DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst

Abstract

Electrocatalytic ammonia oxidation (AO) mediated by iron(II) tris(2-pyridylmethyl)amine (TPA) bis-ammine triflate, [(TPA)Fe(NH3)2]OTf2, is reported. Interest in (electro)catalytic AO is growing rapidly, and this report adds a first-row transition metal (iron) complex to the known Ru catalysts recently reported. The featured system is well behaved and has been studied in detail by electrochemical methods. Cyclic voltammetry experiments in the presence of ammonia indicate an onset potential corresponding to ammonia oxidation at 0.7 V vs Fc/Fc+. Controlled potential coulometry (CPC) at an applied bias of 1.1 V confirms the generation of 16 equiv of N2 with a Faradaic efficiency for N2 of ~80%. Employing 15NH3 yields exclusively 30N2, demonstrating the conversion of ammonia to N2. A suite of electrochemical studies is consistent with an initial EC step that generates an FeIII–NH2 intermediate (at 0.4 V) followed by an anodically shifted catalytic wave. The data indicate a rate-determining step that is first order in both [Fe] and [NH3] and point to a fast catalytic rate (kobs) of ~107 M–1·s–1 as computed by foot of the wave analysis (FOWA).

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. California Institute of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Gordon and Betty Moore Foundation (GBMF); California Institute of Technology (CalTech)
OSTI Identifier:
1708895
Grant/Contract Number:  
SC0019136
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 9; Journal Issue: 11; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ammonia oxidation; iron catalysis; solar fuels; electrocatalysis; low-carbon fuels

Citation Formats

Zott, Michael D., Garrido-Barros, Pablo, and Peters, Jonas C. Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst. United States: N. p., 2019. Web. doi:10.1021/acscatal.9b03499.
Zott, Michael D., Garrido-Barros, Pablo, & Peters, Jonas C. Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst. United States. https://doi.org/10.1021/acscatal.9b03499
Zott, Michael D., Garrido-Barros, Pablo, and Peters, Jonas C. Thu . "Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst". United States. https://doi.org/10.1021/acscatal.9b03499. https://www.osti.gov/servlets/purl/1708895.
@article{osti_1708895,
title = {Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst},
author = {Zott, Michael D. and Garrido-Barros, Pablo and Peters, Jonas C.},
abstractNote = {Electrocatalytic ammonia oxidation (AO) mediated by iron(II) tris(2-pyridylmethyl)amine (TPA) bis-ammine triflate, [(TPA)Fe(NH3)2]OTf2, is reported. Interest in (electro)catalytic AO is growing rapidly, and this report adds a first-row transition metal (iron) complex to the known Ru catalysts recently reported. The featured system is well behaved and has been studied in detail by electrochemical methods. Cyclic voltammetry experiments in the presence of ammonia indicate an onset potential corresponding to ammonia oxidation at 0.7 V vs Fc/Fc+. Controlled potential coulometry (CPC) at an applied bias of 1.1 V confirms the generation of 16 equiv of N2 with a Faradaic efficiency for N2 of ~80%. Employing 15NH3 yields exclusively 30N2, demonstrating the conversion of ammonia to N2. A suite of electrochemical studies is consistent with an initial EC step that generates an FeIII–NH2 intermediate (at 0.4 V) followed by an anodically shifted catalytic wave. The data indicate a rate-determining step that is first order in both [Fe] and [NH3] and point to a fast catalytic rate (kobs) of ~107 M–1·s–1 as computed by foot of the wave analysis (FOWA).},
doi = {10.1021/acscatal.9b03499},
journal = {ACS Catalysis},
number = 11,
volume = 9,
place = {United States},
year = {Thu Sep 19 00:00:00 EDT 2019},
month = {Thu Sep 19 00:00:00 EDT 2019}
}

Works referenced in this record:

Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions
journal, July 2019


Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf
journal, February 2019


A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
journal, May 2018

  • Cui, Xiaoyang; Tang, Cheng; Zhang, Qiang
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800369

Ammonia for power
journal, November 2018


Review—Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells
journal, January 2018

  • Adli, Nadia Mohd; Zhang, Hao; Mukherjee, Shreya
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0191815jes

Ammonia–Oxygen Fuel Cell
journal, February 1968

  • Cairns, E. J.; Simons, E. L.; Tevebaugh, A. D.
  • Nature, Vol. 217, Issue 5130
  • DOI: 10.1038/217780a0

Ammonia as a Suitable Fuel for Fuel Cells
journal, August 2014


Recent advances in electrocatalysts for electro-oxidation of ammonia
journal, January 2013

  • Zhong, C.; Hu, W. B.; Cheng, Y. F.
  • J. Mater. Chem. A, Vol. 1, Issue 10
  • DOI: 10.1039/C2TA00607C

Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts
journal, August 1999

  • Gang, Lu; van Grondelle, J.; Anderson, B. G.
  • Journal of Catalysis, Vol. 186, Issue 1
  • DOI: 10.1006/jcat.1999.2524

Evidence for Decoupled Electron and Proton Transfer in the Electrochemical Oxidation of Ammonia on Pt(100)
journal, January 2016

  • Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 3
  • DOI: 10.1021/acs.jpclett.5b02556

A review on direct methanol fuel cells–In the perspective of energy and sustainability
journal, February 2015

  • Joghee, Prabhuram; Malik, Jennifer Nekuda; Pylypenko, Svitlana
  • MRS Energy & Sustainability, Vol. 2, Issue 1
  • DOI: 10.1557/mre.2015.4

Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments: Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments
journal, February 2018

  • Stucke, Nadja; Flöser, Benedikt M.; Weyrich, Thomas
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 12
  • DOI: 10.1002/ejic.201701326

Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions
journal, January 2018


Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
journal, December 2010

  • Arashiba, Kazuya; Miyake, Yoshihiro; Nishibayashi, Yoshiaki
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.906

Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p K a Effects and Demonstrating Electrocatalysis
journal, April 2018

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • Journal of the American Chemical Society, Vol. 140, Issue 19
  • DOI: 10.1021/jacs.8b02335

Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water
journal, April 2019


Recent Developments in Nitrogen Reduction Catalysts: A Virtual Issue
journal, December 2018


Alternative Bioenergy: Updates to and Challenges in Nitrification Metalloenzymology
journal, March 2018


Anammox Biochemistry: a Tale of Heme c Proteins
journal, December 2016


Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications
journal, December 2010

  • Warren, Jeffrey J.; Tronic, Tristan A.; Mayer, James M.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100085k

Oxidation of pentaamminecarbonylosmium(2+) to .mu.-dinitrogen-bis(cis-tetraamminecarbonylosmium)(4+)
journal, August 1979


Oxidation of coordinated ammonia to nitrate
journal, September 1981

  • Thompson, Mark S.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 103, Issue 18
  • DOI: 10.1021/ja00408a054

Formation of Dinitrogen by Oxidation of [(bpy) 2 (NH 3 )RuORu(NH 3 )(bpy) 2 ] 4+
journal, January 1996

  • Ishitani, Osamu; White, Peter S.; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 35, Issue 8
  • DOI: 10.1021/ic9512643

Dinitrogen Formation by Oxidative Intramolecular N---N Coupling in cis,cis- [(bpy) 2 (NH 3 )RuORu(NH 3 )(bpy) 2 ] 4+
journal, March 2003

  • Ishitani, Osamu; Ando, Emiko; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 42, Issue 5
  • DOI: 10.1021/ic026096a

Homogeneous electrocatalytic oxidation of ammonia to N 2 under mild conditions
journal, January 2019

  • Habibzadeh, Faezeh; Miller, Susanne L.; Hamann, Thomas W.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 8
  • DOI: 10.1073/pnas.1813368116

Highly Electrophilic (Salen)ruthenium(VI) Nitrido Complexes
journal, January 2004

  • Man, Wai-Lun; Tang, Tsz-Man; Wong, Tsz-Wing
  • Journal of the American Chemical Society, Vol. 126, Issue 2
  • DOI: 10.1021/ja037899f

Synthesis and Reactivity of a Transient, Terminal Nitrido Complex of Rhodium
journal, November 2013

  • Scheibel, Markus G.; Wu, Yanlin; Stückl, A. Claudia
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja409764j

Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species
journal, July 2015


Coupling of terminal iridium nitrido complexes
journal, January 2016

  • Abbenseth, Josh; Finger, Markus; Würtele, Christian
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 4
  • DOI: 10.1039/C5QI00267B

Tuning Electronic Structure To Control Manganese Nitride Activation
journal, November 2016

  • Clarke, Ryan M.; Storr, Tim
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b09576

Coordination-induced weakening of ammonia, water, and hydrazine X–H bonds in a molybdenum complex
journal, November 2016


Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex
journal, February 2017

  • Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00002

Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex
journal, August 2017

  • Keener, Megan; Peterson, Madeline; Hernández Sánchez, Raúl
  • Chemistry - A European Journal, Vol. 23, Issue 48
  • DOI: 10.1002/chem.201703153

Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction
journal, June 2019

  • Bhattacharya, Papri; Heiden, Zachariah M.; Chambers, Geoffrey M.
  • Angewandte Chemie International Edition, Vol. 58, Issue 34
  • DOI: 10.1002/anie.201903221

Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen
journal, July 2019


Efficient water oxidation catalysts based on readily available iron coordination complexes
journal, September 2011

  • Fillol, Julio Lloret; Codolà, Zoel; Garcia-Bosch, Isaac
  • Nature Chemistry, Vol. 3, Issue 10
  • DOI: 10.1038/nchem.1140

Homogeneous Oxidation of Water by Iron Complexes with Macrocyclic Ligands
journal, April 2014

  • Zhang, Biaobiao; Li, Fei; Yu, Fengshou
  • Chemistry - An Asian Journal, Vol. 9, Issue 6
  • DOI: 10.1002/asia.201400066

Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex
journal, April 2014

  • Coggins, Michael K.; Zhang, Ming-Tian; Vannucci, Aaron K.
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja412822u

Iron Complexes of Square Planar Tetradentate Polypyridyl-Type Ligands as Catalysts for Water Oxidation
journal, October 2015

  • Wickramasinghe, Lanka D.; Zhou, Rongwei; Zong, Ruifa
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b08856

On decomposition, degradation, and voltammetric deviation: the electrochemist's field guide to identifying precatalyst transformation
journal, January 2019

  • Lee, Katherine J.; McCarthy, Brian D.; Dempsey, Jillian L.
  • Chemical Society Reviews, Vol. 48, Issue 11
  • DOI: 10.1039/C8CS00851E

Electrochemically Driven Water-Oxidation Catalysis Beginning with Six Exemplary Cobalt Polyoxometalates: Is It Molecular, Homogeneous Catalysis or Electrode-Bound, Heterogeneous CoO x Catalysis?
journal, September 2018

  • Folkman, Scott J.; Soriano-Lopez, Joaquin; Galán-Mascarós, José Ramón
  • Journal of the American Chemical Society, Vol. 140, Issue 38
  • DOI: 10.1021/jacs.8b06303

Magnetostructural Relationship in the Spin-Crossover Complex t-{Fe(abpt) 2 [N(CN) 2 ] 2 }: Polymorphism and Disorder Phenomenon
journal, December 2008

  • Sheu, Chou-Fu; Pillet, Sébastien; Lin, Yen-Chen
  • Inorganic Chemistry, Vol. 47, Issue 23
  • DOI: 10.1021/ic800879c

The commensurate modulated structure of the metastable state in spin crossover complex [Fe(abpt)2(NCS)2]
journal, January 2009

  • Sheu, Chou-Fu; Chen, Szu-Miao; Wang, Shih-Chi
  • Chemical Communications, Issue 48
  • DOI: 10.1039/b910378c

Potential-sweep voltammetry: General theory of chemical polarization
journal, June 1967


Synthesis of a First-Row Transition Metal Parent Amido Complex and Carbon Monoxide Insertion into the Amide N−H Bond
journal, July 2003

  • Fox, Daniel J.; Bergman, Robert G.
  • Journal of the American Chemical Society, Vol. 125, Issue 30
  • DOI: 10.1021/ja035707a

Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts
journal, June 2014


Homogeneous redox catalysis of electrochemical reactions
journal, October 1980

  • Andrieux, C. P.; Blocman, C.; Dumas-Bouchiat, J. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 113, Issue 1
  • DOI: 10.1016/S0022-0728(80)80508-0

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis
journal, November 2016


A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Works referencing / citing this record:

Triple hydrogen atom abstraction from Mn–NH 3 complexes results in cyclophosphazenium cations
journal, January 2019

  • Cook, Brian J.; Johnson, Samantha I.; Chambers, Geoffrey M.
  • Chemical Communications, Vol. 55, Issue 93
  • DOI: 10.1039/c9cc06915a