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ABSTRACT

Phoresy is a type of interaction in which one species, the phoront, uses another species, the dispersal host, for transpor-
tation to new habitats or resources. Despite being a widespread behaviour, little is known about the ecology and evolution
of phoresy. Our goal is to provide a comprehensive review of phoretic dispersal inanimals and to bring renewed attention
to this subject. We surveyed literature published between 1900 and 2020 to understand the extent of known higher-level
taxonomic diversity (phyla, classes, and orders) and functional aspects of animals that use phoretic dispersal. Species dis-
persing phoretically have been observed in at least 13 animal phyla, 25 classes, and 60 orders. The majority of known
phoronts are arthropods (phylum Euarthropoda) in terrestrial habitats, but phoronts also occur in freshwater and marine
environments. Marine phoronts may be severely under-represented in the literature due to the relative difficulty of study-
ing these systems. Phoronts are generally small with low mobility. and use habitats or resources that are ephemeral and/or
widely dispersed. Many phoronts are also parasites. In general, animals that engage in phoresy use a wide variety of mor-
phological and behavioural traits for locating, attaching to, and detaching from dispersal hosts, but the exact mechanisms
behind these activities are largely unknown. In addition to diversity, we discuss the evolution of phoresy including the
long-standing idea that it can be a precursor to parasitism and other forms of symbioses. Finally, we suggest several areas
of future research to improve our understanding of phoresy and its ecological and evolutionary significance.

Key words: animal-animal interaction, animal-mediated dispersal, arthropod, dispersal host, hitch-hiking, parasitism,
phoront, species interaction, symbiosis, zoochory
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I. INTRODUCTION

From the several cases now given, there can, I think, be no doubt that liv-
ing bivalve shells must oflen be carried from pond to pond, and by the aid
of burds occasionally even to great distances. (Darwin, 1882)

In his final publication, Darwin (1882) described
several species of freshwater bivalves that use their shells
to attach to the bodies of ducks, beetles, frogs, and newts.
He hypothesized that the bivalves were using these other
animals for dispersal, and that this could explain the
observation that individuals from distant areas were
remarkably similar in appearance and in fact the same
species. Over a century later, it is clear that Darwin was
remarking on the dispersal behaviour now known as
phoresy (Lesne, 1896).

Dispersal 1s a critical component in the life history of most
organisms. Dispersing away from one area to another can
affect not only the fitness of individuals, but also the genetics
of populations and the distribution and abundance of species
(Bowler & Benton, 2005; Clobert ¢t al., 2012). Dispersal by
both parents and offspring can, for example, decrease com-
petition with conspecifics, reduce the probability of inbreed-
ing, and allow populations to respond to environmental
change (Bowler & Benton, 2005; Jackson & Sax, 2010; Clo-
bert et al., 2012). It can also decrease density-dependent pre-
dation and disease, which has been shown for some plant
species (Connell, 1970; Janzen, 1970; Comita ¢t al., 2014).
Phoresy, or phoresis (from the Greek ‘phoresis’ meaning
‘being carried’), has been defined traditionally as a type of
animal-mediated dispersal where an animal, the phoront,
searches for and attaches to another animal, the dispersal
host, for the sole purpose of being transported to a ‘suitable’
habitat (i.e. a habitat that supports continued survival and
reproduction; Farish & Axtell, 1971). A second, more recent
definition is not necessarily restricted to animals, with
phoresy being “a phenomenon in which one organism (the
phoretic) receives an ecological or evolutionary advantage
by migrating from the natal habitat while superficially
attached to a selected mterspecific host for some portion of
the individual pheretic’s lifetime” (Houck & OConnor, 1991,
p- 613). These definitions are similar but differ in the context
under which they consider phoresy to occur. Specifically, Far-
ish & Axtell (1971) consider phoresy to involve dispersal to
and from any suitable habitat, whereas Houck & OCon-
nor (1991) are more restrictive and consider only dispersal from
the natal habitat. Both definitions agree that the goal of
phoresy is dispersal and that, unlike parasites that consume
parts of their hosts, phoronts are essentially passive ‘hitch-
hikers’ that have little or no net negative effects on their hosts
(although, as discussed in later sections, this may not always
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be true and in some instances the lines between phoresy and
other forms of symbioses can be blurred).

The goal of this paper 1s to assess the diversity of animals
using phoretic dispersal through both taxonomic and func-
tional lenses to reveal previously overlooked patterns of this
relatively understudied type of species interaction and mode
of dispersal. To date, there have been dozens of reviews on
specific taxa, for example lice (Keirans, 1975a, 1975b), mites
(Houck & OConnor, 1991), pseudoscorpions (Poinar,
Curcic, & Cokendolpher, 1998), and nematodes (Giblin-Davis,
Kanzaki, & Davies, 2013),-but no large-scale comprehensive
review of this subject. First, we briefly review the concept of
phoresy and present a working definition. Next, we present a
synthesis of the literature to reveal the higher-level taxonomic
breadth (phyla, classes, and orders) of known phoretic animals
and the functional similarities among them. In the discussion
that follows, we speculate on the evolution of phoresy including
the long-standing idea that it can be a precursor to parasitism
and other types of symbiotic relationships. We end by offering
suggestions for future research needed for an improved
understanding of phoresy and its ecological and evolutionary
significance.

II. WHAT IS PHORESY?

(1) Stages of phoretic dispersal

Phoresy generally comprises three distinct stages that are
each critical for success of the phoront: locating a dispersal
host, attaching to the host, and detaching from the host. If
a phoront is unable to complete one of these stages, dispersal
will fail.

(a) Stage 1:locating the host

Recognizing a suitable host is the first step to phoretic dis-
persal. To do so, phoronts must perceive host-specific cues.
These may be cues related to being in the right habitat or
sensing the proper host species or host developmental stage.
The majority of species with documented cases of host-
related cues are arthropods (Table 1). The cues that have
been documented have been mostly chemical, although it
seems likely that other types of cues involving visual, tactile,
and auditory information are common but unrecorded.
Examples include lice that use COq released by their hippo-
boscid fly host (Harbison ez al., 2009), wasps that use sex pher-
omones produced by their moth host (Arakaki et al., 1997),
and nematodes that use volatiles and cuticular hydrocarbons
emitted by their hosts (Hong & Sommer, 20064; Krishnan
et al., 2010; Okumura, Tanaka, & Yoshiga, 2012). To locate
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suitable hosts, phoronts may also alter their life history.
Again, the known cues are chemical in nature. An example
is nematodes parasitic on pine trees that use beetles as dis-
persal hosts (Zhao et al., 2013). The nematodes use chemical
cues given off by eclosing adult beetles to synchronize devel-
opment with the mobile stage of their host. Chemical cues
are also used to attract dispersal hosts. This is seen in larvae
of the blister beetle Meloe franciscanus Van Dyke, which pro-
duce chemicals that mimic sex pheromones of their bee host
(Saul-Gershenz & Millar, 2006).

(b) Stage 2: attaching to the host

Attaching to and staying on the host is the second step in
phoretic dispersal. Many phoronts have specific structures
and life stages adapted for this task (Table 1). For example,
mites in the infraorder Uropodina attach in the deutonymph
stage using anal pedicels that stick to the dispersal host
(Klompen, Lekveishvili, & Black, 2007; Bajerlein
et al., 2013). Mites 1n other groups also disperse in the deuto-
nymph stage butattach to hosts using claws (Athias-Binche,-

1995) and suckers (Houck & OConnor, 1991; Seeman &
Walter, 1995). Species in groups such as beetles (Roubik &
Wheeler, 1982), pseudoscorpions (Zeh & Zeh, 1991), and lice
(Marshall, 1981) use modified mouthparts to attach to hosts.
Other mechanisms of attachment include bivalve shells and
holdfasts (Darwin, 1882; Fryer, 1961; Seidel, 1989; Barnhart
et al., 2008). Some phoronts attach to very specific structures
on their dispersal hosts. Mites from several families are trans-
ported in the abdominal pouches of bees and wasps
(Houck & OConnor, 1991) and the pinewood nematode Bur-
saphelenchus xylophilus Steiner and Buhrer 1s transported in the
spiracles of its beetle host (Zhao et al., 2013). Many pseudo-
scorpions (Poinar et al, 1998), mites (Bajerlein &
Bloszyk, 2004), and nematodes (Moser e al., 2005) attach
under the elytra of beetles, perhaps because the area is well
protected. Another example is the nematode Caenorhabditis
drosophilae Kiontke, which attaches to a specific structure
(an inflatable sac called the retracted ptilinium) on its fly
host’s head.

(¢) Stage 3: detaching from the host

The final step of phoretic dispersal is detachment from the
host. Little is known about how phoronts determine the right
time or place to disengage from the host. Most information
comes from mites (Table 1). Brennandama lambi Krczal is
phoretic on mushroom flies (Diptera: Sciaridae and Phori-
dae). It only detaches from the host in the presence of one
particular species of fungus (Clift & Larsson, 1987), suggest-
ing a habitat-related cue. Another mite, Histiostoma polypore
Oud., stays attached while the host develops from larva to
adult. Upon death of the host, the mite uses cues given off
by waxy secretions from the host to moult to the adult stage,
after which it begins feeding on the dead host (Behura, 1956).
The nematode Caenorhabditis japonica Kiontke, Hironaka &
Sudhaus detaches from its adult hemipteran host in the
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presence of host nymphs (Okumura et al., 2013), maintaining
synchrony and a continued association with the host. The
precise mechanisms of detachment are almost entirely
unknown. In mites, the structural integrity of anal pedicels
used to attach to hosts is influenced by humidity; detachment
occurs when the pedicel breaks during low humidity
(Szymkowiak et al., 2007).

(2) A working definition of phoresy

While phoronts may be passive hitch-hikers once attached,
the process of finding and attaching to the host occurs along
a spectrum of behaviours (as described in Section II.1) rang-
ing from more active (e.g. moving towards the host) to more
passive (e.g. sitting and waiting for the host). In the extreme,
phoronts may simply wait for a dispersal host to pass by and
make contact before attaching, as in the case of bivalves using
their shells to clamp onto their hosts (Darwin, 1882; Barnhart
etal.,2008). According to Farish & Axtell (1971), phoresy spe-
cifically involves actively finding and attaching to a host;
however, animals that sit and wait for hosts to find them
are often reported as phoretic in the literature. For example,
water fleas and rotifers are picked up by wild boar and trans-
ported to new areas (Vanschoenwinkel ez al., 2008) and eggs
of fairy shrimp (Chirocephalus diaphanous Prévost) are swal-
lowed by juvenile trout and transported among lakes via
interconnecting streams (Beladjal ¢t al., 2007). Based on
Farish & Axtell’s (1971) definition, it is not entirely clear if
some of these would be considered examples of phoretic dis-
persal. Instead, we agree with Houck & OConnor (1991) that
a more expansive definition is needed that encompasses the
full spectrum of host-seeking behaviours, from what might
be considered ‘actively searching’ to ‘more passively sitting
and waiting’. At the same time, we believe Houck & OCon-
nor’s (1991) definition restricting phoresy to dispersal from
the “natal habitat” is too narrow and instead agree with Far-
ish & Axtell’s (1971) more expansive view on this issue.
More recently, two broad definitions for phoresy have
been offered. Camerik (2010, p. 334) defined phoresy as “a
dynamic interspecific, temporary relationship whereby the
phoretic...attaches to the host...for the duration of migra-
tion from one habitat to another, with the primary outcome
being dispersal”. Walter & Proctor (2013, p. 355) defined it as
“a type of temporary symbiosis whose function is to allow a
smaller individual (the phoretic) to move from one place to
another on a larger individual (the host or carrier)”. We
believe these definitions are complementary, and that
phoresy can be defined most broadly as the behaviour of one
orgamism (the phoront) to disperse_from one location to another with the
aid of another organism (the dispersal host) by attaching to that organ-
ism, regardless of whether the phoront actively searches for or more pas-
siwely waits for the host. Note that Camerik (2010) and some
previous authors specifically restrict the definition of phoresy
to interspecific interactions. While we restricted our review to
interspecific cases, which represent the vast majority reported
in the literature, we note that a small number of intraspecific
cases have been reported, for example, aphid nymphs that
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attach to adults of the same species to disperse onto their food
plants (Gish & Inbar, 2018).

(3) Similarity with dispersal in plants

Of course, animal-mediated dispersal is also used by many
other types of organisms, including many species of plants
[see reviews by Howe & Smallwood (1982), Vander Wall &
Beck (2012) and Licht, Steele, & Swihart (2017)]. The evolu-
tionary and ecological significance of phoresy in animals is
analogous to animal-mediated, seed dispersal (zoochory) in
plants. A seed attaching to or being carried by an animal
functions in the same way as an animal attaching to another
animal. Structures on seeds used for clinging to fur and
feathers and energy-rich fruits and nuts used to attract dis-
persers can all be viewed as traits that function to move off-
spring  away from. parent plants (Howe &
Smallwood, 1982). Likewise, as shown below, phoretic ani-
mals have a diversity of structures and other traits used to
attract and attach to other animals. One major difference
between seed dispersal and phoretic dispersal is that in many
cases animals are offered nutritional rewards by plants to dis-
perse seeds, resulting in mutualism. Interestingly, mutualism
may also be the case in some phoretic systems (Kinn, 1980;
Wilson & Knollenberg, 1987; Barbaro, Dutoit, &
Cozic; 2001; Okabe & Makino, 2008), which we discuss
below (see Section IV.2 and IV.4). Another major difference
is that in animals, different life stages, including adults, can be
the phoront, whereas in most plants it is only the seeds or
spores that disperse. But despite the differences, whether
speaking of plants or animals, both form and function con-
verge to result in the organism being taken to other, possibly
more favourable locations, such as seeds being taken to loca-
tions that favour germination and establishment (Howe &
Smallwood, 1982; Wenny & Levey, 1998) or animals being
taken to more resource-rich habitats (Saul-Gershenz &
Millar, 2006). In the remainder of this review, we deal
exclusively with phoresy in animals but acknowledge the
fundamental similarities with zoochory in plants.

III. SURVEY OF THE DIVERSITY OF PHORONTS

(1) Surveying the literature

We used the following search terms to find records of phore-
tic dispersal by animals in the literature: ‘phoresy animals’,
‘phoresis’, ‘phoresy’, ‘phoretic association’, ‘phoretic dis-
persal’, ‘animal-mediated dispersal’, ‘hitch-hiking’, ‘endo-
zoochory’, and ‘ectozoochory’. We searched Google Scholar
and Web of Science (1900-2020) initially between September
and November 2014 and again in June 2020 to find new arti-
cles published since the initial search. Our goal was not to
track down every single species or article on phoresy in the lit-
erature, but rather to uncover the major patterns of known
diversity, and specifically to record all the taxonomic orders
with animals known to be phoretic. In total, our search

Biological Reviews (2020) 000-000 © 2020 Cambridge Philosophical Society
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produced more than 1,800 articles dealing with phoresy. We
screened this initial collection of articles to identify studies
reporting direct observations of phoretic associations,
reviews, records, and checklists summarizing phoretic associ-
ations, and descriptions of behaviours and traits involved in
phoretic dispersal. This exercise eliminated 475 articles that
did not meet our criteria. We then scanned the remaining
1,325 articles to (z) record all animal orders with at least
one species reported to disperse phoretically and (i) provide
ancillary information (e.g. behaviours, morphology, life
stages, habitats, resources, dispersal hosts) on phoretic inter-
actions for each group. Thus, not all articles that could have
been cited are included in our review — again the goal was not
to count every article or species, but to quantify ordinal-level
diversity and capture the major patterns. Also note that we
did not count the few papers that referred to epibionts or epi-
zoic species as examples of phoresy since these animals, such
as whale barnacles (Killingley, 1980; White, Morran, & de
Roode, 2017), spend most of their lives living on the host
rather than using the host for dispersal.

We chose to restrict our review to higher taxonomic levels
because the diversity of known phoretic species is very large,
and summarizing the information at this level was beyond
our intended scope. For example, there are at least 212 species
of phoretic mites that have been found by examining animal
carcasses alone (Perotti & Braig, 2009). Note that many of
the references herein contain more detailed information on
the species involved in phoretic interactions. For our analysis,
we focused on diversity at the level of orders within classes.
This included comparisons of the absolute number of orders
with known phoretic species per class and scaled comparisons
of the relative number of orders with known phoretic species
divided by the total number of orders per class. We obtained
information on the total number of orders per class from the
World Register of Marine Species (WoRMS  Editorial
Board, 2020) for marine taxa, freshwater taxa, taxa that fell
into more than one category (Gastropoda, Bivalvia, Eutardi-
grada, Heterotardigrada), and the nematode class Chroma-
dorea [cross-referenced with the World Database of
Nematodes (Bezerra et al., 2019)]. For the classes Arachnida,
Insecta, Collembola, and Diplopoda, data were obtained from
Wheeler et al. (2001), Brewer, Sierwald, & Bond (2012), Proc-
tor ¢t al. (2015), Beron (2018), and Leo et al. (2019). The name
Entoprocta is used for both the phylum and class, which has
two orders (Fuchs et al., 2010; Conway, 2015; ITIS, 2020).
For Arachnida, two sources differed in the number of orders:
15 (Proctor et al., 2015) and 16 (Beron, 2018), and so we chose
to use the most recent estimate. Finally, to obtain estimates of
total numbers of phyla, classes, and orders in the animal king-
dom, we used the WoRMS database (WoRMS Editorial
Board, 2020). These data were compared with the numbers
of phyla, classes, and orders where phoresy has been observed.

(2) Results of the survey

The results of our literature survey show that phoretic dis-
persal has been observed in multiple animal phyla (Table 1;
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and see Szymkowiak ez al., 2007), including at least two verte-
brates [both are species of bony fish (Zuanon &
Sazima, 2005; Sazima & Grossman, 2006)]. In total, we
found 13 phyla (out of 33), 25 classes (out of 93), and 60 orders
(out of 529) of animals in which at least one species has been
recorded as dispersing phoretically (Table 1; note that within
Gastropoda, the superorder Hygrophila and subclass Patel-
logastropoda were counted as orders for the purposes of this
analysis). Most records are anecdotal and come from obser-
vational studies in which dispersal hosts were collected for
another reason and phoronts were inadvertently found
attached. Some records come from fossilized amber. Fossil-
ized accounts of phoresy include mites, springtails, and pseu-
doscorpions (Magowski, 1995; Poinar et al, 1998; Penney
etal., 2012), with some records of mites dating back 85 million
years (Magowski, 1995), and pseudoscorpion records dating
back 40 million years (Poinar ez al., 1998). A less commonly
observed phoretic interaction described in the literature is
hyperphoresy; which occurs when a phoretic individual itself
carries another phoretic individual (Szymkowiak et al., 2007).
We found records of hyperphoresy in animals that involve
mites attaching to other mites (Bajerlein & Bloszyk, 2003).
A second example involves species of ciliates (Kingdom
Chromista, Phylum Ciliophora) attached to ostracods, which
are themselves attached to treefrogs (Sabagh ez al., 2011).

The majority of known phoretic animals are small inverte-
brates (Table 1). Of the 60 orders with known cases of
phoresy, most are in the phylum Euarthropoda, with phore-
tic species spread across the terrestrial, freshwater, and
marine environments (Table 1). The two classes across all
animal phyla with the highest number of orders with
observed phoresy are both from Euarthropoda: Insecta
(=13 orders with phoretic species) and Arachnida (N =6
orders). Two classes in the phylum Mollusca share the third
highest rank: Gastropoda (N =4 orders) and Bivalvia
(V=4 orders) (Iig. 1A). When scaled to the total number
of orders per class (Fig. 1B), the highest relative diversity of
phoronts is found in two relatively small groups: Class Pycno-
gonida (sea spiders) and Class Eutardigrada (tardigrades).
The class Pycnogonida 1s composed of a single order, in
which phoresy has been observed for some species, whereas
both orders in the Class Eutardigrada have phoretic species.
The second highest proportion of phoretic orders is found in
another small group, Class Collembola (springtails), for
which three out of the four total orders exhibit phoresy.
Insecta and Arachnida also rank relatively high when scaled
for total diversity (eighth and tied for ninth, respectively) with
slightly less than half of the known orders in each class exhi-
biting the behaviour (Fig. 1B). On the other hand, Class Gas-
tropoda ranks in the bottom half of all classes when scaled for
total diversity, with less than a quarter of orders recorded
exhibiting phoresy (Fig. 1B).

Out of the 60 orders where phoresy has been observed
(11.3% of total animal orders), there is a positive correlation
(r =0.41, P =0.04) between the number of orders with
known records of phoresy and the total number of orders
per class (Fig. 1C). This relationship suggests that in groups
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Fig 1. (A) Pie chart showing the number of orders per class where phoresy has been observed (i.e. absolute diversity). (B) The number
of known phoretic orders divided by the total number of orders per class (i.e. relative diversity). Numbers at the end of the bars
represent the total number of orders in each class. (C) Correlation between the absolute number of known phoretic orders and the
total number of orders per class (r= 0.41;P = 0.04). (D) Venn diagram of the number of known phoretic orders according to the
major ecosystem inhabited. The six orders that are both terrestrial and freshwater represent two orders of mites, three orders of

tardigrades, and the insect order Diptera.

with known phoresy,the behaviour is distributed among
higher animal taxa roughly in proportion to their diversity.

By far the greatest number of orders and classes with
known phoronts 1s in-the phylum Euarthropoda. One
explanation for the dominance of arthropods engaging in
phoresy is that their small size, extreme diversity, and mor-
phological traits that facilitate attachment (e.g. claws and
mandibles; see Section II.1) favour its evolution in this
group relative to others. Alternatively, phoresy may be
more readily documented in arthropods relative to
other species-rich groups such as molluscs for a variety of
reasons including their ease of observation, especially in
the terrestrial environment.

Within arthropods, insects dominate the number of orders
known to exhibit phoresy, but the group most regularly asso-
ciated with the behaviour is mites (Class Arachnida, Subclass
Acari), and most research has been done on this group
(Houck & OConnor, 1991; Table 1). Indeed, the majority
(>800) of the articles found during our literature survey con-
cerned mites. Mites have a diverse set of morphological and
behavioural traits used for phoretic dispersal and are known
to use a broad range of dispersal hosts including beetles, flies,
bees, wasps, ants, bats, non-volant mammals, and birds.
Phoretic mites have been implicated in increasing the trans-
mission of Dutch elm disease among trees and entomopatho-
genic fungi among insects (Schabel, 1982; Moser ¢t al., 2010).
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There are several mechanisms by which mites can be phore-
tic, including: females attaching using chelicerae, claws, and
hooks; deutonymphs (the second nymphal life stage) attach-
ing using chelicerae and claws; deutonymphs attaching using
anal pedicels (secreted attachment stalks); and hypopodes
(modified deutonymphs specialized for dispersal) attaching
using suckers or claspers (Macchioni, 2007). Another order
of arthropods, Pseudoscorpiones, also commonly use other
invertebrates and mammals as dispersal agents, with species
in at least ten out of 26 families known to engage in phoresy
(Harvey, 2002, 2013; Tizo-Pedroso & Del-Claro, 2007).

Nematodes are another large group of invertebrates with
records of many species engaging in phoresy (Table 1).
Two families of nematodes, Rhabditidae and Diplogastridae,
engage in endophoresy by entering protected cavities on the
bodies of insects, including the rectum and genital chamber
(Sudhaus, 2008; Giblin-Davis ¢t al., 2013). Other species
enter the excretory system of earthworms (Annelida)
(Poinar, 1978) or the guts and intestines of snails (Petersen
et al., 2015) for dispersal. Many free-living nematodes use a
specific larval form, the dauer larva, for phoresy. Dauer lar-
vae are arrested third-stage larvae (L3) that are non-feeding.
In parasitic nematodes, the infective larvae are also arrested
L3 larvae that are non-feeding. Both dauer larvae of
free-living nematodes and infective larvae of parasites are
resistant to harsh environmental conditions such as those
encountered during dispersal or infection (Sudhaus, 2008;
Crook, 2014). Because of the similarity of the L3 larval
stages, 1t has been suggested that phoresy was a precursor
to parasitism in nematodes (Rogers & Sommerville, 1963;
Sudhaus, 2008; Ogawa et al., 2009; Crook, 2014).

In terms of major ecosystems, phoretic species are found in
all three habitat realms: terrestrial (Poinar e al., 1998; Tizo-
Pedroso & Del-Claro, 2007; Krishnan et al., 2010), freshwa-
ter (Seidel, 1989; Vanschoenwinkel ez al., 2008), and marine
(Arnbom & Lundberg, 1995; Luzzatto & Pastorino, 2006)
(Table 1). Of the orders known to exhibit phoresy
(Table 1), more than 75% are terrestrial or freshwater
(Fig. 1D). Six orders [Diptera, two orders of mites
(Trombidiformes and Sarcoptiformes), and three orders of
tardigrades (Echinsicidae, Apochela, Parachela)] contain
records of both terrestrial and freshwater species. Based on
these data, phoresy appears to be more taxonomically wide-
spread in both the terrestrial realm (V= 26 orders) and fresh-
water realm (V= 26 orders) than in the marine realm (V= 14
orders). In fresh water, many arthropods, such as ostracods,
and the larvae of non-biting midges (Chironomidae) and
blackflies (Simuliidae) (de Moor, 1999; Stauder &
Kiel, 2004) are phoretic. Midges alone are known to attach
to molluscs, fish (Tokeshi, 1993), stoneflies, mayflies, damsel-
flies, and dragonflies (White ¢t al., 1980) (Table 1). Among
marine species, pandalid shrimps (Pandalidae), copepods
(Lubbockiidae), and sea spiders (Pallenopsidae) use jellyfish
as dispersal hosts, and cockles (Cardiidae) use shorebirds
(Table 1). The lower number of marine taxa known to
engage in phoresy compared to terrestrial and freshwater
taxa may be because the marine environment is somehow
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fundamentally different (e.g. strong water currents assist with
dispersal of many species; Highsmith, 1985). However, a
more probable explanation is a sampling bias due to the rel-
ative difficulty of documenting phoretic events in marine sys-
tems. This means the extent of phoresy in these systems is
probably far greater than currently known. For example,
marine diversity includes many small, sedentary animals with
low mobility and many large, high-mobility animals, with
vast distances between some habitat types. These character-
istics seem likely to promote the evolution of phoretic dis-
persal in the marine environment more than current
observations would suggest.

(3) Some common characteristics among phoronts

Although diverse taxonomic groups use phoresy as a method
of dispersal, our literature survey reveals several characteris-
tics that are common among phoronts (Table 1). First, we
found several cases that involve what might be considered
as a sit-and-=wait strategy. Of the 60 orders with known
phoronts, 18 had at least one example of ‘sit-and-wait’; inter-
estingly, most are from the marine and freshwater environ-
ments, including bryozoans, sponges, rotifers, and bivalves
that wait to be picked up by a host (Vanschoenwinkel
¢t al, 2008; Zelaya & Marinone, 2012; Van Leeuwen
etal.,2017; Okamura ez al., 2019). Thus, most observed cases
of phoresy appear to involve some form of actively searching
and attaching to the host. Second, the habitats/resources
used by phoretic species are often patchy or ephemeral, such
as animal dung, isolated lakes and ponds, fungi, bromeliads,
or hosts to parasitize. Third, most phoronts are small and
lack a highly mobile life stage, which presumably makes it
inherently difficult to disperse to widely spaced or ephemeral
habitats or hosts.

Phoresy is not, however, strictly limited to organisms with
low mobility; it also occurs in species with at least one mobile
life stage (Table 1). For example, many species of insects that
are aquatic during the larval stage (e.g. non-biting midges,
blackflies, caddisflies) are phoretic even though they can
fly as adults. Some mobile adult moths (Waage &
Montgomery, 1976), beetles (Ashe & Timm, 1987), and par-
asitic wasps (Arakaki ¢/ al., 1995) also disperse va phoresy
(Table 1). Species in which otherwise mobile adults engage
in phoretic dispersal may require specific habitats or
resources that are highly aggregated, ephemeral, or difficult
to find. For example, adult Cryptoses choloepi Dyar moths that
live and feed on the dung of sloths use these mammals as dis-
persal hosts (Waage & Montgomery, 1976). Sloths occur at
low densities and climb down trees to defecate infrequently;
thus, their dung is a patchy and ephemeral resource
(Waage & Montgomery, 1976). Even though adult moths
can fly, the time and energy cost to finding dung is presum-
ably reduced by hitching a ‘free ride’ and being taken directly
to the resource.

Along with widely dispersed habitats, small body size,
and low mobility, many phoronts are also parasites
(Keirans, 1975a, 1975b; Saul-Gershenz & Millar, 2006;
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Bartlow et al., 2016), some being phoretic on a different spe-
cies than they parasitize and others parasitizing the same host
species or individual (e.g. Arakaki et al., 1995; Houck &
Cohen, 1995; Bartlow et al., 2016). In fact, one hypothesis is
that phoresy has been a precursor to the evolution of parasit-
1sm in some systems (Osche, 1956; Houck & OConnor, 1991;
Athias-Binche &  Morand, 1993; Houck, 1994;
Blaxter, 2003; Sudhaus, 2008; Crook, 2014; see Sec-
tion IV.4). Like other phoronts, phoretic parasites generally
have patchy, widely dispersed and ephemeral resources —
their hosts. While highly mobile parasites (e.g. with free-
living adult stages, mobile larvae, or intermediate hosts)
may disperse and find hosts with relative ease, more ‘perma-
nent’ parasites with little or no mobility may be especially
likely to engage in phoresy on non-host species. Some evi-
dence for this pattern has been found in lice. Lice exhibit a
range of mobilities from highly mobile to relatively immo-
bile, and species with the ability to move independently off
a host may be less likely to engage in phoretic dispersal
(Bartlow et al., 2016).

In some cases, the lines between phoresy and parasitism
are blurred (Parmentier & Michel, 2013). For example, some
parasitoid wasps are known to use adults of the insect eggs
they parasitize for dispersal (Arakaki ez al., 1997; Fatouros &
Huigens, 2011). Since the host eggs are small, inconspicuous,
and can be separated by long distances (Fatouros &
Huigens, 2011), hitching a ride on adults and simply waiting
for eggs to be laid effectively eliminates the need to search for
new hosts to parasitize. In this case, parasitoid wasps are par-
asitizing the same species as their dispersal host, but are not
parasitizing the individual to which they are attached. In
other cases, phoronts may be parasitizing the dispersal host
itself, further blurring the lines and hinting at an evolutionary
transition from phoresy to parasitism. An example is the mite
Hemusarcoptes cooreman Thomas. Once thought to be using bee-
tles for the sole purpose of phoretic dispersal, H. cooreman are
now known to parasitize the beetles by consuming haemo-
lymph (Houck & Cohen, 1995). These fuzzy lines between
phoresy and parasitism lend more credence to the long-
standing idea that phoretic interactions can precede evolu-
tionary transitions to more intimate symbiotic relationships.

IV. EVOLUTION OF PHORETIC DISPERSAL

(1) Is phoresy ‘risky’?

Phoresy has been said to be a ‘risky’ strategy for dispersal
(de la Rosa, 1992; Lopez ¢ al., 2005; Bartlow et al., 2016;
Nolan & Delaplane, 2017). The behaviour involves attaching
to another organism and relying on that organism for trans-
port to a suitable habitat or, in the case of phoretic parasites,
to a suitable host. T'o accomplish this, phoronts must success-
fully complete the three stages of phoresy outlined in Sec-
tion IL.1: locate the host, attach to the host, and detach
from the host at an appropriate location. These three stages
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appear to require precise cues and mechanisms of attach-
ment and detachment in at least some cases, and failing to
complete any of the stages will result in failure to disperse.

If phoresy is a ‘risky’ strategy for dispersal, then why did it
evolve? Risk is relative. All that matters from an evolutionary
perspective is that dispersing via phoresy 1s more likely to be
successful than dispersing under one’s own power or not dis-
persing at all. The behaviour is distributed widely through-
out the animal kingdom (Table 1; Fig. 1), suggesting
multiple independent origins. Studies of specific taxa, includ-
ing blister beetles (Bologna. & Pinto, 2001; Bologna
et al., 2008; Di Giulio et (al., 2014) and acarid mites
(OConnor & Pfaffenberger, 1987), show evidence for its repeated
origins within multiple clades. For the behaviour to evolve indepen-
dently multiple times, the benefits must sometimes outweigh
the risks. Some hypothesized advantages of phoresy for the
phoront include reduced energetic costs (Houck &
OConnor, 1991), reduced dispersal times (Krishnan
et al., 2010; Bartlow et al., 2016), directed dispersal to specific
habitats (Fronhofer et al., 2013), and protection from preda-
tors (Badets & Du Preez, 2014) and harsh environmental
conditions (Liu ef al., 2016). The ultimate risk of phoresy is
death, such as falling ofl mid-transport, being wounded or
killed by the host, or ending up at the wrong location. For
example, avian wing lice that fall off their hippoboscid fly
hosts likely die quickly, since they desiccate rapidly off a host
(Johnson & Clayton, 2003). Other risks involved in phoresy
include reaching a habitat with few available resources or
one already heavily colonized by competitors. But as long
as some individuals survive and reproduce, phoretic dispersal
can emerge and persist evolutionarily, despite the inherent
risks involved in the behaviour.

Although the end goal is dispersal, other important activi-
ties (e.g. reproduction) may take place during phoresy in
some species. For example, the pseudoscorpion Cordylochernes
scorprordes L. has a phoretic association with the giant harle-
quin beetle Acrocinus longimanus L. The beetles are attracted
to decaying trees on which pseudoscorpions wait until freshly
laid beetle larvae develop into adults. The pseudoscorpions
can wait 3-5 generations until beetle larvae develop (Zeh &
Zeh, 1997). After adult beetles eclose, male and female pseu-
doscorpions rush to attach to the beetle’s abdomen to dis-
perse phoretically. While attached, males force rival males
off the beetle to dominate the abdomen and gain access to
females. Therefore, the dispersal host can also serve as a site
for reproduction and an arena for sexual selection (Zeh &
Zeh, 1997).

(2) Effects on dispersal hosts

Despite being a strategy that seemingly only benefits the
phoront, phoresy may have more effects on dispersal hosts
than generally assumed. For example, phoretic mites of the
genus Poecilochirus normally have no negative impact on their
burying beetle (Nicrophorus spp.) hosts, except at high densities
(Wilson & Knollenberg, 1987). The beetles bury carcasses,
such as mice, and use them to feed their developing larvae.
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Fly (Calliphora spp.) larvae, which are also buried during this
process, feed on shallowly covered carcasses, thereby taking
resources away from the beetles. At normal densities, mites
phoretic on beetles can actually reduce competition with flies
by consuming them, thus indirectly increasing beetle perfor-
mance (Springett, 1968; Wilson & Knollenberg, 1987). How-
ever, it 1s hypothesized that at high densities, phoretic mites
may decrease beetle performance by consuming beetle lar-
vae (Wilson & Knollenberg, 1987). A second example is the
remarkable case of mutualism between the potter wasp Allo-
dynerus delphinalis Giraud and the mite Enslinella parasitica
Vitzthum (Okabe & Makino, 2008). After phoretic dispersal,
mites attached to wasps actually defend the wasp’s offspring
against attacks from species of parasitoid wasps. The mites
feed on the haemolymph of the potter wasp larvae, but do
not kill them, and may even go on to become phoretic on
the individual they fed on after it becomes a winged adult.
A final example 1s mites (Dendrolaelaps neodisetus Hurlbutt)
phoretic on southern pine beetles (Dendroctonus _frontalis Zim-
merman). Beetles with phoretic mites harbour fewer endo-
parasitic nematodes, possibly because the mites feed on the
nematodes (Kinn, 1980).

Despite these examples, research into phoretic interactions
has generally ignored the dispersal host side of the equation.
Are the effects of phoronts on their hosts mostly neutral as
generally assumed? What role does density dependence
(i.e. how many individuals are physically attached to the host)
play in the effects of phoronts on their hosts
(e.g. Moser, 1976; Gupta & Borges, 2019)? Answering these
and related questions will help develop a better understand-
ing of the evolution of these interactions from the viewpoint
of both phoronts and hosts. In addition to the examples listed
above, Walter & Proctor (2013) documented numerous
examples of adverse effects of phoretic mites on their dis-
persal hosts, including, but not limited to, negative impacts
on their movement, reproduction, feeding, breathing,
growth rates, and longevity [see Table 9.4 of Walter & Proc-
tor (2013) for a complete list]. If phoronts have more adverse
effects on their hosts than generally assumed (Walter &
Proctor, 2013; Wang & Rozen, 2019), then questions regard-
ing the evolution of host defence mechanisms and the poten-
tial for coevolutionary interactions between phoronts and
hosts are worth investigating. For example, hippoboscid flies
groom themselves to remove lice (Harbison ¢ al., 2009; Bar-
tlow et al., 2016). Do other dispersal hosts use similar mecha-
nisms to prevent phoronts from attaching? Have phoronts
evolved counter defences? In carabid beetles that harbour
external mites, Gudowska ¢z al. (2016) showed that compared
with mite-free individuals, infested beetles exhibited a differ-
ent pattern of respiration. Specifically, beetles infested with
mites used more discontinuous gas exchange (DGE) which
is characterized by extended periods where the spiracles are
closed and no respiration occurs. This result is consistent with
the ‘strolling arthropod’ hypothesis proposed by Miller (1974)
who posited that complete closure of the spiracles during
DGE is a mechanism to prevent other organisms and foreign
objects from blocking or entering the tracheal system. How
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general is this pattern in arthropods and what role might it
play in the evolution of phoronts and their dispersal hosts?

(3) Host associations

Like parasites, phoronts show wide variation in host specific-
ity (White et al., 2017), from one species of dispersal host
(e.g. the wasp Telenomus euproctidis Wilcox) to many (e.g. the
mite Histiogaster arborsignis Woodring). The classical evolu-
tionary model of parasite—host and other types of symbiotic
relationships is that they are primarily the result of coevolu-
tion, where reciprocal selection pressures favour the evolu-
tion of increasing specialization among interacting species
[see Janz (2011) for a recent review]. This high degree of spe-
cialization is expected to lead to widespread cospeciation and
therefore phylogenetic congruence between parasites and
their hosts: if the host goes extinct, so does the parasite. In this
view, parasites ‘are trapped in an inherent evolutionary
‘dead-end’ as a result of specializing on their hosts
(Moran, 1988; Wiegmann, Mitter, & Farrell, 1993; Kelley &
Farrell, 1998). More recently, this way of thinking about spe-
cies associations has been challenged on both conceptual and
empirical grounds (Hoberg & Brooks, 2008; Agosta, Janz, &
Brooks, 2010; Janz, 2011; Araujo e al., 2015; Braga
et al., 2018; Nylin et al., 2018; Brooks, Hoberg, &
Boeger, 2019). For parasites and other symbionts, it is now
clear from both theory and data that there is frequent switch-
ing to evolutionarily unrelated hosts (Agosta, 2006; Nylin
et al., 2018), and that this host switching is a fundamental part
of the evolutionary dynamics of these systems (Hoberg &
Brooks, 2008; Agosta et al., 2010; Janz, 2011; Araujo
et al., 2015; Braga et al., 2018; Brooks et al., 2019).

Compared to parasitism and other forms of symbioses,
there have been relatively few studies on the evolution of host
associations in phoretic systems. If phoretic interactions are
primarily commensal, with phoronts having little to no
impact on their hosts, then reciprocal coevolutionary interac-
tions like those that occur between other symbionts are likely
rare. However, if phoronts have more impacts on their hosts
than generally assumed, as suggested by the evidence dis-
cussed in Section IV.2; then the potential for coevolutionary
dynamics like those seen in other systems becomes greater.
Groups where evolutionary relationships between phoronts
and dispersal hosts have been examined to some degree
include acarid mites (OConnor & Pfaffenberger, 1987), bee-
tles and hymenopterans (Eggleton & Belshaw, 1993), remora
fish (O’Toole, 2002), and nematodes (Giblin-Davis
et al., 2003). Like other forms of symbioses, a common theme
among these studies is that host switching by phoronts has
been a primary mechanism behind the colonization of new
dispersal hosts. In the case of phoretic parasites, this may also
be a stepping stone to parasitizing new hosts (see also Clay-
ton & Johnson, 2003; DiBlasi ¢t al., 2018).

In general, the potential for host switching is driven by the
mnteraction of ecological opportunity to encounter new
potential hosts and the inherent capabilities of parasites
(or in this case phoronts) to use new hosts (Agosta &
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Klemens, 2008; Agosta ¢t al., 2010; Araujo et al., 2015;
Brooks et al., 2019). The formation of new species associa-
tions through host switching is one manifestation of ecologi-
cal fitting (sensu Janzen, 1985), which is the process where
organisms respond or ‘fit’ to novel conditions, such as
encountering a new potential host, using inherited traits they
already possess (Agosta & Klemens, 2008). Compared to par-
asites, phoronts appear to have fairly superficial relationships
with their dispersal hosts: they use them as a vehicle for trans-
port, but are typically not directly dependent on them for
energy. In addition, the kinds of morphological traits used
by phoronts to attach to dispersal hosts (e.g. claws, shells,
mouthparts) could make it relatively easy for new hosts to
be exploited. For these reasons, it seems likely that host
switching by ecological fitting is a common phenomenon in
the evolution of phoretic systems, especially during periods
of widespread environmental change. This prediction is sup-
ported by the relatively few studies on the evolution of host
assoclations in the phoretic systems cited above. It is also sup-
ported by experiments showing that phoronts can use a wider
variety of dispersal hosts than observed in nature (Palevsky
et al., 2001; Nehring, Miiller, & Steinmetz, 2017) and obser-
vations of native phoronts using recently introduced species
as dispersal hosts (e.g. mites on introduced millipedes in
Europe and North America; Farfan & Klompen, 2012). Host
switching has also been implicated as a means for the inciden-
tal introduction of phoretic species to new geographic areas
with potential impacts on humans and native species
(Okabe et al., 2010; Farfan & Klompen, 2012; Shaw, 2012;
Giblin-Davis et al., 2013). For example, the pinewood nema-
tode Bursaphelenchus xylophilus, which causes pine-wilt disease,
was introduced to Japan around 1905. After switching to a
native dispersal host, the longhorn beetle Monochamus alterna-
tus Hope, the nematode caused massive tree mortality
throughout Japan and spread across Asia and Europe
(Giblin-Davis et al., 2013). In sum, the potential for host
switching in phoretic systems seems high. However, more
studies are needed at both ecological (e.g. experiments on
the ability of phoronts to use alternative hosts) and evolution-
ary (e.g. co-phylogenetic studies of phoretic associations)
scales to understand this potential and the general dynamics
of how phoretic systems evolve.

(4) A precursor to parasitism?

It has long been thought that phoretic associations may have
been a precursor to the evolution of parasitism in some sys-
tems (Osche, 1956; Rogers & Sommerville, 1963; Houck &
OConnor, 1991; Athias-Binche & Morand, 1993;
Houck, 1994; Houck & Cohen, 1995; Blaxter, 2003;
Giblin-Davis et al., 2003; Sudhaus, 2008; Schmid-Hempel,-

2013; Crook, 2014; Petersen e al., 2015; White
et al., 2017). Phoronts are predisposed to transition from
phoretic relationships with dispersal hosts to other relation-
ships such as parasitism and mutualism. Phoretic mites and
nematodes may be especially good groups to study the tran-
sition from phoresy to parasitism (Athias-Binche &
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Morand, 1993; Houck & Cohen, 1995; Kiontke &
Sudhaus, 2006; Sudhaus, 2008). Both have a diversity of spe-
cies with free-living, parasitic, and phoretic lifestyles. For
example, in free-living nematodes, third-instar dauer larvae
are non-feeding and resistant to harsh environmental condi-
tions (McSorley, 2003). In phoretic species, this stage is used
for dispersal, while in parasitic species the same stage is used
for infection (Sudhaus, 2008; Ogawa e al., 2009;
Crook, 2014). The dauer hypothesis suggests that phoretic
larvae were an evolutionary precursor to parasitism
(Rogers & Sommerville, 1963; Crook, 2014).

In cases where phoresy has beena precursor to parasitism,
it seems likely the transition begins with the phoront simply
attaching to the host for dispersal but then later developing
the ability to exploit host resources for growth and reproduc-
tion. The aforementioned mite H. cooreman is perhaps an
example of this transition. It was first thought to be phoretic
on beetles, but was then found to be a parasite that consumes
host haemolymph (Houck & Cohen, 1995). Further experi-
ments suggested that the host beetles also acquire nutrients
from the phoretic mites, which led Holte ¢ al. (2001) to
hypothesize an evolutionary transition from phoresy to para-
sitism to mutualism in this system. In phoretic nematodes,
necromeny may have been key in the transition to parasitism
for some species (Kiontke & Sudhaus, 2006; Hong &
Sommer, 20066; Dieterich & Sommer, 2009; Luong &
Mathot, 2019). Necromeny is the process in which dauer lar-
vae of nematodes attach to a live host and, after the host dies
(from non-phoretic causes), feed on microbes on the decaying
carcass. Parasitism could follow if the nematodes begin to
obtain resources from the living host (Dieterich &
Sommer, 2009). To our knowledge, no studies have explicitly
tested this hypothesis.

Two major mechanisms are thought to facilitate the evolu-
tionary transition from phoretic interactions to parasitism and
other forms of symbioses. First, dispersing on or in another ani-
mal can provide a relatively stable microenvironment, from
which may emerge selection for more permanent or obligate
phoront-host interactions (Hairston & Bohonak, 1998;
Schmid-Hempel, 2013). Second, dispersing on or in another
animal can provide access to a consistent and predictable sup-
ply of nutrients, which again may create selection for more
obligate relationships such as parasitism (Houck, 1994).

A stable microenvironment and predictable resources are
benefits that can also be offered by nest commensalism,
where organisms live inside the nests of other animals. Nest
commensals, such as beetles, pseudoscorpions, and mites
experience stable microclimates and predictable sources of
food such as ectoparasites and dead skin (Ashe &
Timm, 1987; Proctor & Owens, 2000; Roubik, 2006).
Phoresy may have evolved in some nest commensals in the
context of colonizing new nests (Ashe & Timm, 1987). Alter-
natively, nest commensalism could theoretically arise from
phoresy, where initial exposure to nests is a by-product of
phoretic dispersal. Groups including phoretic beetles and
pseudoscorpions that live in host nests may be especially use-
ful to test these ideas.
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V. OUTSTANDING QUESTIONS AND FUTURE
DIRECTIONS

Some major outstanding questions about phoresy to emerge
from our review are listed below.

()

(2)
(3)

(4)
S

What are the fundamental traits, behaviours, and cues
involved in the different stages of phoresy discussed in
Section IL.1?

To what extent does the observed diversity of phoretic
animals reflect actual diversity?

Are phoronts mainly commensals, with little to no
impact on their dispersal hosts, or do they have more
impacts on their hosts than is generally assumed?

To what degree and how often are the lines between
phoresy and parasitism/mutualism blurred?

What is the role of coevolution in phoretic systems? If
phoronts are mainly commensals, then the potential
for coevolution is limited, but if they have more effects
on hosts than generally assumed, then coevolutionary
dynamics become more likely.

To what degree are phoronts host specific? How read-
ily do phoronts switch hosts? What is the role of host
switching in the evolution of phoretic associations? In
parasite—host systems, host switching (as opposed to
cospeciating in tandem with hosts) is a frequent and
widespread mechanism behind the formation of these
interactions (and examples of cospeciation are actually
rare) (for an extensive review of this subject see Brooks
et al., 2019). We would expect comparable or even
greater rates of host switching in phoretic systems.
How often has phoresy been a precursor to parasitism
or mutualism (and possibly vice versa) in the evolution of
these associations?

In closing, to address the questions outlined above and to
understand phoresy better in general we encourage research
in the following areas:

(1)

2)

Continued and intensified exploration of the taxonomic and func-
tional dwersity of phoretic interactions, including mechanisms of
attachment, transport, and delachment from the host. Presum-
ably, one reason phoretic interactions are relatively
understudied 1s-because-of the difficulty of observing
the behaviour of small organisms in the field and track-
ing them over large distances. Therefore, inventive
approaches will. be needed to begin to gain a better
understanding of the basic biology of phoretic dispersal.
In the laboratory, more functional studies of a greater
diversity of phoronts and their hosts are needed to eluci-
date the mechanisms used to disperse, but obtaining a
better understanding of the ecological and evolutionary
consequences of dispersing will require some highly cre-
ative manipulations in the field.

Phylogenetic studies of macroevolutionary relationships between phor-
onts and hosts. Compared to parasite—host, insect—plant,
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and other forms of symbioses (see Nylin et al., 2018;
Brooks et al., 2019), there has been relatively little work
done using modern systematic phylogenetics to build
phylogenies for phoronts and their hosts. Not only are
these phylogenies needed to help understand the evolu-
tion of phoresy within certain groups (see point 4 below),
but also to compare patterns between phoronts and their
hosts that can be indicative of phenomena such as host
switching and cospeciation (for an extensive review see
Brooks & McLennan, 2002). As stated previously, we
expect host switching to be common (and cospeciation
to be rare) in the evolution of phoretic associations.

(3) Assessment of the potential for host switching and the limuts of host

e

=

spectficity i phoretic systems. While phylogenetic analysis
may provide insights into the frequency of host switch-
ing in the evolutionary history of phoretic associations,
experiments are needed to gain a better understanding
of the potential for phoronts to use new hosts and the
degree to which realized host range (observed host
use) s a subset of fundamental host range (Agosta
et al., 2010; Brooks et al., 2019). In particular, more
experiments like those of Palevsky et al. (2001) and Nehr-
ing e al. (2017) testing the abilities of phoronts to use
novel hosts are needed, especially with species closely
related to and/or found in similar habitats to their
actual hosts. Such experiments are relatively common
in the literature on plant-feeding insects (e.g. Janz,
Nyblom, & Nylin, 2001; Cipollini & Peterson, 2018;
Peterson et al., 2020) and can provide a roadmap for
how to study this in the context of phoresy.

Tests of long-standing hypotheses that phoresy can be a precursor
lo parasitism and other forms of symbioses, and possibly vice
versa. Strong inferences about the direction and con-
text of evolutionary transitions (e.g. from phoresy to
parasitism) require phylogenies to map the characters
of interest (Brooks & McLennan, 2002). So far, charac-
ter mapping has been carried out to only a limited
degree in the context of the evolution of phoresy
(e.g. Eggleton & Belshaw, 1993; O’Toole, 2002), and
in the transition from phoresy to parasitism
(e.g. Blaxter, 2003; Kiontke & Sudhaus, 2006).
Research from the perspective of dispersal hosts regarding both pos-
ttive and negative consequences of phoretic interactions. An exam-
ple is the clever experiment by Gudowska e al. (2016)
that manipulated phoront loads to study effects on dis-
persal host respiration. Challenging the assumption that
phoronts are generally commensals with little or no
impacts on their dispersal hosts will be critical to devel-
oping a better understanding of the ecological and evo-
lutionary context of these interactions.

VI. CONCLUSIONS

(1) Many animals are small, have limited mobility, or have

patchy or ephemeral habitats and resources. To
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disperse, some animals have evolved a phoretic lifestyle,
taking advantage of other animals for a ‘free ride’. The
potential advantages of this ‘free ride’ include reduced
energetic and time costs, directed dispersal to specific
habitats or resources, and increased protection from
natural enemies and abiotic conditions.

(2) Phoretic dispersal is analogous to zoochory in plants
and has been documented in at least 13 animal phyla,
25 classes, and 60 orders. A broad definition includes
a spectrum of animal behaviours, from phoronts that
actively search for or attract dispersal hosts to those that
passively sit-and-wait for hosts to make physical contact.

(3) Animals that engage in phoresy use a wide variety of mor-
phological and behavioural traits for locating, attaching
to, and detaching from dispersal hosts. However, the exact
mechanisms and specific chemical, visual, auditory, or
tactile cues used for these activities are largely unknown.

(4) The majority of known animal phoronts are terrestrial
arthropods. It is unclear if known diversity reflects
actual diversity or a sampling artefact emerging from
the relative ease of documenting these interactions in
terrestrial environments. It seems likely that the diver-
sity of phoretic interactions is largely undocumented in
all environments, especially the marine environment,
which is more difficult to study and is likely under-
represented in the current literature.

(5) In closing, we encourage rescarch in the following
areas: continued and intensified exploration of the tax-
onomic and functional diversity of phoretic interactions,
including mechanisms of attachment, transport, and
detachment from the host; phylogenetic studies of macro-
evolutionary relationships between phoronts and hosts;
assessment of the role of host switching and host specificity
in phoretic systems; tests of long-standing hypotheses that
phoresy can be a precursor to parasitism and other forms
of symbiosis, and possibly vice versa; and research from the
perspective of dispersal hosts regarding both positive and
negative consequences of phoretic interactions.
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