrates (Table 1). Of the 60 orders with known cases of phoresy, most are in the phylum Euarthropoda, with phoretic species spread across the terrestrial, freshwater, and marine environments (Table 1). The two classes across all animal phyla with the highest number of orders with observed phoresy are both from Euarthropoda: Insecta $(\mathcal{N}=13 \text{ orders with phoretic species})$ and Arachnida $(\mathcal{N}=6)$ orders). Two classes in the phylum Mollusca share the third highest rank: Gastropoda ($\mathcal{N} = 4$ orders) and Bivalvia $(\mathcal{N}=4 \text{ orders})$ (Fig. 1A). When scaled to the total number of orders per class (Fig. 1B), the highest relative diversity of phoronts is found in two relatively small groups: Class Pycnogonida (sea spiders) and Class Eutardigrada (tardigrades). The class Pycnogonida is composed of a single order, in which phoresy has been observed for some species, whereas both orders in the Class Eutardigrada have phoretic species. The second highest proportion of phoretic orders is found in another small group, Class Collembola (springtails), for which three out of the four total orders exhibit phoresy. Insecta and Arachnida also rank relatively high when scaled for total diversity (eighth and tied for ninth, respectively) with slightly less than half of the known orders in each class exhibiting the behaviour (Fig. 1B). On the other hand, Class Gastropoda ranks in the bottom half of all classes when scaled for total diversity, with less than a quarter of orders recorded exhibiting phoresy (Fig. 1B).

Out of the 60 orders where phoresy has been observed (11.3% of total animal orders), there is a positive correlation (r = 0.41, P = 0.04) between the number of orders with known records of phoresy and the total number of orders per class (Fig. 1C). This relationship suggests that in groups

74

95

96

97

98

99

100

102

104

105

106

109

110

111

112

113

114

Fig 1. (A) Pie chart showing the number of orders per class where phoresy has been observed (i.e. absolute diversity). (B) The number of known phoretic orders divided by the total number of orders per class (i.e. relative diversity). Numbers at the end of the bars represent the total number of orders in each class. (C) Correlation between the absolute number of known phoretic orders and the total number of orders per class (r = 0.41, P = 0.04). (D) Venn diagram of the number of known phoretic orders according to the major ecosystem inhabited. The six orders that are both terrestrial and freshwater represent two orders of mites, three orders of tardigrades, and the insect order Diptera.

with known phoresy, the behaviour is distributed among higher animal taxa roughly in proportion to their diversity.

39

40

41

42

43

44

45

46

47

48

49

50

54

55

56

By far the greatest number of orders and classes with known phoronts is in the phylum Euarthropoda. One explanation for the dominance of arthropods engaging in phoresy is that their small size, extreme diversity, and morphological traits that facilitate attachment (e.g. claws and mandibles; see Section II.1) favour its evolution in this group relative to others. Alternatively, phoresy may be more readily documented in arthropods relative to other species-rich groups such as molluscs for a variety of reasons including their ease of observation, especially in the terrestrial environment.

Within arthropods, insects dominate the number of orders known to exhibit phoresy, but the group most regularly associated with the behaviour is mites (Class Arachnida, Subclass Acari), and most research has been done on this group (Houck & OConnor, 1991; Table 1). Indeed, the majority (>800) of the articles found during our literature survey concerned mites. Mites have a diverse set of morphological and behavioural traits used for phoretic dispersal and are known to use a broad range of dispersal hosts including beetles, flies, bees, wasps, ants, bats, non-volant mammals, and birds. Phoretic mites have been implicated in increasing the transmission of Dutch elm disease among trees and entomopathogenic fungi among insects (Schabel, 1982; Moser et al., 2010).

62

63

64

65

66

67

68

69

71

72

73

74

75

76

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96 97

98

99 100

106

109 110

112

113

114

2

3

5

8

9

11

19

14

15

16

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

59

54

55

56

There are several mechanisms by which mites can be phoretic, including: females attaching using chelicerae, claws, and hooks; deutonymphs (the second nymphal life stage) attaching using chelicerae and claws; deutonymphs attaching using anal pedicels (secreted attachment stalks); and hypopodes (modified deutonymphs specialized for dispersal) attaching using suckers or claspers (Macchioni, 2007). Another order of arthropods, Pseudoscorpiones, also commonly use other invertebrates and mammals as dispersal agents, with species in at least ten out of 26 families known to engage in phoresy (Harvey, 2002, 2013; Tizo-Pedroso & Del-Claro, 2007).

Nematodes are another large group of invertebrates with records of many species engaging in phoresy (Table 1). Two families of nematodes, Rhabditidae and Diplogastridae, engage in endophoresy by entering protected cavities on the bodies of insects, including the rectum and genital chamber (Sudhaus, 2008; Giblin-Davis et al., 2013). Other species enter the excretory system of earthworms (Annelida) (Poinar, 1978) or the guts and intestines of snails (Petersen et al., 2015) for dispersal. Many free-living nematodes use a specific larval form, the dauer larva, for phoresy. Dauer larvae are arrested third-stage larvae (L3) that are non-feeding. In parasitic nematodes, the infective larvae are also arrested L3 larvae that are non-feeding. Both dauer larvae of free-living nematodes and infective larvae of parasites are resistant to harsh environmental conditions such as those encountered during dispersal or infection (Sudhaus, 2008; Crook, 2014). Because of the similarity of the L3 larval stages, it has been suggested that phoresy was a precursor to parasitism in nematodes (Rogers & Sommerville, 1963; Sudhaus, 2008; Ogawa et al., 2009; Crook, 2014).

In terms of major ecosystems, phoretic species are found in all three habitat realms: terrestrial (Poinar et al., 1998; Tizo-Pedroso & Del-Claro, 2007; Krishnan et al., 2010), freshwater (Seidel, 1989; Vanschoenwinkel et al., 2008), and marine (Arnbom & Lundberg, 1995; Luzzatto & Pastorino, 2006) (Table 1). Of the orders known to exhibit phoresy (Table 1), more than 75% are terrestrial or freshwater (Fig. 1D). Six orders Diptera, two orders of mites (Trombidiformes and Sarcoptiformes), and three orders of tardigrades (Echinsicidae, Apochela, Parachela)] contain records of both terrestrial and freshwater species. Based on these data, phoresy appears to be more taxonomically widespread in both the terrestrial realm ($\mathcal{N}=26$ orders) and freshwater realm ($\mathcal{N}=26$ orders) than in the marine realm ($\mathcal{N}=14$ orders). In fresh water, many arthropods, such as ostracods, and the larvae of non-biting midges (Chironomidae) and blackflies (Simuliidae) (de Moor, 1999; Stauder Kiel, 2004) are phoretic. Midges alone are known to attach to molluscs, fish (Tokeshi, 1993), stoneflies, mayflies, damselflies, and dragonflies (White et al., 1980) (Table 1). Among marine species, pandalid shrimps (Pandalidae), copepods (Lubbockiidae), and sea spiders (Pallenopsidae) use jellyfish as dispersal hosts, and cockles (Cardiidae) use shorebirds (Table 1). The lower number of marine taxa known to engage in phoresy compared to terrestrial and freshwater taxa may be because the marine environment is somehow

fundamentally different (e.g. strong water currents assist with dispersal of many species; Highsmith, 1985). However, a more probable explanation is a sampling bias due to the relative difficulty of documenting phoretic events in marine systems. This means the extent of phoresy in these systems is probably far greater than currently known. For example, marine diversity includes many small, sedentary animals with low mobility and many large, high-mobility animals, with vast distances between some habitat types. These characteristics seem likely to promote the evolution of phoretic dispersal in the marine environment more than current observations would suggest.

(3) Some common characteristics among phoronts

Although diverse taxonomic groups use phoresy as a method of dispersal, our literature survey reveals several characteristics that are common among phoronts (Table 1). First, we found several cases that involve what might be considered as a sit-and-wait strategy. Of the 60 orders with known phoronts, 18 had at least one example of 'sit-and-wait'; interestingly, most are from the marine and freshwater environments, including bryozoans, sponges, rotifers, and bivalves that wait to be picked up by a host (Vanschoenwinkel et al., 2008; Zelaya & Marinone, 2012; Van Leeuwen et al., 2017; Okamura et al., 2019). Thus, most observed cases of phoresy appear to involve some form of actively searching and attaching to the host. Second, the habitats/resources used by phoretic species are often patchy or ephemeral, such as animal dung, isolated lakes and ponds, fungi, bromeliads, or hosts to parasitize. Third, most phoronts are small and lack a highly mobile life stage, which presumably makes it inherently difficult to disperse to widely spaced or ephemeral habitats or hosts.

Phoresy is not, however, strictly limited to organisms with low mobility; it also occurs in species with at least one mobile life stage (Table 1). For example, many species of insects that are aquatic during the larval stage (e.g. non-biting midges, blackflies, caddisflies) are phoretic even though they can fly as adults. Some mobile adult moths (Waage & Montgomery, 1976), beetles (Ashe & Timm, 1987), and parasitic wasps (Arakaki et al., 1995) also disperse via phoresy (Table 1). Species in which otherwise mobile adults engage in phoretic dispersal may require specific habitats or resources that are highly aggregated, ephemeral, or difficult to find. For example, adult Cryptoses choloepi Dvar moths that live and feed on the dung of sloths use these mammals as dispersal hosts (Waage & Montgomery, 1976). Sloths occur at low densities and climb down trees to defecate infrequently; thus, their dung is a patchy and ephemeral resource (Waage & Montgomery, 1976). Even though adult moths can fly, the time and energy cost to finding dung is presumably reduced by hitching a 'free ride' and being taken directly to the resource.

Along with widely dispersed habitats, small body size, and low mobility, many phoronts are also parasites (Keirans, 1975a, 1975b; Saul-Gershenz & Millar, 2006;

3

4

5

6

8

9

10

11

12

13

14

15

16

17

19

20

21

22

24

25

26

27

28

29

30

31

32

34

35

39

40

41

42

43

44

45

46

47

48

49

50

52

54

55

56

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75

76 77

79

80

81

82

84

85

86

87

89

90

91

92

93

94

95

96

97

98

99

100

102

104

105

106

109 110

111

112

113 114

Bartlow et al., 2016), some being phoretic on a different species than they parasitize and others parasitizing the same host species or individual (e.g. Arakaki et al., 1995; Houck & Cohen, 1995; Bartlow et al., 2016). In fact, one hypothesis is that phoresy has been a precursor to the evolution of parasitism in some systems (Osche, 1956; Houck & OConnor, 1991; Athias-Binche & Morand, 1993; Houck, Blaxter, 2003; Sudhaus, 2008; Crook, 2014; see Section IV.4). Like other phoronts, phoretic parasites generally have patchy, widely dispersed and ephemeral resources their hosts. While highly mobile parasites (e.g. with freeliving adult stages, mobile larvae, or intermediate hosts) may disperse and find hosts with relative ease, more 'permanent' parasites with little or no mobility may be especially likely to engage in phoresy on non-host species. Some evidence for this pattern has been found in lice. Lice exhibit a range of mobilities from highly mobile to relatively immobile, and species with the ability to move independently off a host may be less likely to engage in phoretic dispersal (Bartlow et al., 2016).

In some cases, the lines between phoresy and parasitism are blurred (Parmentier & Michel, 2013). For example, some parasitoid wasps are known to use adults of the insect eggs they parasitize for dispersal (Arakaki et al., 1997; Fatouros & Huigens, 2011). Since the host eggs are small, inconspicuous, and can be separated by long distances (Fatouros & Huigens, 2011), hitching a ride on adults and simply waiting for eggs to be laid effectively eliminates the need to search for new hosts to parasitize. In this case, parasitoid wasps are par asitizing the same species as their dispersal host, but are not parasitizing the individual to which they are attached. In other cases, phoronts may be parasitizing the dispersal host itself, further blurring the lines and hinting at an evolutionary transition from phoresy to parasitism. An example is the mite Hemisarcoptes cooreman Thomas. Once thought to be using beetles for the sole purpose of phoretic dispersal, H. cooreman are now known to parasitize the beetles by consuming haemolymph (Houck & Cohen, 1995). These fuzzy lines between phoresy and parasitism lend more credence to the longstanding idea that phoretic interactions can precede evolutionary transitions to more intimate symbiotic relationships.

IV. EVOLUTION OF PHORETIC DISPERSAL

(1) Is phoresy 'risky'?

Phoresy has been said to be a 'risky' strategy for dispersal (de la Rosa, 1992; Lopez et al., 2005; Bartlow et al., 2016; Nolan & Delaplane, 2017). The behaviour involves attaching to another organism and relying on that organism for transport to a suitable habitat or, in the case of phoretic parasites, to a suitable host. To accomplish this, phoronts must successfully complete the three stages of phoresy outlined in Section II.1: locate the host, attach to the host, and detach from the host at an appropriate location. These three stages

appear to require precise cues and mechanisms of attachment and detachment in at least some cases, and failing to complete any of the stages will result in failure to disperse.

If phoresy is a 'risky' strategy for dispersal, then why did it evolve? Risk is relative. All that matters from an evolutionary perspective is that dispersing via phoresy is more likely to be successful than dispersing under one's own power or not dispersing at all. The behaviour is distributed widely throughout the animal kingdom (Table 1; Fig. 1), suggesting multiple independent origins. Studies of specific taxa, including blister beetles (Bologna & Pinto, 2001; Bologna et al., 2008; Di Giulio et al., 2014) and acarid mites (OConnor & Pfaffenberger, 1987), show evidence for its repeated origins within multiple clades. For the behaviour to evolve independently multiple times, the benefits must sometimes outweigh the risks. Some hypothesized advantages of phoresy for the phoront include reduced energetic costs (Houck OConnor, 1991), reduced dispersal times (Krishnan et al., 2010; Bartlow et al., 2016), directed dispersal to specific habitats (Fronhofer et al., 2013), and protection from predators (Badets & Du Preez, 2014) and harsh environmental conditions (Liu et al., 2016). The ultimate risk of phoresy is death, such as falling off mid-transport, being wounded or killed by the host, or ending up at the wrong location. For example, avian wing lice that fall off their hippoboscid fly hosts likely die quickly, since they desiccate rapidly off a host (Johnson & Clayton, 2003). Other risks involved in phoresy include reaching a habitat with few available resources or one already heavily colonized by competitors. But as long as some individuals survive and reproduce, phoretic dispersal can emerge and persist evolutionarily, despite the inherent risks involved in the behaviour.

Although the end goal is dispersal, other important activities (e.g. reproduction) may take place during phoresy in some species. For example, the pseudoscorpion *Cordylochemes scorpioides* L. has a phoretic association with the giant harlequin beetle *Acrocinus longimanus* L. The beetles are attracted to decaying trees on which pseudoscorpions wait until freshly laid beetle larvae develop into adults. The pseudoscorpions can wait 3–5 generations until beetle larvae develop (Zeh & Zeh, 1997). After adult beetles eclose, male and female pseudoscorpions rush to attach to the beetle's abdomen to disperse phoretically. While attached, males force rival males off the beetle to dominate the abdomen and gain access to females. Therefore, the dispersal host can also serve as a site for reproduction and an arena for sexual selection (Zeh & Zeh, 1997).

(2) Effects on dispersal hosts

Despite being a strategy that seemingly only benefits the phoront, phoresy may have more effects on dispersal hosts than generally assumed. For example, phoretic mites of the genus *Poecilochirus* normally have no negative impact on their burying beetle (*Nicrophorus* spp.) hosts, except at high densities (Wilson & Knollenberg, 1987). The beetles bury carcasses, such as mice, and use them to feed their developing larvae.

62

63

64

65

66

67

68

69 70

71

72

73

74

75

78

79

80

81

82

84

85

86

87

89

90

91

92

93

94 95

96

97

98

99

100

106

109

110

111 112

113

114

2

3

5

8

9

11

19

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

34

35

36

39

40

41

42

43

44

45

46

47

48

49

50

51

59

53

54

55

56

Fly (Calliphora spp.) larvae, which are also buried during this process, feed on shallowly covered carcasses, thereby taking resources away from the beetles. At normal densities, mites phoretic on beetles can actually reduce competition with flies by consuming them, thus indirectly increasing beetle performance (Springett, 1968; Wilson & Knollenberg, 1987). However, it is hypothesized that at high densities, phoretic mites may decrease beetle performance by consuming beetle larvae (Wilson & Knollenberg, 1987). A second example is the remarkable case of mutualism between the potter wasp Allodynerus delphinalis Giraud and the mite Ensliniella parasitica Vitzthum (Okabe & Makino, 2008). After phoretic dispersal, mites attached to wasps actually defend the wasp's offspring against attacks from species of parasitoid wasps. The mites feed on the haemolymph of the potter wasp larvae, but do not kill them, and may even go on to become phoretic on the individual they fed on after it becomes a winged adult. A final example is mites (Dendrolaelaps neodisetus Hurlbutt) phoretic on southern pine beetles (Dendroctonus frontalis Zimmerman). Beetles with phoretic mites harbour fewer endoparasitic nematodes, possibly because the mites feed on the nematodes (Kinn, 1980).

Despite these examples, research into phoretic interactions has generally ignored the dispersal host side of the equation. Are the effects of phoronts on their hosts mostly neutral as generally assumed? What role does density dependence (i.e. how many individuals are physically attached to the host) play in the effects of phoronts on their hosts (e.g. Moser, 1976; Gupta & Borges, 2019)? Answering these and related questions will help develop a better understanding of the evolution of these interactions from the viewpoint of both phoronts and hosts. In addition to the examples listed above, Walter & Proctor (2013) documented numerous examples of adverse effects of phoretic mites on their dispersal hosts, including, but not limited to, negative impacts on their movement, reproduction, feeding, breathing, growth rates, and longevity [see Table 9.4 of Walter & Proctor (2013) for a complete list. If phoronts have more adverse effects on their hosts than generally assumed (Walter & Proctor, 2013; Wang & Rozen, 2019), then questions regarding the evolution of host defence mechanisms and the potential for coevolutionary interactions between phoronts and hosts are worth investigating. For example, hippoboscid flies groom themselves to remove lice (Harbison et al., 2009; Bartlow et al., 2016). Do other dispersal hosts use similar mechanisms to prevent phoronts from attaching? Have phoronts evolved counter defences? In carabid beetles that harbour external mites, Gudowska et al. (2016) showed that compared with mite-free individuals, infested beetles exhibited a different pattern of respiration. Specifically, beetles infested with mites used more discontinuous gas exchange (DGE) which is characterized by extended periods where the spiracles are closed and no respiration occurs. This result is consistent with the 'strolling arthropod' hypothesis proposed by Miller (1974) who posited that complete closure of the spiracles during DGE is a mechanism to prevent other organisms and foreign objects from blocking or entering the tracheal system. How

general is this pattern in arthropods and what role might it play in the evolution of phoronts and their dispersal hosts?

(3) Host associations

Like parasites, phoronts show wide variation in host specificity (White et al., 2017), from one species of dispersal host (e.g. the wasp Telenomus euproctidis Wilcox) to many (e.g. the mite *Histiogaster arborsignis* Woodring). The classical evolutionary model of parasite-host and other types of symbiotic relationships is that they are primarily the result of coevolution, where reciprocal selection pressures favour the evolution of increasing specialization among interacting species [see Janz (2011) for a recent review]. This high degree of specialization is expected to lead to widespread cospeciation and therefore phylogenetic congruence between parasites and their hosts: if the host goes extinct, so does the parasite. In this view, parasites are trapped in an inherent evolutionary 'dead-end' as a result of specializing on their hosts (Moran, 1988; Wiegmann, Mitter, & Farrell, 1993; Kelley & Farrell, 1998). More recently, this way of thinking about species associations has been challenged on both conceptual and empirical grounds (Hoberg & Brooks, 2008; Agosta, Janz, & Brooks, 2010; Janz, 2011; Araujo et al., 2015; Braga et al., 2018; Nylin et al., 2018; Brooks, Hoberg, & Boeger, 2019). For parasites and other symbionts, it is now clear from both theory and data that there is frequent switching to evolutionarily unrelated hosts (Agosta, 2006; Nylin et al., 2018), and that this host switching is a fundamental part of the evolutionary dynamics of these systems (Hoberg & Brooks, 2008; Agosta et al., 2010; Janz, 2011; Araujo et al., 2015; Braga et al., 2018; Brooks et al., 2019).

Compared to parasitism and other forms of symbioses, there have been relatively few studies on the evolution of host associations in phoretic systems. If phoretic interactions are primarily commensal, with phoronts having little to no impact on their hosts, then reciprocal coevolutionary interactions like those that occur between other symbionts are likely rare. However, if phoronts have more impacts on their hosts than generally assumed, as suggested by the evidence discussed in Section IV.2, then the potential for coevolutionary dynamics like those seen in other systems becomes greater. Groups where evolutionary relationships between phoronts and dispersal hosts have been examined to some degree include acarid mites (OConnor & Pfaffenberger, 1987), beetles and hymenopterans (Eggleton & Belshaw, 1993), remora fish (O'Toole, 2002), and nematodes (Giblin-Davis et al., 2003). Like other forms of symbioses, a common theme among these studies is that host switching by phoronts has been a primary mechanism behind the colonization of new dispersal hosts. In the case of phoretic parasites, this may also be a stepping stone to parasitizing new hosts (see also Clayton & Johnson, 2003; DiBlasi et al., 2018).

In general, the potential for host switching is driven by the interaction of ecological opportunity to encounter new potential hosts and the inherent capabilities of parasites (or in this case phoronts) to use new hosts (Agosta &

3

4

5

6

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

39

40

41

42

43

44

45

46

47

48

49

50

52

54

56

60 61

62

63

64

65

66

67

68

69

71

72

73

74 75

76

79

80

81

82

84

85

86

87

89 90

91

92

93

94

95

96

97

98

99

100

102

104 105

106

109 110

111

112

113

114

Klemens, 2008; Agosta et al., 2010; Araujo et al., 2015; Brooks et al., 2019). The formation of new species associations through host switching is one manifestation of ecological fitting (sensu Janzen, 1985), which is the process where organisms respond or 'fit' to novel conditions, such as encountering a new potential host, using inherited traits they already possess (Agosta & Klemens, 2008). Compared to parasites, phoronts appear to have fairly superficial relationships with their dispersal hosts: they use them as a vehicle for transport, but are typically not directly dependent on them for energy. In addition, the kinds of morphological traits used by phoronts to attach to dispersal hosts (e.g. claws, shells, mouthparts) could make it relatively easy for new hosts to be exploited. For these reasons, it seems likely that host switching by ecological fitting is a common phenomenon in the evolution of phoretic systems, especially during periods of widespread environmental change. This prediction is supported by the relatively few studies on the evolution of host associations in the phoretic systems cited above. It is also supported by experiments showing that phoronts can use a wider variety of dispersal hosts than observed in nature (Palevsky et al., 2001; Nehring, Müller, & Steinmetz, 2017) and observations of native phoronts using recently introduced species as dispersal hosts (e.g. mites on introduced millipedes in Europe and North America; Farfan & Klompen, 2012). Host switching has also been implicated as a means for the incidental introduction of phoretic species to new geographic areas with potential impacts on humans and native species (Okabe et al., 2010; Farfan & Klompen, 2012; Shaw, 2012; Giblin-Davis et al., 2013). For example, the pinewood nematode Bursaphelenchus xylophilus, which causes pine-wilt disease, was introduced to Japan around 1905. After switching to a native dispersal host, the longhorn beetle Monochamus alternatus Hope, the nematode caused massive tree mortality throughout Japan and spread across Asia and Europe (Giblin-Davis et al., 2013). In sum, the potential for host switching in phoretic systems seems high. However, more studies are needed at both ecological (e.g. experiments on the ability of phoronts to use alternative hosts) and evolutionary (e.g. co-phylogenetic studies of phoretic associations) scales to understand this potential and the general dynamics of how phoretic systems evolve.

(4) A precursor to parasitism?

It has long been thought that phoretic associations may have been a precursor to the evolution of parasitism in some systems (Osche, 1956; Rogers & Sommerville, 1963; Houck & OConnor, 1991; Athias-Binche & Morand, 1993; Houck, 1994; Houck & Cohen, 1995; Blaxter, 2003; Giblin-Davis *et al.*, 2003; Sudhaus, 2008; Schmid-Hempel, 2013; Crook, 2014; Petersen *et al.*, 2015; White *et al.*, 2017). Phoronts are predisposed to transition from phoretic relationships with dispersal hosts to other relationships such as parasitism and mutualism. Phoretic mites and nematodes may be especially good groups to study the transition from phoresy to parasitism (Athias-Binche &

Morand, 1993; Houck & Cohen, 1995; Kiontke & Sudhaus, 2006; Sudhaus, 2008). Both have a diversity of species with free-living, parasitic, and phoretic lifestyles. For example, in free-living nematodes, third-instar dauer larvae are non-feeding and resistant to harsh environmental conditions (McSorley, 2003). In phoretic species, this stage is used for dispersal, while in parasitic species the same stage is used for infection (Sudhaus, 2008; Ogawa et al., 2009; Crook, 2014). The dauer hypothesis suggests that phoretic larvae were an evolutionary precursor to parasitism (Rogers & Sommerville, 1963; Crook, 2014).

In cases where phoresy has been a precursor to parasitism, it seems likely the transition begins with the phoront simply attaching to the host for dispersal but then later developing the ability to exploit host resources for growth and reproduction. The aforementioned mite *H. cooreman* is perhaps an example of this transition. It was first thought to be phoretic on beetles, but was then found to be a parasite that consumes host haemolymph (Houck & Cohen, 1995). Further experiments suggested that the host beetles also acquire nutrients from the phoretic mites, which led Holte et al. (2001) to hypothesize an evolutionary transition from phoresy to parasitism to mutualism in this system. In phoretic nematodes, necromeny may have been key in the transition to parasitism for some species (Kiontke & Sudhaus, 2006; Hong & Sommer, 2006b; Dieterich & Sommer, 2009; Luong & Mathot, 2019). Necromeny is the process in which dauer larvae of nematodes attach to a live host and, after the host dies (from non-phoretic causes), feed on microbes on the decaying carcass. Parasitism could follow if the nematodes begin to obtain resources from the living host (Dieterich Sommer, 2009). To our knowledge, no studies have explicitly tested this hypothesis.

Two major mechanisms are thought to facilitate the evolutionary transition from phoretic interactions to parasitism and other forms of symbioses. First, dispersing on or in another animal can provide a relatively stable microenvironment, from which may emerge selection for more permanent or obligate phoront—host interactions (Hairston & Bohonak, 1998; Schmid-Hempel, 2013). Second, dispersing on or in another animal can provide access to a consistent and predictable supply of nutrients, which again may create selection for more obligate relationships such as parasitism (Houck, 1994).

A stable microenvironment and predictable resources are benefits that can also be offered by nest commensalism, where organisms live inside the nests of other animals. Nest commensals, such as beetles, pseudoscorpions, and mites experience stable microclimates and predictable sources of food such as ectoparasites and dead skin (Ashe & Timm, 1987; Proctor & Owens, 2000; Roubik, 2006). Phoresy may have evolved in some nest commensals in the context of colonizing new nests (Ashe & Timm, 1987). Alternatively, nest commensalism could theoretically arise from phoresy, where initial exposure to nests is a by-product of phoretic dispersal. Groups including phoretic beetles and pseudoscorpions that live in host nests may be especially useful to test these ideas.

V. OUTSTANDING QUESTIONS AND FUTURE DIRECTIONS

Some major outstanding questions about phoresy to emerge from our review are listed below.

- (1) What are the fundamental traits, behaviours, and cues involved in the different stages of phoresy discussed in Section II.1?
- (2) To what extent does the observed diversity of phoretic animals reflect actual diversity?
- (3) Are phoronts mainly commensals, with little to no impact on their dispersal hosts, or do they have more impacts on their hosts than is generally assumed?
- (4) To what degree and how often are the lines between phoresy and parasitism/mutualism blurred?
- (5) What is the role of coevolution in phoretic systems? If phoronts are mainly commensals, then the potential for coevolution is limited, but if they have more effects on hosts than generally assumed, then coevolutionary dynamics become more likely.
- (6) To what degree are phoronts host specific? How readily do phoronts switch hosts? What is the role of host switching in the evolution of phoretic associations? In parasite—host systems, host switching (as opposed to cospeciating in tandem with hosts) is a frequent and widespread mechanism behind the formation of these interactions (and examples of cospeciation are actually rare) (for an extensive review of this subject see Brooks et al., 2019). We would expect comparable or even greater rates of host switching in phoretic systems.
- (7) How often has phoresy been a precursor to parasitism or mutualism (and possibly *vice versa*) in the evolution of these associations?

In closing, to address the questions outlined above and to understand phoresy better in general we encourage research in the following areas:

- (1) Continued and intensified exploration of the taxonomic and functional diversity of phoretic interactions, including mechanisms of attachment, transport, and detachment from the host. Presumably, one reason phoretic interactions are relatively understudied is because of the difficulty of observing the behaviour of small organisms in the field and tracking them over large distances. Therefore, inventive approaches will be needed to begin to gain a better understanding of the basic biology of phoretic dispersal. In the laboratory, more functional studies of a greater diversity of phoronts and their hosts are needed to elucidate the mechanisms used to disperse, but obtaining a better understanding of the ecological and evolutionary consequences of dispersing will require some highly creative manipulations in the field.
- (2) Phylogenetic studies of macroevolutionary relationships between phoronts and hosts. Compared to parasite—host, insect—plant,

- and other forms of symbioses (see Nylin *et al.*, 2018; Brooks *et al.*, 2019), there has been relatively little work done using modern systematic phylogenetics to build phylogenies for phoronts and their hosts. Not only are these phylogenies needed to help understand the evolution of phoresy within certain groups (see point 4 below), but also to compare patterns between phoronts and their hosts that can be indicative of phenomena such as host switching and cospeciation (for an extensive review see Brooks & McLennan, 2002). As stated previously, we expect host switching to be common (and cospeciation to be rare) in the evolution of phoretic associations.
- Assessment of the potential for host switching and the limits of host specificity in phoretic systems. While phylogenetic analysis may provide insights into the frequency of host switching in the evolutionary history of phoretic associations, experiments are needed to gain a better understanding of the potential for phoronts to use new hosts and the degree to which realized host range (observed host use) is a subset of fundamental host range (Agosta et al., 2010; Brooks et al., 2019). In particular, more experiments like those of Palevsky et al. (2001) and Nehring et al. (2017) testing the abilities of phoronts to use novel hosts are needed, especially with species closely related to and/or found in similar habitats to their actual hosts. Such experiments are relatively common in the literature on plant-feeding insects (e.g. Janz, Nyblom, & Nylin, 2001; Cipollini & Peterson, 2018; Peterson et al., 2020) and can provide a roadmap for how to study this in the context of phoresy.
- (4) Tests of long-standing hypotheses that phoresy can be a precursor to parasitism and other forms of symbioses, and possibly vice versa. Strong inferences about the direction and context of evolutionary transitions (e.g. from phoresy to parasitism) require phylogenies to map the characters of interest (Brooks & McLennan, 2002). So far, character mapping has been carried out to only a limited degree in the context of the evolution of phoresy (e.g. Eggleton & Belshaw, 1993; O'Toole, 2002), and in the transition from phoresy to parasitism (e.g. Blaxter, 2003; Kiontke & Sudhaus, 2006).
- (5) Research from the perspective of dispersal hosts regarding both positive and negative consequences of phoretic interactions. An example is the clever experiment by Gudowska et al. (2016) that manipulated phoront loads to study effects on dispersal host respiration. Challenging the assumption that phoronts are generally commensals with little or no impacts on their dispersal hosts will be critical to developing a better understanding of the ecological and evolutionary context of these interactions.

VI. CONCLUSIONS

(1) Many animals are small, have limited mobility, or have patchy or ephemeral habitats and resources. To

- disperse, some animals have evolved a phoretic lifestyle, taking advantage of other animals for a 'free ride'. The potential advantages of this 'free ride' include reduced energetic and time costs, directed dispersal to specific habitats or resources, and increased protection from natural enemies and abiotic conditions.
- (2) Phoretic dispersal is analogous to zoochory in plants and has been documented in at least 13 animal phyla, 25 classes, and 60 orders. A broad definition includes a spectrum of animal behaviours, from phoronts that actively search for or attract dispersal hosts to those that passively sit-and-wait for hosts to make physical contact.
- (3) Animals that engage in phoresy use a wide variety of morphological and behavioural traits for locating, attaching to, and detaching from dispersal hosts. However, the exact mechanisms and specific chemical, visual, auditory, or tactile cues used for these activities are largely unknown.
- (4) The majority of known animal phoronts are terrestrial arthropods. It is unclear if known diversity reflects actual diversity or a sampling artefact emerging from the relative ease of documenting these interactions in terrestrial environments. It seems likely that the diversity of phoretic interactions is largely undocumented in all environments, especially the marine environment, which is more difficult to study and is likely underrepresented in the current literature.
- (5) In closing, we encourage research in the following areas: continued and intensified exploration of the taxonomic and functional diversity of phoretic interactions, including mechanisms of attachment, transport, and detachment from the host; phylogenetic studies of macroevolutionary relationships between phoronts and hosts; assessment of the role of host switching and host specificity in phoretic systems; tests of long-standing hypotheses that phoresy can be a precursor to parasitism and other forms of symbiosis, and possibly *vice versa*; and research from the perspective of dispersal hosts regarding both positive and negative consequences of phoretic interactions.

VII. ACKNOWLEDGEMENTS

We would like to thank the Clayton-Bush lab at the University of Utah for providing valuable feedback during the initial stages of preparation of this review, and Dan Brooks for his valuable feedback during the later stages. We would also like to thank two anonymous reviewers for their constructive comments that significantly improved the final version.

VIII. REFERENCES

- AGOSTA, S. J. (2006). On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114, 556–565.
- AGOSTA, S. J. & KLEMENS, J. A. (2008). Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. *Ecology Letters* 11, 1123–1134.

- AGOSTA, S. J., JANZ, N. & BROOKS, D. R. (2010). How specialists can be generalists: resolving the 'parasite paradox' and implications for emerging infectious disease. *Zoologia (Curitiba)* **27**, 151–162.
- ALVES-ŠILVA, E. & DEL-CLARO, K. (2011). Ectoparasitism and phoresy in Thysanoptera: the case of Aulacothrips dictyotus (Heterothripidae) in the Neotropical savanna. Journal of Natural History 45, 393–405.
- Arakaki, N., Wakamura, S. & Yasuda, T. (1995). Phoresy by an egg parasitoid, Telenomus euproctidis (Hymenoptera: Scelionidae), on the tea tussock moth, Euproctis pseudoconspersa (Lepidoptera: Lymantriidae). Applied Entomology and Zoology 30, 602–603.
- Arakaki, N., Wakamura, S., Yasuda, T. & Yamagishi, K. (1997). Two regional strains of a phoretic egg parasitoid, Telenomus euproctidis (Hymenoptera: Scelionidae), that use different sex pheromones of two allopatric tussock moth species as kairomones. *Journal of Chemical Ecology* 23, 153–161.
- ARAUJO, S. B. L., BRAGA, M. P., BROOKS, D. R., AGOSTA, S. J., HOBERG, E. P., VON HARTENTHAL, F. W. & BOEGER, W. A. (2015). Understanding host-switching by ecological fitting. *PLoS One* **10**, e0139225.
- Arnbom, T. & Lundberg, S. (1995). Notes on Lepas australis (Cirripedia, Lepadidae) recorded on the skin of southern elephant seal (Mirounga leonina). Crustaceana 68, 655–658.
- ASHE, J. S. & TIMM, R. M. (1987). Probable mutualistic association between staphylinid beetles (*Amblyopinus*) and their rodent hosts. *Journal of Tropical Ecology* 3, 177–181.
- ATHIAS-BINCHE, F. (1995). Phenotypic plasticity, polymorphisms in variable environments and some evolutionary consequences in phoretic mites (Acarina): a review. *Écologie* **26**, 225–241.
- ATHIAS-BINCHE, F. & MORAND, S. (1993). From phoresy to parasitism: the example of mites and nematodes. Research and Reviews in Parasitology 53, 73–79.
- AZHARI, S., HAJIQANBAR, H. & TALEBI, A. A. (2018). First record of the genus *Punicodoxa* (Acari: Microdispidae) from Asia, with description of a new species phoretic on termites (Insecta: Isoptera). *Systematic and Applied Acarology* 23, 468.
- Badets, M. & Du Preez, L. (2014). Phoretic interaction between the kangaroo leech Marsupiobdella africana (Hirudinea: Glossiphoniidae) and the cape river crab Potamonautes perlatus (Decapoda: Potamonautidae). *International Journal for Parasitology: Parasites and Wildlife* 3, 6–11.
- BAJERLEIN, D. & BŁOSZYK, J. (2003). Two cases of hyperphoresy in mesostigmatic mites (Acari: Gamasida: Uropodidae, Macrochelidae). *Biological Letters* 40, 135–136.
- BAJERLEIN, D. & BŁOSZYK, J. (2004). Phoresy of Uropoda orbicularis (Acari: Mesostigmata) by beetles (Coleoptera) associated with cattle dung in Poland. European Journal of Entomology 101, 185–188.
- BAJERLEIN, D., WITALISKI, W. & ADAMSKI, Z. (2013). Morphological diversity of pedicels in phoretic deutonymphs of Uropodina mites (Acari: Mesostigmata). Arthropod Structure & Development 42, 185–196.
- BARBARO, L., DUTOIT, T. & COZIC, P. (2001). A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grasslands of the French Prealps. Biodiversity and Conservation 10, 119–135.
- BARNHART, M. C., HAAG, W. R. & ROSTON, W. N. (2008). Adaptations to host infection and larval parasitism in Unionoida. *Journal of the North American Benthological Society* 27, 370–394.
- BARTLOW, A. W., VILLA, S. M., THOMPSON, M. W. & BUSH, S. E. (2016). Walk or ride? Phoretic behaviour of amblyceran and ischnoceran lice. *International Journal for Parasitology* 46, 221–227.
- BATISTA-DA-SILVA, J. A. (2012). Phoretic association and facultative parasitoidism between Megaselia scalaris and blowflies, under natural conditions. Online Journal of Biological Sciences 12, 34–37.
- BAUMANN, J. (2018). Tiny mites on a great journey a review on scutacarid mites as phoronts and inquilines (Heterostigmatina, Pygmephoroidea, Scutacaridae). *Acarologia* 58, 192–251.
- BAUMANN, J., FERRAGUT, F. & ŠIMI, S. (2018). Lazy hitchhikers? Preliminary evidence for within-habitat phoresy in pygmephoroid mites (Acari, Scutacaridae). Soil Organisms 90, 95–99.
- BEHURA, B. K. (1956). The relationships of the tyroglyphoid mite, Histiostoma polypori (oud.) with the earwig, Forficula auricularia Linn. Journal of New York Entomological Society 64, 85–94.
- Beladjal, L., Dierckens, K. & Mertens, J. (2007). Dispersal of fairy shrimp Chirocephalus diaphanus (Branchiopoda: Anostraca) by the trout (Salmo trutta). Journal of Crustacean Biology 27, 71–73.
- BERON, P. (2018). Zogeography of Arachnida. Springer International Publishing, Cham.
 BEZERRA, T. N., DECRAEMER, W., EISENDLE-FLOCKNER, U., HODDA, M.,
 HOLOVACHOV, O., LEDUC, D., MILJUTIN, D., MOKIEVSKY, V., PEÑA SANTIAGO, R.,
 SHARMA, J., SMOL, N., TCHESUNOV, A., VENEKEY, V., ZHAO, Z. & VANREUSEL, A.
 (2019). Nemys: world database of nematodes. Chromadorea. http://nemys.ugent.be/aphia.php?p=taxdetails&id=2134 Accessed June 5 2020.
- BLAXTER, M. (2003). Nematoda: genes, genomes and the evolution of parasitism. Advances in Parasitology 54, 101–195.
- BOLOGNA, M. A. & PINTO, J. D. (2001). Phylogenetic studies of Meloidae (Coleoptera), with emphasis on the evolution of phoresy. Systematic Entomology 26, 33–72.

61

62

63

64

65

66

67

68

69

72

73

74

75

76

77

78

79

80

81

82

84

86

87

89

90

92

93

94

95

96

97

98

99

100

106

109

112

114

3

4

5

6

8

9

11

19

14

15

16

19

20

21

22

23

24

25

26

27

28

29

30

34

35

36

39

40

41

42

43

44

45

46

47

48

49

50

51

54

55

- BOLOGNA, M. A., OLIVERIO, M., PITZALIS, M. & MARIOTTINI, P. (2008). Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae). *Molecular Phylogenetics and Evolution* 48, 679–693.
 - BOWLER, D. E. & BENTON, T. G. (2005). Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. *Biological Reviews* 80, 205–225.
 - Braga, M. P., Araujo, S. B. L., Agosta, S., Brooks, D., Hoberg, E., Nylin, S., Janz, N. & Boeger, W. A. (2018). Host use dynamics in a heterogeneous fitness landscape generates oscillations in host range and diversification. *Evolution* 72, 1773–1783.
 - BREWER, B. A. (1975). Epizoic limpets on the black turban snail, Tegula funebralis (a. Adams, 1855). Veliger 17, 307–310.
 - Brewer, M. S., Sierwald, P. & Bond, J. E. (2012). Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One 7, e37240.
 - BROOKS, W. R. & MARISCAL, R. N. (1986). Population variation and behavioral changes in two pagurids in association with the sea anemone Calliactistricolor (Lesueur). Journal of Experimental Marine Biology and Ecology 103, 275–289.
 - BROOKS, D. R. & McLENNAN, D. A. (2002). The Nature of Diversity. University of Chicago Press, Chicago.
 - Brooks, D. R., Hoberg, E. P. & Boeger, W. A. (2019). The Stockholm Paradigm: Climate Change and Emerging Disease. University of Chicago Press, Chicago.
 - BROWN, J. M. & WILSON, D. S. (1992). Local specialization of phoretic mites on sympatric carrion beetle hosts. *Ecology* 73, 463–478.
 - CALLISTO, M. & GOULART, M. D. C. (2000). Phoretic association between Nanocladius (Plecopteracoluthus) sp. (Chironomidae: Diptera) and Thraulodes sp. (Leptophlebiidae: Ephemeroptera). Anais da Sociedade Entomológica do Brasil 29, 605–608.
 - CAMERIK, A. M. (2010). Phoresy revisited. In *Trends in Acarology* (eds M. Sabelis and J. Bruin), pp. 333–336. Springer, Dordrecht.
 - CARTA, L. K. & THOMAS, W. K. (2018). Two nematodes (Nematoda: Diplogastridae, Rhabditidae) from the invasive millipede *Chamberlinius hualienensis* Wang, 1956 (Diplopoda, Paradoxosomatidae) on Hachijojima Island in Japan. *Journal of Nematology* 50, 479–486.
 - CIPOLLINI, D. & PETERSON, D. L. (2018). The potential for host switching via ecological fitting in the emerald ash borer-host plant system. *Oecologia* 187, 507–519.
 - CLAUSEN, C. P. (1976). Phoresy among entomophagous insects. Annual Review of Entomology 21, 343–368.
 - CLAYTON, D. H. & JOHNSON, K. P. (2003). Linking coevolutionary history to ecological process: doves and lice. *Evolution* 57, 2335–2341.
 - CLIFT, A. D. & LARSSON, S. F. (1987). Phoretic dispersal of Brennandania lambi (Kcrzal) (Acari: Tarsonemida: Pygmephoridae) by mushroom flies (Diptera: Sciaridae and Phoridae) in New South Wales, Australia. Experimental & Applied Acarology 3, 11–20.
 - CLOBERT, J., BAGUETTE, M., BENTON, T. G. & BULLOCK, J. M. (2012). The theory of dispersal under multiple influences. In *Dispersal Ecology and Evolution*, pp. 19–26. Oxford University Press, Oxford.
 - COMITA, L. S., QUEENBOROUGH, S. A., MURPHY, S. J., ECK, J. L., XU, K., KRISHNADAS, M., BECKMAN, N. & ZHU, Y. (2014). Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. *Journal of Ecology* 102, 845–856.
 - CONNELL, J. H. (1970). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In *Dynamics of Populations* (cds P. J. DEN BOER and G. R. GRADWELL), pp. 298–310. Centre for Agricultura Publishing and Documentation, Wageningen.
 - Conway, D.V.P. (2015). Marine zooplankton of southern Britain. Part 3: Ostracoda, Stomatopoda, Nebaliacea, Mysida, Amphipoda, Isopoda, Cumacea, Euphausiacea, Decapoda, Annelida, Tardigrada, Nematoda, Phoronida, Bryozoa, Entoprocta, Brachiopoda, Echinodermata, Chaetognatha, Hemi. In Occasional Publications. p. 271. Marine Biological Association of the United Kingdom, Plymouth.
 - CREES, L. & DEBINSKI, D. D. (2018). Observations of *Meloe* (Coleoptera) larvae hitchhiking on *Parnassius clodius* (Papilionidae) in grand Teton National Park. *Journal of the Lepidopterists' Society* 72, 251–252.
 - Скоок, M. (2014). The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. *International Journal for Parasitology* 44, 1–8.
 - Darwin, C. (1882). On the dispersal of freshwater bivalves. *Nature* 25, 529–530.
 - DAVENPORT, J., McCullough, S., Thomas, R. W., Harman, L. & McAllen, R. (2015).
 Nassariid whelks hitch-hiking on Cancer pagurus: phoresis, commensalism or fouling?
 Marine Biodiversity Records 8, 1–5.
 - DAVIS, D. R., CLAYTON, D. H., JANZEN, D. H. & BROOKE, A. P. (1986). Neotropical tineidae, II: biological notes and descriptions of two new moths phoretic on spiny pocket mice in Costa Rica (Lepidoptera: Tineoidea). *Proceedings of the Entomological Society of Washington* 88, 98–109.
 - De Lillo, E., Vidovi, B., Petanovi, R., Cristofaro, M., Marini, F., Augé, M., Cvrkovi, T., Babi, E., Mattia, C., Lotfollahi, P. & Rector, B. G. (2018). A new *Aculodes* species (Prostigmata: Eriophyoidea: Eriophyidae) associated with

- medusahead, Taeniatherum caput-medusae (L.) Nevski (Poaccae). Systematic and Applied Acarology 23, 1217–1226.
- DELLINGER, T., DAVENPORT, J. & WIRTZ, P. (1997). Comparisons of social structure of Columbus crabs living on Loggerhead Sea turtles and inanimate flotsam. Journal of the Marine Biological Association of the United Kingdom 77, 185–194.
- DI GIULIO, A., CAROSI, M., KHODAPARAST, R. & BOLOGNA, M. A. (2014). Morphology of a new blister beetle (Coleoptera, Meloidae) larval type challenges the evolutionary trends of phoresy-related characters in the genus *Meloe. Entomologia* 2, 69–79.
- DIBLASI, E., JOHNSON, K. P., STRINGHAM, S. A., HANSEN, A. N., BEACH, A. B., CLAYTON, D. H. & BUSH, S. E. (2018). Phoretic dispersal influences parasite population genetic structure. *Molecular Ecology* 27, 2770–2779.
- DIETERICH, C. & SOMMER, R. J. (2009). How to become a parasite lessons from the genomes of nematodes. *Trends in Genetics* **25**, 203–209.
- DISNEY, R. H. L. (1971). Association between blackflies (Simuliidae) and prawns (Atyidae), with a discussion of the phoretic habit in simuliids. *Journal of Animal Ecology* 40, 83–92.
- Dorge, N., Walther, C., Beinlich, B. & Plachter, H. (1999). The significance of passive transport for dispersal in terrestrial snails (Gastropoda, Pulmonata). Zeitschrift für Ökologie und Naturschutz 8, 1–10.
- DURDEN, L. A. (1990). Phoretic relationships between sucking lice (Anoplura) and flies (Diptera) associated with humans and livestock. *The Entomologist* 109, 191–192.
- DURDEN, L. A. & WILSON, N. (1991). Parasitic and phoretic arthropods of sylvatic and commensal white-footed mice (*Peromyscus leucopus*) in Central Tennessee, with notes on Lyme disease. *The Journal of Parasitology* 77, 219–223.
- EGGLETON, P. & BELSHAW, R. (1993). Comparisons of dipteran, hymenopteran and coleopteran parasitoids: provisional phylogenetic explanations. *Biological Journal of* the Linnean Society 48, 213–226.
- ENG, M. S., PREISSER, E. L., & STRONG, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology 88, 173–176.
- ERMILOV, S. G. & FROLOV, A. V. (2019). Ramusella (Dosangoppia) bochkovi (Acari, Oribatida, Oppiidae), a new subgenus and species of oribatid mites phoretic on Ceratophyus polyceros (Pallas, 1771) (Coleoptera, Geotrupidae) from Russia. Systematic and Applied Acarology 24, 209–221.
- FARFAN, M. & KLOMPEN, H. (2012). Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern Atlantic region (North America, Europe). *International Journal of Myriapodology* 7, 69–91.
- FARISH, D. J. & AXTELL, R. C. (1971). Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13, 16–29.
- FASHING, N. J. & CHUA, T. H. (2002). Systematics and ecology of Naiadacarus nepenthicola, a new species of acaridae (Acari: Astigmata) inhabiting the pitchers of Nepenthes bicalcarata hook. f. in Brunei Darussalam. International Journal of Acarology 28, 157–167.
- FATOUROS, N. E. & HUIGENS, M. E. (2011). Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths. *BioControl* 57, 493–502.
- FINLAYSON, G. R., MADANI, G., DENNIS, G. & HARVEY, M. (2015). First reported observation of phoresy of pseudoscorpions on an endemic New Zealand mammal, the lesser short-tailed bat, Mystacina tuberculata. New Zealand Journal of Zoology 42, 298–301.
- FLECHTMANN, C. H. W. & BAGGIO, D. (1993). On phoresy of hematophagous ectoparasitic Acari (Parasitiformes: Ixodidae and Dermanyssidae) on coleoptera observed in Brazil. *International Journal of Acarology* 19, 195–196.
- FOLEY, J. R., CHOUVENC, T., GIBLIN-DAVIS, R. M., SU, N.-Y. & KANZAKI, N. (2018). Phoresy and within-colony transmission of nematodes associated with alates of subterranean termites (Isoptera: Rhinotermitidae). *Environmental Entomology* 47, 1107–1116.
- FOMBONG, A. T., CHAM, D. T., NKOBA, K., NEETHLING, J. A. & RAINA, S. K. (2016). Occurrence of the pseudoscorpions Ellingsenius ugandanus and Paratemnoides pallidus in honey bee colonies in Cameroon. Journal of Apicultural Research 55, 247–250.
- Francke, O. F. & Villegas-Guzmán, G. A. (2006). Symbiotic relationships between pseudoscorpions (Arachnida) and packrats (Rodentia). *Journal of Arachnology* 34, 289–298.
- FRONHOFER, E. A., SPERR, E. B., KREIS, A., AYASSE, M., POETHKE, H. J. & TSCHAPKA, M. (2013). Picky hitch-hikers: vector choice leads to directed dispersal and fat-tailed kernels in a passively dispersing mite. *Oikos* 122, 1254–1264.
- FRYER, G. (1961). The developmental history of Mutela bourguignati (Ancey) Bourguignat (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society B: Biological Sciences 244, 259–298.
- FUCHS, J., ISETO, T., HIROSE, M., SUNDBERG, P. & OBST, M. (2010). The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). *Molecular Phylogenetics and Evolution* 56, 370–379.
- GEORGIEVA, S. S. (1993). Occurrence of *Panagrellus* (Rhabditida: Panagrolaimidae) nematodes in a morphologically aberrant adult specimen of *Rhynchophorus ferrugineus* (Coleoptera: Dryophthoridae). *Journal of Nematology* 25, 315–331.
- Gettinger, D. & Gardner, S. L. (2017). Ectoparasitic mites of the genus *Gigantolaelaps* (Acari: Mesostigmata: Laclapidae) associated with small mammals of the genus

4

6

15

17

18

19

20

27

28

29

30

31

32

40

46

47

48

49

52

53

54

60

61

62

63

65

66

67

68

69

71

72

73

74

75

76

79

80

81

82

84

85

86

89

90

91

92

93

94

95

96

97

98

99

100

104

105

106

109

110

111

113

- 1 Nephelomys (Rodentia: Sigmodontinae), including two new species from Peru.
 2 Acarologia 57, 755–763.
 - GIBBS, J. P. & STANTON, E. J. (2001). Habitat fragmentation and arthropod community change: carrion beetles, phoretic mites, and flies. *Ecological Applications* 11, 79–85.
 - GIBLIN-DAVIS, R. M., DAVIES, K. A., MORRIS, K. & THOMAS, W. K. (2003). Evolution of parasitism in insect-transmitted plant nematodes. *Journal of Nematology* **35**, 133–141.
 - GIBLIN-DAVIS, R. M., KANZAKI, N. & DAVIES, K. A. (2013). Nematodes that ride insects: unforeseen consequences of arriving species. Florida Entomologist 96, 770–780.
- 8 GISH, M. & INBAR, M. (2018). Standing on the shoulders of giants: young aphids piggyback on adults when searching for a host plant. Frontiers in Zoology 15, 1–9.
- GOTO, S. (1894). Studies on the Ectoparasitic trematodes of Japan. Journal of the College of
 Science, Imperial University of Tokyo 8, 1–273.
 - GREEN, A. J. & FIGUEROLA, J. (2016). Recent advances in the study of long-distance dispersal of aquatic invertebrates. *Diversity and Distributions* 11, 149–156.
- GUDOWSKA, A., DROBNIAK, S. M., SCHRAMM, B. W., LABECKA, A. M., KOZLOWSKI, J. &
 BAUCHINGER, U. (2016). Hold your breath beetle mites! Evolution 70, 249–255.
- GUPTA, S. & BORGES, R. M. (2019). Density-dependent fitness effects stabilize parasitic hitchhiking within a mutualism. *Functional Ecology* **33**, 2304–2315.
 - HAACK, R. A. & WILKINSON, R. C. (1987). Phoresy by Dendrochemes pseudoscorpions on Gerambycidae (Coleoptera) and Aulacidae (Hymenoptera) in Florida. American Midland Naturalist 117, 369–373.
 - Mudland Naturalist 117, 369–373.
 HAIRSTON, N. G. & BOHONAK, A. J. (1998). Copepod reproductive strategies: life-history theory, phylogenetic pattern and invasion of inland waters. Journal of Marine
 - Systems 15, 23–34.
 HARBISON, C. W., JACOBSEN, M. V. & CLAYTON, D. H. (2009). A hitchhiker's guide to parasite transmission: the phoretic behaviour of feather lice. *International Journal for Parasitology* 39, 569–575.
- Parasitology 39, 569–575.

 Harvey, M. S. (2002). The neglected cousins: what do we know about the smaller arachnid orders? Journal of Arachnology 30, 357–372.
 - Harvey, M. S. (2013). Order Pseudoscorpiones. Zootaxa 3703, 34.
- HASTRITER, M. W., MILLER, K. B., SVENSON, G. J., MARTIN, G. J. & WHITING, M. (2017).
 New record of a phoretic flea associated with earwigs (Dermaptera, Arixeniidae) and a redescription of the bat flea *Lagaropsylla signata* (Siphonaptera, Ischnopsyllidae).
 ZooKeys 657, 67–79.
 - HIGHSMITH, R. C. (1985). Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Marine Ecology and Progress Series 25, 169–179.
 - HOBERG, E. P. & BROOKS, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. *Journal of Biogeography* 35, 1533–1550.
 - HODGKIN, L. K., ELGAR, M. A. & SYMONDS, M. R. E. (2010). Positive and negative effects of phoretic mites on the reproductive output of an invasive bark beetle. *Australian Journal of Zoology* 58, 198–204.
 - HOLTE, A. E., HOUCK, M. A. & COLLIE, N. L. (2001). Potential role of parasitism in the evolution of mutualism in astigmatid mites: *Hemisarcoptes cooremani* as a model. *Experimental and Applied Acarology* 25, 97–107.
- Hong, R. L. & Sommer, R. J. (2006a). Chemoattraction in *Pristionclus* Nematodes and implications for insect recognition. *Current Biology* 16, 2359–2365.
 - HONG, R. L. & SOMMER, R. J. (2006b). Pristionchus pacificus: a well-rounded nematode. BioEssays 28, 651–659.
- HOPKINS, G. H. (1946). XXI.— stray notes on Mallophaga. VII, Annals and Magazine of Natural History 13, 170–183.
 - Ноиск, М. А. (1994). Adaptation and transition into parasitism from commensalism: a phoretic model. In *Mites: Ecological and Evolutionary Analyses of Life-History Patterns* (ed. М. А. Ноиск), pp. 252–281. Springer, Boston.
- (ed. M. A. HOUCK), pp. 252–281. Springer, Boston.
 HOUCK, M. A. & COHEN, A. C. (1995). The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite. Experimental and Applied Acarology 19, 677–694.
- HOUCK, M. A. & OCONNOR, B. M. (1991). Ecological and evolutionary significance of phoresy in the Astigmata. *Annual Review of Entomology* 36, 611–636.
 HOWE H. F. & SMALLWOOD, I. (1982). Ecology of seed dispersal. *Annual Review of Ecology*
 - Howe, H. F. & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics 13, 201–228.
 - HUIGENS, M. E., PASHALIDOU, F. G., QIAN, M.-H., BUKOVINSZKY, T., SMID, H. M., VAN LOON, J. J. A., DICKE, M. & FATOUROS, N. E. (2009). Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac. *Proceedings of the National Academy of Sciences* of the United States of America 106, 820–825.
- 50
 ICHINOSE, K., RINALDI, I. & FORTI, L. C. (2004). Winged leaf-cutting ants on nuptial flights used as transport by Attacobius spiders for dispersal. *Ecological Entomology* **29**, 628–631.
 - INOUE, Y., KOMORI, C., KOBAYASHI, T., KONDO, N., UENO, R. & TAKAMURA, K. (2015). Nanocladius (Plecopteracoluthus) shigaensis sp. nov. (Chironomidae: Orthocladiinae) whose larvae are phoretic on nymphs of stoneflies (Plecoptera) from Japan. Zootaxa 3931, 551–567.
- 55 ITIS (2020). Integrated Taxonomic Information System (ITIS). http://www.itis.gov/.
 JACKSON, C. J. & MARCOGLIESE, D. J. (1995). An unique association between Argulus alosae (Branchiura) and Mysis stenolepis. Crustaceana 68, 910–912.

- JACKSON, S. T. & SAX, D. F. (2010). Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. *Trends in Ecology and Evolution* 25, 153–160.
- JACOBSEN, I. P., SCOTT-HOLLAND, T. & BENNETT, M. B. (2013). Lepadidae barnacles (Lepadiformes: Lepadomorpha) in association with copepods parasitising pelagic elasmobranchs in the Western Pacific. New Zealand Journal of Marine and Freshwater Research 47, 120–123.
- JANZ, N. (2011). Ehrlich and raven revisited: mechanisms underlying codiversification of plants and enemies. Annual Review of Ecology, Evolution, and Systematics 42, 71–89.
- JANZ, N., NYBLOM, K. & NYLIN, S. (2001). Evolutionary dynamics of host-plant specialization: a case study of the tribe nymphalini. Evolution 55, 783–796.
- JANZEN, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist 104, 501–528.
- Janzen, D. H. (1985). On ecological fitting. Oikos 45, 308-310.
- JOHNSON, K. P. & CLAYTON, D. H. (2003). The biology, ecology, and evolution of chewing lice. In *The Chewing Lice: World Checklist and Biological Overview* (eds R. D. PRICE, R. A. HELLENTHAL, R. L. PALMA, K. P. JOHNSON and D. H. CLAYTON), pp. 449–476. Illinois Natural History Survey Special Publication, Chicago.
- KANZAKI, N., GIBLIN-DAVIS, R. M., CARRILLO, D., DUNCAN, R. & GONZALEZ, R. (2014). Bursaphelenchus penai n. sp (Tylenchomorphą: Aphelenchoididae), a phoretic associate of ambrosia beetles (Coleoptera: Scolytinae) from avocado in Florida. Nematology 16, 683–693.
- KANZAKI, N., GIBLIN-DAVIS, R. M. & RAGSDALE, E. J. (2015). Allodiplogaster josephi n. sp and A. seani n. sp (Nematoda: Diplogastridae), associates of soil-dwelling bees in the eastern USA. Nematology 17, 831–863.
- Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. (2018). Three new species of parasitaphelenchids, *Parasitaphelenchus frontalis* n. sp., *P. costati* n. sp. and *Bursaphelenchus hirsutae* n. sp. (Nematoda; Aphelenchoididae), isolated from bark beetles from Japan. *Nematology* **20**, 957–1005.
- KATHIRITHAMEY, J., LECHNER, G. K., McMahon, D. P., BRYSON, A. L. & JOHNSTON, J. S. (2012). A free ride and lunch: stylopization in the solitary hunting aasp, Ammophila femaldi Murray and A. pictipemis (Walsh) (Hymenoptera: Sphecidae) by Paraxenos lugubris Pierce (Strepsiptera). Proceedings of the Entomological Society of Washington 114, 464–475.
- KEIRANS, J. E. (1975a). A review of the phoretic relationship between Mallophaga (Phthiraptera: Insecta) and Hippoboscidae (Diptera: Insecta). Journal of Medical Entomology 12, 71–76.
- KEIRANS, J. E. (1975b). Records of phoretic attachment of Mallophaga (Insecta: Phthiraptera) on insects other than Hippoboscidae. Journal of Medical Entomology 12, 476–476.
- KELLEY, S. T. & FARRELL, B. D. (1998). Is specialization a dead end? The phylogeny of host use in *Dendroctonus* bark beetles (Scolytidae). *Evolution* 52, 1731–1743.
- KENDEROV, L. A. (2017). An invader along with an invader: an unusual record of a zebra mussel *Dreissena polymorpha* (Pallas, 1771) (Bivalvia) living phoretically on a killer shrimp *Dikerogammarus villosus* (Sowinsky, 1894) (Amphipoda). *Acta Zoologica Bulgarica* 9, 287–291.
- KERCHEV, I. A., KRYUKOVA, N. A., KRYUKOV, V. & GLUPOV, V. V. (2017). Entomoparasitic nematodes Sychnotylenchus sp. (Anguinidae) on the four-eyed fir bark beetle Polygraphus proximus: effects on the host's immunity and its susceptibility to Beauveria bassiana. Invertebrate Survival Journal 14, 324–329.
- KHAN, R. N. & FRICK, M. G. (1997). Expobdella punctata (Hirudinea: Erpobdellidae) as phoronts on Ambystoma maculatum (Amphibia: Ambystomatidae). Journal of Natural History 31, 157–161.
- KHAUSTOV, A. A. (2017). A new species of *Tarsonemus* (Acari: Tarsonemidae) associated with the bark beetle, *Polygraphus proximus* (Coleoptera: Curculionidae: Scolytinae) from the far east of Russia. *Acarologia* 57, 673–687.
- KHAUSTOV, A. A. & FROLOV, A. V. (2018a). A new species, new genus and new records of heterostigmatic mites (Acari: Heterostigmata) phoretic on scarab beetles of the subfamily Orphninae (Coleoptera: Scarabaeidae). Zootaxa 4514, 181–201.
- KHAUSTOV, A. A. & FROLOV, A. V. (2018b). A new species of Pavania (Acari: Heterostimata: Dolichocybidae) associated with Frankenberger gomesi (Coleoptera: Scarabaeidae) from South Africa. Acarina 26, 133–140.
- KHAUSTOV, A. A. & TRACH, V. A. (2014). Mites of the superfamily Pygmephoroidea (Acari: Heterostigmata: Neopygmephoridae, Pygmephoridae) associated with *Trox cadaverinus* (Coleoptera: Trogidae) from the Far East of Russia, with description of a new genus and two new species. *Zootaxa* 3754, 86–96.
- KHAUSTOV, A. A., HUGO-COETZEE, E. A. & ERMILOV, S. G. (2018). New taxa of the family Microdispidae (Acari: Heterostigmata) associated with *Trinerviternes* trinervoides (Sjostedt) (Isoptera: Termitidae) from South Africa. International Journal of Acarology 44, 218–226.
- KILLINGLEY, J. S. (1980). Migrations of California gray whales tracked by Oxygen-18 variations in their epizoic barnacles. Science 207, 759–760.
- KINN, D. N. (1980). Mutualism between Dendrolaelaps neodisetus and Dendroctonus frontalis. Environmental Entomology 9, 756–758.
- KIONTKE, K. & SUDHAUS, W. (2006). Ecology of Caenorhabditis species. In *WormBook* (ed W. The *C. elegans* Research Community), pp. 1–14.

61

62

63

64

65

66

67

68

69

72

73

74

75

76

78

79

80

82

84

85

86

87

89

90

91

92

93

94

95

96

97

98

99

100

106

109

112

113

114

6

8

9

11

19

14

15

16

19

20

21

22

23

24

25

26

27

28

29

30

34

35

36

39

40

41

42

43

44

45

46

47

48

49

50

54

55

- KLOMPEN, H., LEKVEISHVILI, M. & BLACK, W. C. (2007). Phylogeny of parasitiform mites (Acari) based on rRNA. Molecular Phylogenetics and Evolution 43, 936–951.
- (Acari) based on rRNA. Molecular Phylogenetics and Evolution 43, 936–951.

 KOLENDA, K., NAJBAR, A., KUMIEREK, N. & MALTZ, T. K. (2017). A possible phoretic relationship between snails and amphibians. Folia Malacologica 25, 281–285.
- 4 Kontschán, J. (2018). *Macrocheles kekensis* sp. N., a new macrochelid mite associated with a centoniin beetle from Hungary (Acari, Mesostigmata). *ZooKeys* **2018**, 97–104.
 - KONTSCHÁN, J. & HORNOK, S. (2019). New records, a completed list and identification key of mites (Acari) associated with the stable fly, *Stomocys calcitrans* (L.) (Diptera: Muscidae). *Acarologia* 59, 3–11.
 - KONWERSKI, S., GUTOWSKI, J. M. & BLOSZYK, J. (2019). Analysis of the phoretic relationships between mites of the genus *Trichouropoda* Berlese (Parasitiformes: Uropodina) and the longhorn beetle *Plagionotus detritus* (Linnaeus) (Coleoptera: Cerambycidae) based on multiannual observations in Biało. *International Journal of Acarology* 45, 29–40.
 - KRISHNAN, A., MURALIDHARAN, S., SHARMA, L. & BORGES, R. M. (2010). A hitchhiker's guide to a crowded syconium: how do fig nematodes find the right ride? Functional Ecology 24, 741–749.
 - VAN LEEUWEN, C. H. A. & VAN DER VELDE, G. (2012). Prerequisites for flying snails: external transport potential of aquatic snails by waterbirds. Freshwater Science 31, 963–972.
 - LEO, C., CARAPELLI, A., CICCONARDI, F., FRATI, F. & NARDI, F. (2019). Mitochondrial genome diversity in Collembola: phylogeny, dating and gene order. *Diversity* 11, 169.
 - LEPPANEN, C. & SIMBERLOFF, D. (2018). The multicolored Asian lady beetle, Harmonia asyridis (Pallas) (Coleoptera: Coccinellidae), disperses the hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae). The Coleopterists Bulletin 72, 612–613.
 - LESNE, P. (1896). Mœurs du Limosina sacra Meig. [Dipt.]. Phénomènes de transport mutuel chez les animaux articulés. Origine du parasitisme chez les Insectes diptères. Bulletin de la Société entomologique de France 1, 162–165.
 - LEWIS, D. J. & FAIRCHILD, W. L. (1984). A phoretic association between a caddisfly and a copepod fish parasite. Canadian Journal of Zoology 62, 134–135.
 - LICHTI, N. I., STEELE, M. A. & SWIHART, R. K. (2017). Seed fate and decision-making processes in scatter-hoarding rodents. *Biological Reviews* 92, 474–504.
 - LINDQUIST, E. E. & MORAZA, M. L. (2008). A new genus of flower-dwelling melicharid mites (Acari: Mesostigmata: Ascoidea) phoretic on bats and insects in Costa Rica and Brazil. Zootaxta 37, 1–37.
 - LIU, S., LI, J., GUO, K., QIAO, H., XU, R., CHEN, J., XU, C. & CHEN, J. (2016). Seasonal phoresy as an overwintering strategy of a phytophagous mite. Scientific Reports 6, 1–8.
 - LLEWELLYN, J. (1941). A revision of the monogenean family Diclidophoridae Fuhrmann, 1928. Parasitology 33, 416–430.
 - LOGHMANI, A., HAJIQANBAR, H. & TALEBI, A. A. (2014). New species and new record of the genus *Caesarodispus* (Acari: Heterostigmatina: Microdispidae) phoretic on *Temnothorax* sp. (Hymenoptera: Formicidae). *Annales Zoologici* 64, 273–278.
 - LOPEZ, L. C. S., RODRIGUES, P. J. F. P. & RIOS, R. I. (1999). Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnocytheridae: Elpidium) and annelids (Naididae: Dero). *Biotropica* 31, 705–708.
 - LOPEZ, L. C. S., GONCALVES, D. A., MANTOVANI, A. & RIOS, R. 1. (2002). Bromeliad ostracods pass through amphibian (*Scinaxax perpusillus*) and mammalian guts alive. *Hydrobiologia* **485**, 209–211.
 - LOPEZ, L. C. S., FILIZOLA, B., DEISS, I. & RIOS, R. I. (2005). Phoretic behaviour of bromeliad annelids (*Devo*) and ostracods (*Elpidium*) using frogs and lizards as dispersal vectors. *Hydrobiologia* 549, 15–22.
 - LÓPEZ-OROZCO, N. & CANÓN-FRANCO, W. A. (2013). Phoretic mites identified on Andean hummingbirds (Trochilidae) of Caldas, Colombia. Revista Brasileira de Parasitologia Veterinária 22, 194–200.
 - LUONG, L. T. & MATHOT, K. J. (2019). Facultative parasites as evolutionary steppingstones towards parasitic lifestyles. *Biology Letters* 15, 20190058.
 - LUZZATTO, D. & PASTORINO, G. (2006). Adelomelon brasiliana and Antholoba achates: a phoretic association between a volutid gastropod and a sea anemone in argentine waters. Bulletin of Marine Science 78, 281–286.
 - MACCHIONI, F. (2007). Importance of phoresy in the transmission of Acarina. Parassitologia 49, 17–22.
 - MACCHIONI, F., MAGI, M., MANCIANTI, F. & PERRUCCI, S. (2005). Phoretic association of mites and Mallophaga with the pigeon fly *Pseudolynchia canariensis*. *Parasite* 12, 277–279.
 - MAGOWSKI, W.Ł. (1995). Fossil heterostigmatid mites in amber 85 million year-old arthropod mite relationships. In The Acari: Physiological and Ecological Aspects of Acari-Host Relationships, Proceedings of the 2nd Symposium of EURAAC (European Association of Acarologists), Krynica, Poland pp. 53–58. DABOR Publishing House.
 - MAGSIG-CASTILLO, J., MORSE, J. G., WALKER, G. P., BI, J. L., RUGMAN-JONES, P. F. & STOUTHAMER, R. (2010). Phoretic dispersal of armored scale crawlers (Hemiptera: Diaspididae). Journal of Economic Entomology 103, 1172–1179.
 - MAIA-CARNEIRO, T., DORIGO, T. A., WACHLEVSKI, M. & ROCHA, C. F. D. (2012). Evidence of phoresy by leeches (Hirudinoidea) on *Rhinella abei* (Anura: Bufonidae) in the Atlantic rainforest in the state of Santa Catarina, southern Brazil. *Acta Herpetologica* 7, 163–169.

- MARLIAVE, J. B. & MILLS, C. E. (1993). Piggyback riding by pandalid shrimp larvae on hydromedusae. Canadian Journal of Zoology 71, 257–263.
- MARSHALL, A. G. (1977). Interrelationships between Arixenia emu (Dermaptera) and molossid bats and their ectoparasites in Malaysia. Ecological Entomology 2, 285–291.
- MARSHALL, A. G. (1981). The Ecology of Ectoparasitic Insects. Academic Press, London.
- McLachlan, A., Ladle, R. & Bleay, C. (1999). Is infestation the result of adaptive choice behaviour by the parasite? A study of mites and midges. *Animal Behaviour* 58, 615–620.
- McSorley, R. (2003). Adaptations of nematodes to environmental extremes. Florida Entomologist 86, 138–142.
- MILLER, P. L. (1974). Respiration—aerial gas transport. In *The Physiology of Insecta* (ed. M. Rockstein), pp. 345–402. Academic Press, Inc., New York.
- MOGLE, M. J., KIMBALL, S. A., MILLER, W. R. & McKown, R. D. (2018). Evidence of avian-mediated long distance dispersal in American tardigrades. *Peer* 6, e5035.
- DE MOOR, F. C. (1999). Phoretic association of blackflies (Diptera: Simuliidae) with heptageniid mayflies (Ephemeroptera: Heptageniidae) in South Africa. African Entomology 7, 154–156.
- MORAN, N. A. (1988). The evolution of host-plant alternation in aphids: evidence for specialization as a dead end. *The American Naturalist* 132, 681–706.
- MOSER, J. C. (1976). Phoretic carrying capacity of flying southern pine beetles (Colcoptera: Scolytidae). The Canadian Entomologist 108, 807–808.
- MOSER, J. C. & BLOMQUIST, S. R. (2011). Phoretic arthropods of the red imported fire ant in Central Louisiana. Annals of the Entomological Society of America 104, 886–894.
- MOSER, J. C., KONRAD, H., KIRISITS, T. & CARTA, L. K. (2005). Phoretic mites and nematode associates of Scolytus multistriatus and Scolytus pygmaeus (Coleoptera: Scolytidae) in Austria. Agricultural and Forest Entomology 7, 169–177.
- MOSER, J. C., KONRAD, H., BLOMQUIST, S. R. & KIRISITS, T. (2010). Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease? *Die Naturwissenschaften* 97, 219–227.
- Moss, W. W. (1966). Dermanyssus gallinoides n. sp. (Mesostigmata: Laelaptoidea: Dermanyssidae), an acarine parasite of woodpeckers in Western North America. Canadian Entomology 98, 635–638.
- NAVABI, A., HAJIQANBAR, H. & MORTAZAVI, A. (2018). New species and records of the genera *Scutacarus* and *Imparipes* (Acari: Heterostigmatina: Scutacaridae) associated with Colcoptera and Hymenoptera (Arthropoda: Insecta) from Iran. *Zootaxa* **4531**, 532–540.
- Nehring, V., Müller, J. K. & Steinmetz, N. (2017). Phoretic *Poecilochirus* mites specialize on their burying beetle hosts. *Ecology and Evolution* 7, 10743–10751.
- Nims, T. N., Durden, L. A., Chandler, C. R. & Pung, O. J. (2008). Parasitic and phoretic arthropods of the Oldfield mouse (*Peromyscus polionotus*) from burned habitats with additional ectoparasite records from the eastern harvest mouse (*Reithrodontomys humulis*) and southern short-tailed shrew (Blarina carol). *Comparative Parasitology* 75, 102–106.
- NIOGRET, J., LUMARET, J.-P. & BERTRAND, M. (2006). Semiochemicals mediating host-finding behaviour in the phoretic association between *Macrocheles saceri* (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae). *Chemoecology* 16, 129–134
- NOGUEIRA, M. & HADDAD, M. A. (2005). Lychnorhiza lucerna Haeckel (Scyphozoa, Rhizostomeae) and Libinia ferreirae Brito Capello (Decapoda, Majidae) association in southern Brazil. Revista Brasileira de Zoologia 22, 908–912.
- NOLAN, M. P. & DELAPLANE, K. S. (2017). Parasite dispersal risk tolerance is mediated by its reproductive value. *Animal Behaviour* **132**, 247–252.
- NYILIN, S., AGOSTA, S., BENSCH, S., BOEGER, W. A., BRAGA, M. P., BROOKS, D. R., FORISTER, M. L., HAMBÂCK, P. A., HOBERG, E. P., NYMAN, T., SCHÂPERS, A., STIGALL, A. L., WHEAT, C. W., ÖSTERLING, M. & JANZ, N. (2018). Embracing colonizations: a new paradigm for species association dynamics. *Trends in Ecology* and Evolution 33, 4–14.
- O'Brien, L. C. & Redborg, K. E. (2007). Copulation duration in the spider *Philodromus vulgaris* (Hentz) (Araneae: Philodromidae) and its influence on the evolution of host transfer behavior during cannibalism by *Mantispa uhlerii* banks (Neuroptera: Mantispidae). *Journal of Insect Behavior* 10, 469–477.
- OCONNOR, B. M. & PFAFFENBERGER, G. S. (1987). Systematics and evolution of the genus *Paraceroglyphus* and related taxa (Acari: acaridae) associated with fleas (Insecta: Siphonaptera). *The Journal of Parasitology* **73**, 1189–1197.
- Ogawa, A., Štreit, A., Antebi, A. & Sommer, R. J. (2009). A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. *Current Biology* **19**, 67–71.
- OGBOGU, S. S. (1993). A Phoretic association between a bryozoan and an insect in a Nigerian Lake. Journal of Tropical Ecology 9, 125–126.
- Ohtsuka, S., Koike, K., Lindsay, D., Nishikawa, J., Miyake, H., Kawahara, M., Mujiono, N., Hiromi, J. & Komatsu, H. (2009). Symbionts of marine medusae and ctenophores. *Plankton and Benthos Research* 4, 1–13.
- OKABE, K. & MAKINO, S. (2008). Parasitic mites as part-time bodyguards of a host wasp. Proceedings of the Royal Society B: Biological Sciences 275, 2293–2297.
- OKABE, K. & MAKINO, S. (2010). Conditional mutualism between Allodynerus delphinalis (Hymenoptera: Vespidae) and Ensliniella parasitica (Astigmata: Winterschmidtiidae)

61

62

63

64

65

67

68

69

71

72

73

74

75

76

79

81

82

84

86

89

90

91

92

94

95

96

97

98

99

100

102

106

109

110

111

112

113

114

2

3

4

6

8

10

11

19

13

14

15

16

18

19

20

21

22

24

25

26

27

28

29

30

32

35

36

39

40

41

42

43

44

45

46

47

48

- may determine maximum parasitic mite infestation. Environmental Entomology 39, 424–429.
- OKABE, K., MASUYA, H., KAWAZOE, K. & MAKINO, S. (2010). Invasion pathway and potential risks of a bamboo-nesting carpenter bee, *Xylocopa tranquebarorum* (Hymenoptera: Apidae), and its micro-associated mite introduced into Japan. *Applied Entomology and Zoology* **45**, 329–337.
- OKAMURA, B., HARTIKAINEN, H. & TREW, J. (2019). Waterbird-mediated dispersal and freshwater biodiversity: general insights from bryozoans. Frontiers in Ecology and Evolution 7.
- OKUMURA, E., TANAKA, R. & YOSHIGA, T. (2012). Species-specific recognition of the carrier insect by dauer larvae of the nematode *Caenorhabditis japonica*. *Journal of Experimental Biology* **216**, 568–572.
- OKUMURA, E., TANAKA, R. & YOSHIGA, T. (2013). Conditions for disembarkation of Caenorhabditis japonica from its carrier insect Parastrachia japonensis. Nematological Research 43, 1–7.
- Osche, G. (1956). Die Pra¨adaptation freilebender Nematoden an den Parasitismus. Zoologischer Anzeiger 19, 391–396.
- O'TOOLE, B. (2002). Phylogeny of the species of the superfamily Echeneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae, and Coryphaenidae), with an interpretation of echeneid hitchhiking behaviour. Canadian Journal of Zoology 80, 596–623.
- OWEN, J. P. & MULLENS, B. A. (2004). Influence of heat and vibration on the movement of the northern fowl mite (Acari: macro-nyssidae). Entomological Society of America 41, 865–872.
- PAGÈS, F., CORBERA, J. & LINDSAY, D. (2007). Piggybacking pycnogonids and parasitic narcomedusae on *Pandea rubra* (Anthomedusae, Pandeidae). *Plankton and Benthos Research* 2, 83–90.
- PALEVSKY, E., SOROKER, V., WEINTRAUB, P., MANSOUR, F., ABO-MOCH, F. & GERSON, U. (2001). How species-specific is the phoretic relationship between the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), and its insect hosts? Experimental and Applied Acarology 25, 217–224.
- PARASCHIV, M., MARTÍNEZ-RUIZ, C. & FERNÁNDEZ, M. M. (2018). Dynamic associations between *Ips sexdentatus* (Coleoptera: Scolytinae) and its phoretic mites in a *Pinus pinaster* forest in Northwest Spain. *Experimental and Applied Acarology* 75, 369–381.
- PARMENTIER, E. & MICHEL, L. (2013). Boundary lines in symbiosis forms. Symbiosis 60, 1–5.
- Peck, S. B. (1975). Amphipod dispersal in the fur of aquatic mammals. *The Canadian Field-Naturalist* 89, 181–182.
- PECK, S. B. (1982). A review of the ectoparasitic Leptinus beetles of North America (Coleoptera: Leptinidae). Canadian Journal of Zoology 60, 1517–1527.
- PENNEY, D., McNeil, A., Green, D. I., Bradley, R. S., Jepson, J. E., Withers, P. J. & Preziosi, R. F. (2012). Ancient Ephemeroptera—Collembola symbiosis fossilized in amber predicts contemporary phoretic associations. *PLoS One* 7, e47651.
- PEROTTI, M. A. & BRAIG, H. R. (2009). Phoretic mites associated with animal and human decomposition. *Experimental and Applied Acarology* **49**, 85–124.
- PETERSEN, C., HERMANN, R. J., BARG, M., SCHALKOWSKI, R., DIRKSEN, P., BARBOSA, C. & SCHULENBURG, H. (2015). Travelling at a slug's pace: possible invertebrate vectors of Caenorhabditis nematodes. BMC Ecology 15, 19.
- Peterson, D. L., Böröczky, K., Tumlinson, J. & Cipollini, D. (2020). Ecological fitting: chemical profiles of plant hosts provide insights on selection cues and preferences for a major buprestid pest. *Phytochemistry* 176, 112397.
- Petrova, A. D. & Basikhin, P. V. (1993). The finding of larvae of the taiga tick *Ixodes persulcatus* (Parasitiformes: Ixodidae) on necrophagous piophilid flies (Diptera: Piophilidae) in the southern Yamal. *Parazitologia* 27, 427–429.
- PHILLIPS, Z. I., ZHANG, M. M. & MUELLER, U. G. (2017). Dispersal of Attaphila fungicola, a symbiotic cockroach of leaf-cutter ants. Insectes Sociaux 64, 277–284.
- POINAR, G. O. (1978). Associations between nematodes (Nematoda) and oligochaetes (Annelida). Proceedings of the Helminthological Society of Washington 45, 202–210.
- POINAR, G., CURCIC, B. P. M. & COKENDOLPHER, J. C. (1998). Arthropod phoresy involving pseudoscorpions in the past and present. Acta Arachnologia 47, 79–96.
- PROCTOR, H. & OWENS, I. (2000). Mites and birds: diversity, parasitism and coevolution. *Trends in Ecology & Evolution* 15, 358–364.
- Proctor, H. C., Smith, I. M., Cook, D. R. & Smith, B. P. (2015). Subphylum Chelicerata, class Arachnida. In *Thorp and Covich's Freshwater Invertebrates*, pp. 599–660. Elsevier, Amsterdam.
- RAMOS MERTZ, N., AGUDELO, E. J. G., SALES, F. S., ROHDE, C. & MOINO, A. (2014).
 Phoretic dispersal of the entomopathogenic nematode Heterorhabditis amazonensis by the beetle Calosoma granulatum. Phytoparasitica 42, 179–187.
- 50
 REDBORG, K. E. & MACLEOD, E. G. (1983). Climaciella brunnea (Neuroptera: Mantispidae): a mantispid that obligately boards spiders. Journal of Natural History 17, 63–73.
- ROGERS, W. P. & SOMMERVILLE, R. I. (1963). The infective stage of nematode parasites
 and its significance in parasitism. In *Advances in Parasitology*, pp. 109–177. Academic Press, London.
- DE LA ROSA, C. L. (1992). Phoretic associations of Chironomidae (Diptera) on
 Corydalidae (Megaloptera) in northwestern Costa Rican streams. Journal of the
 North American Bank Benthological Society 11, 316-323.
 - ROUBIK, D. W. (2006). Stingless bee nesting biology. Apidologie 37, 124–143.

- ROUBIK, D. W. & WHEELER, Q. D. (1982). Flightless beetles and stingless bees: phoresy of scotocryptine beetles (Leiodidae) on their meliponine hosts (Apidae). *Journal of the Kansas Entomological Society* 55, 125–135.
- SABAGH, L. T., DIAS, R. J. P., BRANCO, C. W. C. & ROCHA, C. F. D. (2011). News records of phoresy and hyperphoresy among treefrogs, ostracods, and ciliates in bromeliad of Atlantic forest. *Biodiversity and Conservation* 20, 1837–1841.
- SALOÑA-BORDAS, M. I., BAHILLO DE LA PUEBLA, P., DÍAZ MARTÍN, B., SUMNER, J. & PEROTTI, M. A. (2015). Ixodes ricinus (Ixodidae), an occasional phoront on necrophagous and coprophagous beetles in Europe. Experimental and Applied Acarology 65, 243–248.
- SANTOS, J. J., TIZO-PEDROSO, E. & FERNANDES, G. W. (2005). A case of phoresy of Semeiochernes armiger Balzan, 1892 (Pseudoscorpiones: Chernetidae) on the giant tropical fly Pantophthalmus tabaninus thunberg, 1819 (Diptera: Pantophthalmidae) in an Amazonian rain forest, Para. Lundiana 6, 11–12.
- SARANGI, P., GUPTA, S. K. & SAHA, G. K. (2014). Two new species of the genus Semertia (Acari: Chaetodactylidae) phoretic on carpenter bees from West Bengal, India. Journal of Asia-Pacific Entomology 17, 45–48.
- SAUL-GERSHENZ, L. S. & MILLAR, J. G. (2006). Phoretic nest parasites use sexual deception to obtain transport to their host's nest. Proceedings of the National Academy of Sciences of the United States of America 103, 14039–14044.
- SAZIMA, I. & GROSSMAN, A. (2006). Turtle riders: remoras on marine turtles in Southwest Atlantic. Neotropical Lehthyology 4, 123–126.
- SCHABEL, H. G. (1982). Phoretic mites as carriers of entomopathogenic fungi. Journal of Invertebrate Pathology 39, 410–412.
- SCHIAPARELLI, S., ALVARO, M. C., BOHN, J. & Albertelli, G. (2010). 'Hitchhiker' polynoid polychaetes in cold deep waters and their potential influence on benthic soft bottom food webs. *Antarctic Science* 22, 399–407.
- SCHMID-HEMPEL, P. (2013). Evolutionary Parasitology. Oxford University Press, Oxford.
- SCHOLTZ, C. H., BASSON, R. J. & BOLOGNA, M. A. (2018). The phoretic association between *Cyaneolytta* Péringuey (Coleoptera: Meloidae) triungulins and *Anthia* weber (Coleoptera: Carabidae) in southern Africa. *African Entomology* **26**, 555–558.
- Seeman, O. D. & Walter, D. E. (1995). Life history of *Afrocypholaelaps africana* (Evans) (Acari: Ameroseiidae), a mite inhabiting mangrove flowers and phoretic on honeybees. *Australian Journal of Entomology* **34**, 45–50.
- SEIDEL, B. (1989). Phoresis of Cyclocypris ovum (Jurine) (Ostracoda, Podocopida, Cyprididae) on Bombina variegata variegata (L.) (Anura, Amphibia) and Triturus vulgaris (L.) (Urodela, Amphibia). Crustaceana 57, 171–176.
- Shapiro-Ilan, D. I. & Brown, I. (2013). Earthworms as phoretic hosts for *Steinernema carpocapsae* and *Beauveria bassiana*: implications for enhanced biological control. *Biological Control* **66**, 41–48.
- SHAW, M. D. (2012). Re-evaluation of *Pseudoparasitus (Gymnolaelaps) annectans* (Womersley): a new genus and two new species (Acari: Mesostigmata: Laelapidae). *Zootaxa* **3453**. 25.
- SIMONOVÁ, J., SIMON, O. P., KAPIC, Š., NEHASIL, L. & HORSÁK, M. (2016). Medium-sized forest snails survive passage through birds' digestive tract and adhere strongly to birds' legs: more evidence for passive dispersal mechanisms. *Journal of Molluscan Studies* 82, 429–426.
- SOROKER, V., NELSON, D. R., BAHAR, O., RENEH, S., YABLONSKI, S. & PALEVSKY, E. (2003). Whitefly wax as a cue for phoresy in the broad mite, *Polyphagotarsonemus latus* (Acari: Tarsonemidae). *Chemoecology* 13, 163–168.
- SPRINGETT, B. P. (1968). Aspects of the relationship between burying beetles, Necrophorus spp. and the mite, Poecilochirus necrophori Vitz. The Journal of Animal Ecology 37, 417.
- STAUDER, A. & KIEL, E. (2004). New observations on phoretic associations of Simulidae (Diptera) with Heptageniidae (Ephemeroptera) in India. Acta Zoologica Universitatis Comenianae 46, 15–21.
- Sudhaus, W. (2008). Evolution of insect parasitism in rhabditid and diplogastrid nematodes. *Advances in Arachnology and Developmental Biology* 12, 143–161.
- SUZUKI, K. (1965). On a young crab found near the oral arms of the jellyfish, *Rhopilema esculenta* Kishinouye. *Res Crustae (Kokakurui no Kenkyu)* 2, 77–82.
- SZYMKOWIAK, P., GÓRSKI, G. & BAJERLEIN, D. (2007). Passive dispersal in arachnids. Biological Letters 44, 75–101.
- TAJOVSKY, K. (2001). Millipedes (Diplopoda) in birds' nests. European Journal of Soil Biology 37, 321–323.
- TAKAGI, S. (2001). Four gall-inducing eriococcids, with notes on dipterocarp-associated gall-inhabiting coccoids (Homoptera: Coccoidea: Eriococcidae and Beesoniidae). Insecta Matsumurana. New Series: Journal of the Faculty of Agriculture Hokkaido University, Series Entomology 58, 51–113.
- TANAKA, S. E., TANAKA, R., AKIBA, M., AIKAWA, T., MAEHARA, N., TAKEUCHI, Y. & KANZAKI, N. (2014). Bursaphelenchus niphades n. sp (Tylenchina: Aphelenchoididae) amensally associated with Niphades variegatus (Roelofs) (Coleoptera: Curculionidae). Nematology 16, 259–281.
- TIZO-PEDROSO, E. & DEI-CLARO, K. (2007). Cooperation in the neotropical pseudoscorpion, *Paratemnoides nidificator* (Balzan, 1888): feeding and dispersal behavior. *Insectes Sociaux* 54, 124–131.
- Tokeshi, M. (1993). On the evolution of commensalism in the Chironomidae. Freshwater Biology 29, 481–489.

59

60

61

62

63

64

65

67

68

69

72

73

74

75

79

80

82

84

85

86

87

89 90

99

94

95

96

97

98

99

100

106

112

114

2

3

4

5

6

8

9

11

19

14

15

16

19

20

21

22

23

24

25

26

27

28

29

30

32

35

36

38

39

40

41

42

43

50

54 55

56

- TOPITZHOFER, E., MARSHALL, C., ROYCE, L. & SAGILI, R. (2018). First published report of triungulin larvae of *Meloe* sp. (Coleoptera: Meloidae) on honey bees in Oregon, U.S. A. *The Pan-Pacific Entomologist* 94, 163.
- TOTH-BROWN, J. & HOHN, A. A. (2007). Occurrence of the barnacle, *Xenobalanus globicipitis*, on coastal bottlenose dolphins (*Tursiops truncatus*) in New Jersey. Crustaceana 80, 1271–1279.
- TRACY, B. H. & HAZELWOOD, D. H. (1983). The phoretic association of Umatella gracilis (Entoprocta: Urnatellidae) and Nanocladius downesi (Diptera: Chironomidae) on Corydalus comutus (Megaloptera: Corydalidae). Freshwater Invertebrate Biology 2, 186–191.
- Van Leeuwen, C. H. A., Lovas-Kiss, Á., Ovegárd, M. & Green, A. J. (2017). Great cormorants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds. *Biology Letters* 13, 10–14.
- VANDER WALL, S. B. & BECK, M. J. (2012). A comparison of frugivory and scatter-hoarding seed-dispersal syndromes. The Botanical Review 78, 10–31.
- VANSCHOENWINKEL, B., WATERKEYN, A., VANDECAETSBEEK, T., PINEAU, O., GRILLAS, P. & Brendonck, L. (2008). Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53, 2264–2273.
- WAAGE, J. K. (1979). The evolution of insect/vertebrate associations. Biological Journal of the Linnean Society 12, 187–224.
- WAAGE, J. K. & MONTGOMERY, G. G. (1976). Cryptoses choloepi: a coprophagous moth that lives on a sloth. Science 193, 157–158.
- WAEREBEEK, K. V., REYES, J. C. & ALFARO, J. (1993). Helminth parasites and phoronts of dusky dolphins *Lagenorhynchus obscurus* (gray, 1828) from Peru. *Aquatic Mammals* 19(3), 159–169
- WALECKX, E., MONTALVO-BALAM, T. D. J., PINZÓN-CANUL, A., ARNAL, A., MARTI, G. & MARTÍNEZ, P. A. (2018). First report of phoresy by an oribatid mite (Acari: Oribatida) on a triatomine bug (Hemiptera: Reduviidae). *International Journal of Acarology* 44, 210–211.
- WALTER, D. E. & PROCTOR, H. C. (2013). Mites: Ecology, Evolution & Behaviour, 2nd Edition (). Springer, New York.
- WALTHER, A. C., BENARD, M. F., BORIS, L. P., ENSTICE, N., TINDAUER-THOMPSON, A. & WAN, J. (2008). Attachment of the freshwater limpet *Laevapex fuscus* to the hemelytra of the water bug *Belostoma flumineum*. *Journal of Freshwater Ecology* 23, 337–339.
- WANG, Y. & ROZEN, D. E. (2019). Fitness costs of phoretic nematodes in the burying beetle, Nicrophorus vespilloides. Ecology and Evolution 9, 26–35.
- WARKUS, E., BEINLICH, B. & PLACHTER, H. (1997). Dispersal of grasshoppers (Orthoptera: Saltatoria) by wandering flocks of sheep on calcareous grassland in Southwest Germany. Verhandlungen-Gesellschaft für Okologie 27, 71–78.

- WATERKEYN, A., PINEAU, O., GRILLAS, P. & BRENDONCK, L. (2010). Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coppus (Rodentia, Mammalia) in southern France. Hydrobiologia 654, 267–271.
- WENNY, D. G. & LEVEY, D. J. (1998). Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences of the United States of America 95, 6204–6207.
- WHEELER, W. C., WHITING, M., WHEELER, Q. D. & CARPENTER, J. M. (2001). The phylogeny of the extant hexapod orders. *Cladistics* 17, 113–169.
- WHITE, T. R., WEAVER, J. S. & FOX, R. C. (1980). Phoretic relationships between Chironomidae (Diptera) and benthic macroinvertebrates. *Entomology News* 91, 69–74.
- WHITE, P. S., MORRAN, L. & DE ROODE, J. (2017). Phoresy. *Current Biology* 27, R578–R580.
- WIEGMANN, B. M., MITTER, C. & FARRELL, B. (1993). Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end? *The American Naturalist* 142, 737–754.
- WILLIAMS, R. (1986). The occurrence of Trilasmis kaempferi (Cirripedia, Lepadomorpha) in the Rockall trough on a previously unrecorded host, Neolithodes grimaldi (Decapoda, Anomura). Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 88, 309–311.
- WILSON, D. S. & KNOLLENBERG, W. G. (1987). Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites. *Evolutionary Ecology* 1, 139–159.WoRMS Editorial Board (2020). World Register of Marine Species. http://www.marinespecies.org
- ZEH, D. W. & ZEH, J. A. (1991). Novel use of silk by the harlequin beetle-riding pseudoscorpion, Cordylochemes scorpioides (Pseudoscorpionida, Chernetidae). The Journal of Arachnology 19, 153–155.
- ZEH, D. W. & ZEH, J. A. (1992). On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochemes scorpioides. Journal of Arachnology 20, 47-51.
- ZEH, J. A. & ZEH, D. W. (1997). Sex via the substrate: mating system and sexual selection in pseudoscorpions. In *The Evolution of Mating Systems in Insects and Arachnids* (eds J. C. Choe and B. J. Crespi), pp. 329–339. Cambridge University Press, Cambridge.
- ZELAYA, D. G. & MARINONE, M. C. (2012). A case of phoresis of sphaeriids by corixids: first report for the Americas. *Malacologia* 55, 363–367.
- ZHAO, L., ZHANG, S., WEI, W., HAO, H., ZHANG, B., BUTCHER, R. A. & SUN, J. (2013). Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. *Current Biology* **23**, 1–6.
- ZUANON, J. & SAZIMA, I. (2005). Free meals on long-distance cruisers: the vampire fish rides giant catfishes in the amazon. *Biota Neotropica* 5, 109–114.

(Received 9 December 2019; revised 27 August 2020; accepted 28 August 2020)