DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes

Abstract

Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. Furthermore, we end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. California Institute of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1698026
Grant/Contract Number:  
SC0019136
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Reviews
Additional Journal Information:
Journal Volume: 120; Journal Issue: 12; Journal ID: ISSN 0009-2665
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Reaction mechanisms; Ligands; Ammonia; Catalysts; Nitrogen

Citation Formats

Chalkley, Matthew J., Drover, Marcus W., and Peters, Jonas C. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. United States: N. p., 2020. Web. doi:10.1021/acs.chemrev.9b00638.
Chalkley, Matthew J., Drover, Marcus W., & Peters, Jonas C. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. United States. https://doi.org/10.1021/acs.chemrev.9b00638
Chalkley, Matthew J., Drover, Marcus W., and Peters, Jonas C. Thu . "Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes". United States. https://doi.org/10.1021/acs.chemrev.9b00638. https://www.osti.gov/servlets/purl/1698026.
@article{osti_1698026,
title = {Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes},
author = {Chalkley, Matthew J. and Drover, Marcus W. and Peters, Jonas C.},
abstractNote = {Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. Furthermore, we end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.},
doi = {10.1021/acs.chemrev.9b00638},
journal = {Chemical Reviews},
number = 12,
volume = 120,
place = {United States},
year = {Thu Apr 30 00:00:00 EDT 2020},
month = {Thu Apr 30 00:00:00 EDT 2020}
}

Works referenced in this record:

Global Population and the Nitrogen Cycle
journal, July 1997


Catalytic Synthesis of Ammonia—A “Never-Ending Story”?
journal, May 2003


The Evolution and Future of Earth’s Nitrogen Cycle
journal, October 2010

  • Canfield, Donald E.; Glazer, Alexander N.; Falkowski, Paul G.
  • Science, Vol. 330, Issue 6001
  • DOI: 10.1126/science.1186120

Progress in the Electrochemical Synthesis of Ammonia
journal, May 2017


Prospects and Challenges for Solar Fertilizers
journal, July 2019


Ammonia for power
journal, November 2018


Mechanism of Molybdenum Nitrogenase
journal, January 1996

  • Burgess, Barbara K.; Lowe, David J.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr950055x

Structure−Function Relationships of Alternative Nitrogenases
journal, January 1996


Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor
journal, November 2011


Nitrogenase MoFe-Protein at 1.16 A Resolution: A Central Ligand in the FeMo-Cofactor
journal, September 2002


Structural Basis of Biological Nitrogen Fixation
journal, January 1996

  • Howard, James B.; Rees, Douglas C.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr9500545

Recent advances in the chemistry of nitrogen fixation
journal, December 1978

  • Chatt, Joseph.; Dilworth, Jonathan R.; Richards, Raymond L.
  • Chemical Reviews, Vol. 78, Issue 6
  • DOI: 10.1021/cr60316a001

CHEMISTRY: So That's How It's Done--Maybe
journal, July 2003


Molybdenum does it again
journal, January 2011


Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage
journal, January 2014

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Yang, Zhi-Yong
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400641x

Nitrogen fixation in solution
journal, October 1995


Recent Advances in the Chemistry of Dinitrogen Complexes
journal, June 1995

  • Hidai, Masanobu.; Mizobe, Yasushi.
  • Chemical Reviews, Vol. 95, Issue 4
  • DOI: 10.1021/cr00036a008

Dinitrogen Coordination Chemistry:  On the Biomimetic Borderlands
journal, February 2004

  • MacKay, Bruce A.; Fryzuk, Michael D.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020610c

Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine
journal, January 2010

  • Hazari, Nilay
  • Chemical Society Reviews, Vol. 39, Issue 11
  • DOI: 10.1039/b919680n

Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron
journal, May 2013

  • MacLeod, K. Cory; Holland, Patrick L.
  • Nature Chemistry, Vol. 5, Issue 7
  • DOI: 10.1038/nchem.1620

Developing more sustainable processes for ammonia synthesis
journal, September 2013

  • Tanabe, Yoshiaki; Nishibayashi, Yoshiaki
  • Coordination Chemistry Reviews, Vol. 257, Issue 17-18
  • DOI: 10.1016/j.ccr.2013.02.010

Molecular Catalysts for N 2 Reduction: State of the Art, Mechanism, and Challenges
journal, September 2017


Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments: Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments
journal, February 2018

  • Stucke, Nadja; Flöser, Benedikt M.; Weyrich, Thomas
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 12
  • DOI: 10.1002/ejic.201701326

Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions
journal, January 2018


The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen
journal, December 1996

  • Pickett, Christopher J.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 1, Issue 6
  • DOI: 10.1007/s007750050099

The origins of the unit of nitrogen fixation at the University of Sussex
journal, July 1998


Nitrogen fixation
journal, January 1972


Dinitrogen complexes of the transition metals
journal, February 1973

  • Allen, A. D.; Harris, R. O.; Loescher, B. R.
  • Chemical Reviews, Vol. 73, Issue 1
  • DOI: 10.1021/cr60281a002

Dinitrogen-Transition Metal Complexes: Synthesis, Properties, and Significance
journal, October 1974

  • Sellmann, Dieter
  • Angewandte Chemie International Edition in English, Vol. 13, Issue 10
  • DOI: 10.1002/anie.197406391

A celebration of inorganic lives
journal, April 1991


Current status of structure function relationships of vanadium nitrogenase
journal, February 2003


Nitrogenopentammineruthenium(II) complexes
journal, January 1965


Ruthenium complexes containing molecular nitrogen
journal, October 1967

  • Allen, Albert Derrick.; Bottomley, F.; Harris, Ronald Osborne.
  • Journal of the American Chemical Society, Vol. 89, Issue 22
  • DOI: 10.1021/ja00998a016

586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes
journal, January 1953


Bond Hybridization And Structure In The Metal Carbonyls
journal, February 1956

  • Cable, Joe W.; Sheline, Raymond K.
  • Chemical Reviews, Vol. 56, Issue 1
  • DOI: 10.1021/cr50007a001

New Nitrogenase Model for Reduction of Molecular Nitrogen in Protonic Media
journal, June 1971

  • Shilov, A.; Denisov, N.; Efimov, O.
  • Nature, Vol. 231, Issue 5303
  • DOI: 10.1038/231460a0

Mechanism of electron transfer in dinitrogen fixation in the system Ti(III)−Mo(III)
journal, September 1975

  • Denisov, N. T.; Shilov, A. E.; Shuvalova, N. I.
  • Reaction Kinetics and Catalysis Letters, Vol. 2, Issue 3
  • DOI: 10.1007/BF02068196

Molybdenum complexes as catalysts for the reduction of molecular nitrogen in protic media
journal, June 1975

  • Shilov, A. E.; Shilova, A. K.; Vorontsova, T. A.
  • Reaction Kinetics and Catalysis Letters, Vol. 3, Issue 2
  • DOI: 10.1007/BF02187506

The electrochemical properties of nitrogen-fixating Mo(III) and the reduction of Mo(V) in alkaline methanolic media influenced by Mg2+ ions
journal, January 1986

  • Pospíšil, L.; Didenko, L. P.; Shilov, A. E.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 197, Issue 1-2
  • DOI: 10.1016/0022-0728(86)80156-5

Molybd�n als Katalysator bei der biologischen Stickstoffbindung
journal, January 1930


The reduction of ligating dinitrogen to yield a ligating N2H2 moiety
journal, January 1972

  • Chatt, J.; Heath, G. A.; Richards, R. L.
  • Journal of the Chemical Society, Chemical Communications, Issue 18
  • DOI: 10.1039/c39720001010

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
journal, December 2010

  • Arashiba, Kazuya; Miyake, Yoshihiro; Nishibayashi, Yoshiaki
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.906

Evaluating Molecular Cobalt Complexes for the Conversion of N 2 to NH 3
journal, May 2015


Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands
journal, August 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Tanaka, Hiromasa
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606090

Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes
journal, November 2017

  • Fajardo, Javier; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 45
  • DOI: 10.1021/jacs.7b10204

Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine-Titanium Complex
journal, April 2018

  • Doyle, Laurence R.; Wooles, Ashley J.; Jenkins, Lucy C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 21
  • DOI: 10.1002/anie.201802576

Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes
journal, April 2018

  • Sekiguchi, Yoshiya; Arashiba, Kazuya; Tanaka, Hiromasa
  • Angewandte Chemie International Edition, Vol. 57, Issue 29
  • DOI: 10.1002/anie.201802310

Molybdenum in nitrogen fixation
journal, May 1974


The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment
journal, January 1975

  • Chatt, J.; Pearman, A. J.; Richards, R. L.
  • Nature, Vol. 253, Issue 5486
  • DOI: 10.1038/253039b0

Molybdenum( VI ) and molybdenum( V ) nitrido-complexes and a µ-nitrido-molybdenumrhenium complex
journal, January 1974

  • Chatt, Joseph; Dilworth, Jonathan R.
  • J. Chem. Soc., Chem. Commun., Vol. 0, Issue 13
  • DOI: 10.1039/C39740000517

Diazene-N-(di-imide) and hydrazido-(2–)N-(aminoimido) complexes: the addition of acids to dinitrogen complexes
journal, January 1974

  • Chatt, Joseph; Heath, Graham A.; Richards, Raymond L.
  • J. Chem. Soc., Dalton Trans., Issue 19
  • DOI: 10.1039/DT9740002074

Conversion of dinitrogen in its molybdenum and tungsten complexes into ammonia and possible relevance to the nitrogenase reaction
journal, January 1977

  • Chatt, Joseph; Pearman, Alan J.; Richards, Raymond L.
  • Journal of the Chemical Society, Dalton Transactions, Issue 19
  • DOI: 10.1039/dt9770001852

Hydrazido(2–)-complexes of molybdenum and tungsten formed from dinitrogen complexes by protonation and ligand exchange
journal, January 1978

  • Chatt, Joseph; Pearman, Alan J.; Richards, Raymond L.
  • J. Chem. Soc., Dalton Trans., Issue 12
  • DOI: 10.1039/DT9780001766

The mechanism of the secondary alkylation of dinitrogen and the relationship between structure and reactivity in the alkylation of co-ordinated dinitrogen
journal, January 1980

  • Chatt, Joseph; Hussain, Wasif; Leigh, G. Jeffery
  • Journal of the Chemical Society, Chemical Communications, Issue 21
  • DOI: 10.1039/c39800001024

Hydrazido(2–)-complexes as intermediates in the conversion of ligating dinitrogen into ammonia and hydrazine
journal, January 1981

  • Anderson, Stewart N.; Fakley, Martin E.; Richards, Raymond L.
  • J. Chem. Soc., Dalton Trans., Issue 9
  • DOI: 10.1039/DT9810001973

The preparation and oxidation, substitution, and protonation reactions of trans-bis(dinitrogen)tetrakis(methyldiphenylphosphine)tungsten
journal, January 1977

  • Chatt, Joseph; Pearman, Alan J.; Richards, Raymond L.
  • Journal of the Chemical Society, Dalton Transactions, Issue 21
  • DOI: 10.1039/dt9770002139

Diazenido-complexes of molybdenum and tungsten
journal, January 1976

  • Chatt, Joseph; Pearman, Alan J.; Richards, Raymond L.
  • Journal of the Chemical Society, Dalton Transactions, Issue 15
  • DOI: 10.1039/dt9760001520

Diazenido (iminonitrosyl) (N2H), Hydrazido(2-) (N2H2, and hydrazido(1-) (N2H3) ligands as intermediates in the reduction of ligating dinitrogen to ammonia
journal, November 1975

  • Chatt, Joseph; Pearman, Alan J.; Richards, Raymond L.
  • Journal of Organometallic Chemistry, Vol. 101, Issue 3
  • DOI: 10.1016/S0022-328X(00)92481-1

A complex of the hydrazidium (N–NH 3 + ) ligand: X-ray structure of [WCl(NNH 3 )(PMe 3 ) 4 ]Cl 2
journal, January 1987

  • Galindo, Agustin; Hills, Adrian; Hughes, David L.
  • J. Chem. Soc., Chem. Commun., Issue 24
  • DOI: 10.1039/C39870001815

Protonation reactions of dinitrogen complexes of molybdenum and tungsten with PMe3 as Co-ligand. X-Ray structure of the hydrazidium complex [WCl(NNH3)(PMe3)4] Cl2
journal, January 1990

  • Galindo, Agustin; Hills, Adrian; Hughes, David L.
  • Journal of the Chemical Society, Dalton Transactions, Issue 1
  • DOI: 10.1039/dt9900000283

Reduction of Dinitrogen to Ammonia at a Well-Protected Reaction Site in a Molybdenum Triamidoamine Complex
journal, June 2002

  • Yandulov, Dmitry V.; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 124, Issue 22
  • DOI: 10.1021/ja020186x

Diamagnetic (pentamethylcyclopentadienyl)tungsten complexes containing unsubstituted, monomethyl- or 1,1-dimethylhydrazine or -hydrazido ligands
journal, October 1992

  • Glassman, Timothy E.; Vale, Michael G.; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 114, Issue 21
  • DOI: 10.1021/ja00047a019

Mechanism of Transition-Metal-Mediated Nitrogen Fixation: Where Does the Third Proton Go?
journal, February 1995

  • Wagenknecht, Paul S.; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 117, Issue 6
  • DOI: 10.1021/ja00111a027

Synthesis and reactions of monomeric hydrazine and hydrazido complexes that contain the Cp*MoMe3 core
journal, June 1993

  • Vale, Michael G.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 32, Issue 12
  • DOI: 10.1021/ic00064a030

Cleavage of the nitrogen-nitrogen bond in a high oxidation state tungsten or molybdenum hydrazine complex and the catalytic reduction of hydrazine
journal, January 1991

  • Schrock, Richard R.; Glassman, Timothy E.; Vale, Michael G.
  • Journal of the American Chemical Society, Vol. 113, Issue 2
  • DOI: 10.1021/ja00002a079

Nitrogen Complexes as Models for Nitrogenase with Nitrogen on the Active Site
journal, February 1969

  • Chatt, J.; Richards, R. L.; Sanders, J. R.
  • Nature, Vol. 221, Issue 5180
  • DOI: 10.1038/221551b0

Preparation and characterization of two high oxidation state molybdenum dinitrogen complexes: [MoCp*Me3]2(.mu.-N2) and [MoCp*Me3](.mu.-N2)[WCp'Me3]
journal, May 1990

  • Schrock, Richard R.; Kolodziej, Richard M.; Liu, Andrew H.
  • Journal of the American Chemical Society, Vol. 112, Issue 11
  • DOI: 10.1021/ja00167a034

Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water
journal, April 2019


Catalytic N 2 -to-NH 3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET
journal, February 2017

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • ACS Central Science, Vol. 3, Issue 3
  • DOI: 10.1021/acscentsci.7b00014

Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions
journal, October 2017

  • Arashiba, Kazuya; Eizawa, Aya; Tanaka, Hiromasa
  • Bulletin of the Chemical Society of Japan, Vol. 90, Issue 10
  • DOI: 10.1246/bcsj.20170197

Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia
journal, April 2014

  • Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4737

Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts
journal, April 2015

  • Arashiba, Kazuya; Kinoshita, Eriko; Kuriyama, Shogo
  • Journal of the American Chemical Society, Vol. 137, Issue 17
  • DOI: 10.1021/jacs.5b02579

Reductive Cleavage of Dinitrogen by a Vanadium Diamidoamine Complex:  the Molecular Structures of [V(Me 3 SiN{CH 2 CH 2 NSiMe 3 } 2 )(μ-N)] 2 and K[V(Me 3 SiN{CH 2 CH 2 NSiMe 3 } 2 )(μ-N)] 2
journal, November 1999

  • Clentsmith, Guy K. B.; Bates, Vanessa M. E.; Hitchcock, Peter B.
  • Journal of the American Chemical Society, Vol. 121, Issue 44
  • DOI: 10.1021/ja9921219

Dinitrogen-Bond Cleavage in a Niobium Complex Supported by a Tridentate Aryloxide Ligand
journal, August 2002


Hydrosilylation of a Dinuclear Tantalum Dinitrogen Complex:  Cleavage of N 2 and Functionalization of Both Nitrogen Atoms
journal, March 2003

  • Fryzuk, Michael D.; MacKay, Bruce A.; Patrick, Brian O.
  • Journal of the American Chemical Society, Vol. 125, Issue 11
  • DOI: 10.1021/ja034303f

Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex
journal, February 2004

  • Pool, Jaime A.; Lobkovsky, Emil; Chirik, Paul J.
  • Nature, Vol. 427, Issue 6974
  • DOI: 10.1038/nature02274

Hydroalumination of a Dinuclear Tantalum Dinitrogen Complex:  N−N Bond Cleavage and Ancillary Ligand Rearrangement
journal, August 2005

  • MacKay, Bruce A.; Patrick, Brian O.; Fryzuk, Michael D.
  • Organometallics, Vol. 24, Issue 16
  • DOI: 10.1021/om050208z

N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex
journal, November 2011


Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex
journal, May 1995


Dinitrogen Cleavage by Three-Coordinate Molybdenum(III) Complexes:  Mechanistic and Structural Data 1
journal, January 1996

  • Laplaza, Catalina E.; Johnson, Marc J. A.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 118, Issue 36
  • DOI: 10.1021/ja960574x

N2 Cleavage by Three-Coordinate Group 6 Complexes. W(III) Complexes Would Be Better Than Mo(III) Complexes
journal, December 1995

  • Cui, Qiang; Musaev, Djamaladdin G.; Svensson, Mats
  • Journal of the American Chemical Society, Vol. 117, Issue 49
  • DOI: 10.1021/ja00154a052

Synthesis of Molybdenum and Tungsten Complexes That Contain Triamidoamine Ligands of the Type (C6F5NCH2CH2)3N and Activation of Dinitrogen by Molybdenum
journal, May 1994

  • Kol, Moshe; Schrock, Richard R.; Kempe, Rhett
  • Journal of the American Chemical Society, Vol. 116, Issue 10
  • DOI: 10.1021/ja00089a028

“Fixation” of Dinitrogen by Molybdenum and the Formation of a Trigonal Planar Iron−Tris[molybdenum(dinitrogen)] Complex
journal, March 1997

  • O'Donoghue, Myra B.; Zanetti, Nadia C.; Davis, William M.
  • Journal of the American Chemical Society, Vol. 119, Issue 11
  • DOI: 10.1021/ja963822y

Derivatization of Dinitrogen by Molybdenum in Triamidoamine Complexes
journal, October 1998

  • O'Donoghue, Myra B.; Davis, William M.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 37, Issue 20
  • DOI: 10.1021/ic9803513

Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents
journal, February 2003

  • Yandulov, Dmitry V.; Schrock, Richard R.; Rheingold, Arnold L.
  • Inorganic Chemistry, Vol. 42, Issue 3
  • DOI: 10.1021/ic020505l

Studies Relevant to Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum Triamidoamine Complexes
journal, February 2005

  • Yandulov, Dmitry V.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 44, Issue 4
  • DOI: 10.1021/ic040095w

First-Principles Investigation of the Schrock Mechanism of Dinitrogen Reduction Employing the Full HIPTN 3 N Ligand
journal, March 2008

  • Schenk, Stephan; Le Guennic, Boris; Kirchner, Barbara
  • Inorganic Chemistry, Vol. 47, Issue 9
  • DOI: 10.1021/ic702083p

Protonation of the Dinitrogen-Reduction Catalyst [HIPTN 3 N]Mo III Investigated by ENDOR Spectroscopy
journal, January 2011

  • Kinney, R. Adam; McNaughton, Rebecca L.; Chin, Jia Min
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102127v

Challenges in reduction of dinitrogen by proton and electron transfer
journal, January 2014

  • van der Ham, Cornelis J. M.; Koper, Marc T. M.; Hetterscheid, Dennis G. H.
  • Chem. Soc. Rev., Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00085D

Molybdenum Triamidoamine Systems. Reactions Involving Dihydrogen Relevant to Catalytic Reduction of Dinitrogen
journal, September 2009

  • Hetterscheid, Dennis G. H.; Hanna, Brian S.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 48, Issue 17
  • DOI: 10.1021/ic900468n

Alkylation of Dinitrogen in [(HIPTNCH 2 CH 2 ) 3 N]Mo Complexes (HIPT = 3,5-(2,4,6- i -Pr 3 C 6 H 2 ) 2 C 6 H 3 )
journal, August 2009

  • Kupfer, Thomas; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 131, Issue 35
  • DOI: 10.1021/ja904535f

An Fe-N 2 Complex That Generates Hydrazine and Ammonia via Fe═NNH 2 : Demonstrating a Hybrid Distal-to-Alternating Pathway for N 2 Reduction
journal, March 2016

  • Rittle, Jonathan; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b01230

Catalytic reduction of dinitrogen to ammonia at a single molybdenum center
journal, November 2006

  • Weare, W. W.; Dai, X.; Byrnes, M. J.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0602778103

A Stable Six-Coordinate Intermediate in Ammonia-Dinitrogen Exchange at Schrock's Molybdenum Catalyst
journal, May 2009

  • Schenk, Stephan; Kirchner, Barbara; Reiher, Markus
  • Chemistry - A European Journal, Vol. 15, Issue 20
  • DOI: 10.1002/chem.200802438

Terminal Iron Dinitrogen and Iron Imide Complexes Supported by a Tris(phosphino)borane Ligand
journal, January 2011

  • Moret, Marc-Etienne; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 50, Issue 9
  • DOI: 10.1002/anie.201006918

Characterization of an Fe≡N–NH 2 Intermediate Relevant to Catalytic N 2 Reduction to NH 3
journal, June 2015

  • Anderson, John S.; Cutsail, George E.; Rittle, Jonathan
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b03432

Electronic Structures of an [Fe(NNR 2 )] +/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation
journal, February 2019


Catalytic Reduction of N 2 to NH 3 by an Fe–N 2 Complex Featuring a C-Atom Anchor
journal, January 2014

  • Creutz, Sidney E.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja4114962

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand
journal, July 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12181

Experimental and Theoretical EPR Study of Jahn−Teller-Active [HIPTN 3 N]MoL Complexes (L = N 2 , CO, NH 3 )
journal, April 2010

  • McNaughton, Rebecca L.; Roemelt, Michael; Chin, Jia Min
  • Journal of the American Chemical Society, Vol. 132, Issue 25
  • DOI: 10.1021/ja1004619

EPR Study of the Low-Spin [d 3 ; S = 1 / 2 ], Jahn−Teller-Active, Dinitrogen Complex of a Molybdenum Trisamidoamine
journal, March 2007

  • McNaughton, Rebecca L.; Chin, Jia Min; Weare, Walter W.
  • Journal of the American Chemical Society, Vol. 129, Issue 12
  • DOI: 10.1021/ja068546u

Formation of {[HIPTN 3 N]Mo(III)H} by Heterolytic Cleavage of H 2 as Established by EPR and ENDOR Spectroscopy
journal, December 2009

  • Kinney, R. Adam; Hetterscheid, Dennis G. H.; Hanna, Brian S.
  • Inorganic Chemistry, Vol. 49, Issue 2
  • DOI: 10.1021/ic902006v

EPR/ENDOR and Theoretical Study of the Jahn–Teller-Active [HIPTN 3 N]Mo V L Complexes (L = N , NH)
journal, May 2017


Energetics and Mechanism of a Room-Temperature Catalytic Process for Ammonia Synthesis (Schrock Cycle): Comparison with Biological Nitrogen Fixation
journal, September 2005

  • Studt, Felix; Tuczek, Felix
  • Angewandte Chemie International Edition, Vol. 44, Issue 35
  • DOI: 10.1002/anie.200501485

Theoretical Study of Catalytic Dinitrogen Reduction under Mild Conditions
journal, December 2005

  • Reiher, Markus; Le Guennic, Boris; Kirchner, Barbara
  • Inorganic Chemistry, Vol. 44, Issue 26
  • DOI: 10.1021/ic0517568

Ligands for Dinitrogen Fixation at Schrock-Type Catalysts
journal, February 2009

  • Schenk, Stephan; Reiher, Markus
  • Inorganic Chemistry, Vol. 48, Issue 4
  • DOI: 10.1021/ic802037w

Free Reaction Enthalpy Profile of the Schrock Cycle Derived from Density Functional Theory Calculations on the Full [Mo HIPT N 3 N] Catalyst
journal, June 2015


Nitrogen Fixation under Mild Ambient Conditions: Part I—The Initial Dissociation/Association Step at Molybdenum Triamidoamine Complexes
journal, December 2005

  • Le Guennic, Boris; Kirchner, Barbara; Reiher, Markus
  • Chemistry - A European Journal, Vol. 11, Issue 24
  • DOI: 10.1002/chem.200500935

Enzymatic and catalytic reduction of dinitrogen to ammonia: Density functional theory characterization of alternative molybdenum active sites
journal, January 2005

  • Cao, Zexing; Zhou, Zhaohui; Wan, Huilin
  • International Journal of Quantum Chemistry, Vol. 103, Issue 3
  • DOI: 10.1002/qua.20492

DFT Investigation of the Potential of [H-M{(NHCH2CH2)3X}] Catalysts (M = Mo, Ru, Os; X = N, P) for the Reduction of N2 to NH3 by H2
journal, November 2006

  • Hölscher, Markus; Leitner, Walter
  • European Journal of Inorganic Chemistry, Vol. 2006, Issue 21
  • DOI: 10.1002/ejic.200600548

Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum: Theory versus Experiment
journal, June 2008

  • Schrock, Richard R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 30
  • DOI: 10.1002/anie.200705246

Sigma trans promotion effect in transition metal complexes: a manifestation of the composite nature of binding energy
journal, February 2002

  • Khoroshun, Dmitry V.; Musaev, Djamaladdin G.; Morokuma, Keiji
  • Molecular Physics, Vol. 100, Issue 4
  • DOI: 10.1080/00268970110090557

Protonation Studies of Molybdenum(VI) Nitride Complexes That Contain the [2,6-(ArNCH 2 ) 2 NC 5 H 3 ] 2– Ligand (Ar = 2,6-Diisopropylphenyl)
journal, February 2019


Synthesis of DiamidoPyrrolyl Molybdenum Complexes Relevant to Reduction of Dinitrogen to Ammonia
journal, September 2010

  • Chin, J. M.; Schrock, R. R.; Müller, P.
  • Inorganic Chemistry, Vol. 49, Issue 17
  • DOI: 10.1021/ic100856n

Synthesis of [(DPPNCH 2 CH 2 ) 3 N] 3− Molybdenum Complexes (DPP = 3,5-(2,5-Diisopropylpyrrolyl) 2 C 6 H 3 ) and Studies Relevant to Catalytic Reduction of Dinitrogen
journal, June 2010

  • Reithofer, Michael R.; Schrock, Richard R.; Müller, Peter
  • Journal of the American Chemical Society, Vol. 132, Issue 24
  • DOI: 10.1021/ja1008213

Molybdenum Complexes that Contain a Calix[6]azacryptand Ligand as Catalysts for Reduction of N 2 to Ammonia
journal, December 2018


Synthesis of [(HIPTNCH 2 CH 2 ) 3 N]V Compounds (HIPT = 3,5-(2,4,6- i -Pr 3 C 6 H 2 ) 2 C 6 H 3 ) and an Evaluation of Vanadium for the Reduction of Dinitrogen to Ammonia
journal, November 2006

  • Smythe, Nathan C.; Schrock, Richard R.; Müller, Peter
  • Inorganic Chemistry, Vol. 45, Issue 23
  • DOI: 10.1021/ic061554r

Reduction of Dinitrogen to Ammonia Catalyzed by Molybdenum Diamido Complexes
journal, June 2017

  • Wickramasinghe, Lasantha A.; Ogawa, Takaya; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 139, Issue 27
  • DOI: 10.1021/jacs.7b04800

Synthesis and Protonation of Molybdenum– and Tungsten–Dinitrogen Complexes Bearing PNP-Type Pincer Ligands
journal, February 2012

  • Arashiba, Kazuya; Sasaki, Kouitsu; Kuriyama, Shogo
  • Organometallics, Vol. 31, Issue 5
  • DOI: 10.1021/om300011z

Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex
journal, January 2013

  • Arashiba, Kazuya; Kuriyama, Shogo; Nakajima, Kazunari
  • Chemical Communications, Vol. 49, Issue 95
  • DOI: 10.1039/c3cc46946h

Preparation and reactivity of molybdenum–dinitrogen complexes bearing an arsenic-containing ANA-type pincer ligand
journal, January 2013

  • Tanabe, Yoshiaki; Kuriyama, Shogo; Arashiba, Kazuya
  • Chemical Communications, Vol. 49, Issue 81
  • DOI: 10.1039/c3cc45228j

Synthesis and Reactivity of Molybdenum-Dinitrogen Complexes Bearing PNN-Type Pincer Ligand: Molybdenum-Dinitrogen Complexes with PNN-Type Pincer Ligand
journal, May 2014

  • Arashiba, Kazuya; Nakajima, Kazunari; Nishibayashi, Yoshiaki
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 641, Issue 1
  • DOI: 10.1002/zaac.201400117

Synthesis and Catalytic Activity of Molybdenum-Nitride Complexes Bearing Pincer Ligands: Molybdenum-Nitride Complexes Bearing Pincer Ligands
journal, February 2015

  • Kinoshita, Eriko; Arashiba, Kazuya; Kuriyama, Shogo
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 10
  • DOI: 10.1002/ejic.201500017

Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation
journal, April 2017

  • Eizawa, Aya; Arashiba, Kazuya; Tanaka, Hiromasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14874

Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water
journal, September 2017

  • Tanabe, Yoshiaki; Arashiba, Kazuya; Nakajima, Kazunari
  • Chemistry - An Asian Journal, Vol. 12, Issue 19
  • DOI: 10.1002/asia.201701067

Proton-Coupled Electron Transfer in the Reduction of Arenes by SmI 2 –Water Complexes
journal, August 2015

  • Chciuk, Tesia V.; Flowers, Robert A.
  • Journal of the American Chemical Society, Vol. 137, Issue 35
  • DOI: 10.1021/jacs.5b07518

Proton-Coupled Electron Transfer in the Reduction of Carbonyls by Samarium Diiodide–Water Complexes
journal, July 2016

  • Chciuk, Tesia V.; Anderson, William R.; Flowers, Robert A.
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b05879

Interplay between Substrate and Proton Donor Coordination in Reductions of Carbonyls by SmI 2 –Water Through Proton-Coupled Electron-Transfer
journal, October 2018

  • Chciuk, Tesia V.; Anderson, William R.; Flowers, Robert A.
  • Journal of the American Chemical Society, Vol. 140, Issue 45
  • DOI: 10.1021/jacs.8b08890

SmI 2 (H 2 O) n Reduction of Electron Rich Enamines by Proton-Coupled Electron Transfer
journal, July 2017

  • Kolmar, Scott S.; Mayer, James M.
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b03667

The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme
journal, July 1986

  • Robson, Robert L.; Eady, Robert R.; Richardson, Toby H.
  • Nature, Vol. 322, Issue 6077
  • DOI: 10.1038/322388a0

Mechanism of N 2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H 2
journal, January 2018


Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N 2 Reduction
journal, June 2019


Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase
journal, September 2014


A bound reaction intermediate sheds light on the mechanism of nitrogenase
journal, March 2018


Reductive Elimination of H 2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E 4 (4H) Janus Intermediate in Wild-Type Enzyme
journal, August 2016

  • Lukoyanov, Dmitriy; Khadka, Nimesh; Yang, Zhi-Yong
  • Journal of the American Chemical Society, Vol. 138, Issue 33
  • DOI: 10.1021/jacs.6b06362

Hydrazine is a product of dinitrogen reduction by the vanadium-nitrogenase from Azotobacter chroococcum
journal, July 1991

  • Dilworth, M. J.; Eady, R. R.
  • Biochemical Journal, Vol. 277, Issue 2
  • DOI: 10.1042/bj2770465

A methyldiazene (HNNCH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism
journal, November 2006

  • Barney, B. M.; Lukoyanov, D.; Yang, T. -C.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0602130103

Diazene (HNNH) Is a Substrate for Nitrogenase:  Insights into the Pathway of N 2 Reduction
journal, June 2007

  • Barney, Brett M.; McClead, Jammi; Lukoyanov, Dmitriy
  • Biochemistry, Vol. 46, Issue 23
  • DOI: 10.1021/bi062294s

Synthesis and Characterization of Sulfur-Voided Cubanes. Structural Analogues for the MoFe 3 S 3 Subunit in the Nitrogenase Cofactor
journal, December 2001

  • Coucouvanis, Dimitri; Han, Jaehong; Moon, Namdoo
  • Journal of the American Chemical Society, Vol. 124, Issue 2
  • DOI: 10.1021/ja0110832

A Sulfido-Bridged Diiron(II) Compound and Its Reactions with Nitrogenase-Relevant Substrates
journal, April 2004

  • Vela, Javier; Stoian, Sebastian; Flaschenriem, Christine J.
  • Journal of the American Chemical Society, Vol. 126, Issue 14
  • DOI: 10.1021/ja049417l

Synthesis and characterization of cationic iron complexes supported by the neutral ligands NP i -Pr 3 , NArP i -Pr 3 , and NS t -Bu 3
journal, April 2005

  • MacBeth, Cora E.; Harkins, Seth B.; Peters, Jonas C.
  • Canadian Journal of Chemistry, Vol. 83, Issue 4
  • DOI: 10.1139/v05-017

Iron–dinitrogen coordination chemistry: Dinitrogen activation and reactivity
journal, September 2010


Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes
journal, June 2015


Update: Biological Nitrogen Fixation and Model Chemistry
journal, March 1997


A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57 Fe Mössbauer Data, and a Hydride Resting State
journal, January 2016

  • Del Castillo, Trevor J.; Thompson, Niklas B.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 138, Issue 16
  • DOI: 10.1021/jacs.6b01706

Selective Catalytic Reduction of N 2 to N 2 H 4 by a Simple Fe Complex
journal, October 2016

  • Hill, Peter J.; Doyle, Laurence R.; Crawford, Andrew D.
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b08802

N 2 -to-NH 3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis
journal, May 2017

  • Buscagan, Trixia M.; Oyala, Paul H.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 24
  • DOI: 10.1002/anie.201703244

Nitrogen Fixation via a Terminal Fe(IV) Nitride
journal, October 2017

  • Thompson, Niklas B.; Green, Michael T.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b09364

Characterization of the Earliest Intermediate of Fe-N 2 Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH 2 +
journal, May 2019

  • Nesbit, Mark A.; Oyala, Paul H.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 141, Issue 20
  • DOI: 10.1021/jacs.8b12082

Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation
journal, January 2018

  • Higuchi, Junichi; Kuriyama, Shogo; Eizawa, Aya
  • Dalton Transactions, Vol. 47, Issue 4
  • DOI: 10.1039/C7DT04327A

N 2 Functionalization at Iron Metallaboratranes
journal, November 2011

  • Moret, Marc-Etienne; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja208675p

Conversion of Fe–NH 2 to Fe–N 2 with release of NH 3
journal, December 2012

  • Anderson, John S.; Moret, Marc-Etienne; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja307714m

Heterolytic H 2 Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane
journal, May 2013

  • Fong, Henry; Moret, Marc-Etienne; Lee, Yunho
  • Organometallics, Vol. 32, Issue 10
  • DOI: 10.1021/om400281v

Electrophile-promoted Fe-to-N 2 hydride migration in highly reduced Fe(N 2 )(H) complexes
journal, January 2018

  • Deegan, Meaghan M.; Peters, Jonas C.
  • Chemical Science, Vol. 9, Issue 29
  • DOI: 10.1039/C8SC02380H

Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex
journal, June 2013


On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIVN, and related species
journal, November 2006

  • Hendrich, M. P.; Gunderson, W.; Behan, R. K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0604402103

An Iron Nitride Complex
journal, March 2008

  • Vogel, Carola; Heinemann, Frank W.; Sutter, Jörg
  • Angewandte Chemie International Edition, Vol. 47, Issue 14
  • DOI: 10.1002/anie.200800600

Synthesis, Structure, and Reactivity of an Iron(V) Nitride
journal, February 2011


A Tetrahedrally Coordinated L 3 Fe−N x Platform that Accommodates Terminal Nitride (Fe IV ⋮N) and Dinitrogen (Fe I −N 2 −Fe I ) Ligands
journal, May 2004

  • Betley, Theodore A.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 126, Issue 20
  • DOI: 10.1021/ja048713v

Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron
journal, May 2010

  • Lee, Yunho; Mankad, Neal P.; Peters, Jonas C.
  • Nature Chemistry, Vol. 2, Issue 7
  • DOI: 10.1038/nchem.660

Fe-N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco)
journal, September 2013

  • Rittle, J.; Peters, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 40
  • DOI: 10.1073/pnas.1310153110

Cationic silyldiazenido complexes of the Fe(diphosphine) 2 (N 2 ) platform: structural and electronic models for an elusive first intermediate in N 2 fixation
journal, January 2017

  • Piascik, Adam D.; Hill, Peter J.; Crawford, Andrew D.
  • Chemical Communications, Vol. 53, Issue 54
  • DOI: 10.1039/C7CC04188H

Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p K a Effects and Demonstrating Electrocatalysis
journal, April 2018

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • Journal of the American Chemical Society, Vol. 140, Issue 19
  • DOI: 10.1021/jacs.8b02335

Nitrogenase reactivity: Effects of pH on substrate reduction and carbon monoxide inhibition
journal, December 1993


Cp* Noninnocence Leads to a Remarkably Weak C–H Bond via Metallocene Protonation
journal, February 2019

  • Chalkley, Matthew J.; Oyala, Paul H.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 141, Issue 11
  • DOI: 10.1021/jacs.9b00193

X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor
journal, November 2011


A Triad of Highly Reduced, Linear Iron Nitrosyl Complexes: {FeNO} 8-10
journal, August 2016

  • Chalkley, Matthew J.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 55, Issue 39
  • DOI: 10.1002/anie.201605403

Dinitrogen Complexes Supported by Tris(phosphino)silyl Ligands
journal, March 2009

  • Whited, Matthew T.; Mankad, Neal P.; Lee, Yunho
  • Inorganic Chemistry, Vol. 48, Issue 6
  • DOI: 10.1021/ic801855y

Catalytic N−N Coupling of Aryl Azides To Yield Azoarenes via Trigonal Bipyramid Iron−Nitrene Intermediates
journal, March 2010

  • Mankad, Neal P.; Müller, Peter; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 132, Issue 12
  • DOI: 10.1021/ja910224c

Terminal FeIN2 and FeII⋅⋅⋅HC Interactions Supported by Tris(phosphino)silyl Ligands
journal, July 2007

  • Mankad, Neal P.; Whited, Matthew T.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 46, Issue 30
  • DOI: 10.1002/anie.200701188

Tracing the Route to Ammonia: A Theoretical Study on the Possible Pathways for Dinitrogen Reduction with Tripodal Iron Complexes
journal, July 2013

  • Gogoi, Ujjal; Guha, Ankur Kanti; Phukan, Ashwini K.
  • Chemistry - A European Journal, Vol. 19, Issue 33
  • DOI: 10.1002/chem.201300991

Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding
journal, April 2018

  • Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi
  • The Journal of Physical Chemistry A, Vol. 122, Issue 18
  • DOI: 10.1021/acs.jpca.8b02089

N 2 Reduction on Fe‐Based Complexes with Different Supporting Main‐Group Elements: Critical Roles of Anchor and Peripheral Ligands
journal, October 2018


Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme
journal, December 2017

  • Kaczmarek, Monika A.; Malhotra, Abheek; Balan, G. Alex
  • Chemistry - A European Journal, Vol. 24, Issue 20
  • DOI: 10.1002/chem.201704688

Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes
journal, June 2018


Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited
journal, July 2017


Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex
journal, June 2018

  • McWilliams, Sean F.; Bill, Eckhard; Lukat-Rodgers, Gudrun
  • Journal of the American Chemical Society, Vol. 140, Issue 27
  • DOI: 10.1021/jacs.8b04828

Low-coordinate iron complexes as synthetic models of nitrogenase
journal, April 2005

  • Holland, Patrick L.
  • Canadian Journal of Chemistry, Vol. 83, Issue 4
  • DOI: 10.1139/v05-005

Dinitrogen Chemistry from Trigonally Coordinated Iron and Cobalt Platforms
journal, September 2003

  • Betley, Theodore A.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 125, Issue 36
  • DOI: 10.1021/ja036687f

Studies of Low-Coordinate Iron Dinitrogen Complexes
journal, January 2006

  • Smith, Jeremy M.; Sadique, Azwana R.; Cundari, Thomas R.
  • Journal of the American Chemical Society, Vol. 128, Issue 3
  • DOI: 10.1021/ja052707x

Multimetallic cooperativity in activation of dinitrogen at iron–potassium sites
journal, January 2014

  • Chiang, Karen P.; Bellows, Sarina M.; Brennessel, William W.
  • Chem. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C3SC52487F

A Multi-iron System Capable of Rapid N 2 Formation and N 2 Cleavage
journal, July 2014

  • MacLeod, K. Cory; Vinyard, David J.; Holland, Patrick L.
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505193z

Reduction of dinitrogen bound at an iron(0) centre
journal, January 1996

  • Hall, David A.; Leigh, G. Jeffery
  • Journal of the Chemical Society, Dalton Transactions, Issue 17
  • DOI: 10.1039/dt9960003539

Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases
journal, January 1993

  • Hills, Adrian; Hughes, David L.; Jimenez-Tenorio, Manuel
  • Journal of the Chemical Society, Dalton Transactions, Issue 20
  • DOI: 10.1039/dt9930003041

Isolation of a zerovalent iron dinitrogen complex with 1,2-bis(diethylphosphino)ethane ligands
journal, January 1993

  • Komiya, Sanshiro; Akita, Masatoshi; Yoza, Akira
  • Journal of the Chemical Society, Chemical Communications, Issue 9
  • DOI: 10.1039/c39930000787

Synthesis, structure and reactions of a dinitrogen complex of iron(0), [Fe(N2)(depe)2] (depe = Et2PCH2CH2PEt2)
journal, January 1997

  • Hirano, Masafumi; Akita, Masatoshi; Morikita, Takashi
  • Journal of the Chemical Society, Dalton Transactions, Issue 19
  • DOI: 10.1039/a702019h

Nitrogen Fixation Revisited on Iron(0) Dinitrogen Phosphine Complexes
journal, April 2015


Teaching old compounds new tricks: efficient N 2 fixation by simple Fe(N 2 )(diphosphine) 2 complexes
journal, January 2016

  • Doyle, Laurence R.; Hill, Peter J.; Wildgoose, Gregory G.
  • Dalton Transactions, Vol. 45, Issue 18
  • DOI: 10.1039/C6DT00884D

Base-Mediated Conversion of Hydrazine to Diazene and Dinitrogen at an Iron Center
journal, December 2008

  • Field, Leslie D.; Li, Hsiu L.; Magill, Alison M.
  • Inorganic Chemistry, Vol. 48, Issue 1
  • DOI: 10.1021/ic801856q

Nitrogen fixation: hydrido- and hydrido-nitrogen-complexes of iron(II)
journal, January 1968


Nitrogen fixation.
journal, March 1971


Transient and matrix photochemistry of Fe(dmpe)2H2 (dmpe = Me2PCH2CH2Me2): dynamics of C-H and H-H activation
journal, September 1993

  • Whittlesey, Michael K.; Mawby, Roger J.; Osman, Robert
  • Journal of the American Chemical Society, Vol. 115, Issue 19
  • DOI: 10.1021/ja00072a016

An attractive cis-effect of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)2(.eta.2-H2)(PEtPh2)3
journal, June 1990

  • Van der Sluys, Lori S.; Eckert, Juergen; Eisenstein, Odile
  • Journal of the American Chemical Society, Vol. 112, Issue 12
  • DOI: 10.1021/ja00168a030

The first side-on bound metal complex of diazene, HNNH
journal, January 2008

  • Field, Leslie D.; Li, Hsiu L.; Dalgarno, Scott J.
  • Chemical Communications, Issue 14
  • DOI: 10.1039/b802039f

Theoretical Studies of N 2 Reduction to Ammonia in Fe(dmpe) 2 N 2
journal, January 2009

  • Yelle, Robert B.; Crossland, Justin L.; Szymczak, Nathaniel K.
  • Inorganic Chemistry, Vol. 48, Issue 3
  • DOI: 10.1021/ic800930t

Synthesis of an Iron Parent Amido Complex and a Comparison of Its Reactivity with the Ruthenium Analog
journal, April 2004

  • Fox, Daniel J.; Bergman, Robert G.
  • Organometallics, Vol. 23, Issue 8
  • DOI: 10.1021/om0499660

Synthesis and Characterization of an Iron(II) η 2 -Hydrazine Complex
journal, November 2007

  • Crossland, Justin L.; Zakharov, Lev N.; Tyler, David R.
  • Inorganic Chemistry, Vol. 46, Issue 25
  • DOI: 10.1021/ic702007r

Intermediates in the reduction of N2 to NH3: synthesis of iron η2 hydrazido(1−) and diazene complexes
journal, January 2009

  • Crossland, Justin L.; Balesdent, Chantal G.; Tyler, David R.
  • Dalton Transactions, Issue 23
  • DOI: 10.1039/b902524c

Synthesis and Characterization of Iron(II) and Ruthenium(II) Hydrido Hydrazine Complexes
journal, June 2011

  • Field, Leslie D.; Li, Hsiu L.; Dalgarno, Scott J.
  • Inorganic Chemistry, Vol. 50, Issue 12
  • DOI: 10.1021/ic102519f

[FeHCl(C 10 H 24 P 2 ) 2 ]
journal, January 1998

  • Wiesler, B.; Tuczek, F.; Näther, C.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 54, Issue 1
  • DOI: 10.1107/S0108270197012754

H 2 Activation in Aqueous Solution:  Formation of trans -[Fe(DMeOPrPE) 2 H(H 2 )] + via the Heterolysis of H 2 in Water
journal, May 2004

  • Gilbertson, John D.; Szymczak, Nathaniel K.; Tyler, David R.
  • Inorganic Chemistry, Vol. 43, Issue 11
  • DOI: 10.1021/ic0498642

Reduction of N 2 to Ammonia and Hydrazine Utilizing H 2 as the Reductant
journal, July 2005

  • Gilbertson, John D.; Szymczak, Nathaniel K.; Tyler, David R.
  • Journal of the American Chemical Society, Vol. 127, Issue 29
  • DOI: 10.1021/ja053030g

A new route to molecular nitrogen complexes
journal, January 1969

  • Bancroft, G. M.; Mays, M. J.; Prater, B. E.
  • Journal of the Chemical Society D: Chemical Communications, Issue 11
  • DOI: 10.1039/c29690000585

The acceptor number ? A quantitative empirical parameter for the electrophilic properties of solvents
journal, January 1975

  • Mayer, Ulrich; Gutmann, Viktor; Gerger, Wolfgang
  • Monatshefte f�r Chemie, Vol. 106, Issue 6
  • DOI: 10.1007/BF00913599

Testing the Push–Pull Hypothesis: Lewis Acid Augmented N 2 Activation at Iron
journal, April 2017

  • Geri, Jacob B.; Shanahan, James P.; Szymczak, Nathaniel K.
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01982

Fe-Catalyzed Conversion of N 2 to N(SiMe 3 ) 3 via an Fe-Hydrazido Resting State
journal, July 2018

  • Piascik, Adam D.; Li, Ruohao; Wilkinson, Harry J.
  • Journal of the American Chemical Society, Vol. 140, Issue 34
  • DOI: 10.1021/jacs.8b06999

Reduction of dinitrogen
journal, November 2006


Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands
journal, June 2016

  • Čorić, Ilija; Holland, Patrick L.
  • Journal of the American Chemical Society, Vol. 138, Issue 23
  • DOI: 10.1021/jacs.6b00747

Dihydrogen Binding to Isostructural S = 1 / 2 and S = 0 Cobalt Complexes
journal, August 2012

  • Suess, Daniel L. M.; Tsay, Charlene; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 134, Issue 34
  • DOI: 10.1021/ja305248f

Access to Well-Defined Ruthenium(I) and Osmium(I) Metalloradicals
journal, May 2010

  • Takaoka, Ayumi; Gerber, Laura C. H.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 49, Issue 24
  • DOI: 10.1002/anie.201001199

Recent advances in nitrogen fixation upon vanadium complexes
journal, February 2019


End-on versus side-on bonding of dinitrogen to dinuclear early transition-metal complexes
journal, April 1993

  • Fryzuk, Michael D.; Haddad, T. S.; Mylvaganam, Murugesapillai
  • Journal of the American Chemical Society, Vol. 115, Issue 7
  • DOI: 10.1021/ja00060a028

Synthesis of Molybdenum Complexes That Contain Silylated Triamidoamine Ligands. A .mu.-Dinitrogen Complex, Methyl and Acetylide Complexes, and Coupling of Acetylides
journal, September 1994

  • Shih, Keng-Yu; Schrock, Richard R.; Kempe, Rhett
  • Journal of the American Chemical Society, Vol. 116, Issue 19
  • DOI: 10.1021/ja00098a048

The Basicity of Phosphines
journal, November 1960

  • Henderson, Wm. A.; Streuli, C. A.
  • Journal of the American Chemical Society, Vol. 82, Issue 22
  • DOI: 10.1021/ja01507a008

Dinitrogen Fixation by Vanadium Complexes with a Triamidoamine Ligand
journal, September 2018


Pnictides as Symmetrically Bridging Ligands in Novel Neutral Complexes
journal, April 2000


Electrocatalytic Nitrogen Fixation for Distributed Fertilizer Production?
journal, July 2016


Beyond fossil fuel–driven nitrogen transformations
journal, May 2018

  • Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.
  • Science, Vol. 360, Issue 6391
  • DOI: 10.1126/science.aar6611

Recent progress towards the electrosynthesis of ammonia from sustainable resources
journal, May 2017


Electrochemical N2 splitting at well-defined metal complexes
journal, June 2019


Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf
journal, February 2019


Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell
journal, February 2017

  • Milton, Ross D.; Cai, Rong; Abdellaoui, Sofiene
  • Angewandte Chemie International Edition, Vol. 56, Issue 10
  • DOI: 10.1002/anie.201612500

Upgraded Bioelectrocatalytic N 2 Fixation: From N 2 to Chiral Amine Intermediates
journal, March 2019

  • Chen, Hui; Cai, Rong; Patel, Janki
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.9b00147

Electrosynthesis of ammonia
journal, October 1985

  • Pickett, Christopher J.; Talarmin, Jean
  • Nature, Vol. 317, Issue 6038
  • DOI: 10.1038/317652a0

Electron-transfer reactions in nitrogen fixation. Part 2. The electrosynthesis of ammonia: identification and estimation of products
journal, January 1986

  • Pickett, Christopher J.; Ryder, Karl S.; Talarmin, Jean
  • Journal of the Chemical Society, Dalton Transactions, Issue 7
  • DOI: 10.1039/dt9860001453

Nitrogen fixation
journal, February 1990

  • Becker, James Y.; Avraham (Tsarfaty), Shlomit
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 280, Issue 1
  • DOI: 10.1016/0022-0728(90)87088-2

Nitrogen Fixation by Transition Metal Complexes
journal, March 1966


Kinetics of the reaction of N2 with titanium cyclopentadienyl complexes
journal, January 1967


Stickstoff-Fixierung und Reduktion zu Ammoniak mit metallorganischen Katalysatoren
journal, October 1969


Nitrogen fixation
journal, August 1987

  • Becker, James Y.; Avraham (Tsarfaty), Shlomit; Posin, Barry
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 230, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80138-9

Electrochemical Ammonia Synthesis Mediated by Titanocene Dichloride in Aqueous Electrolytes under Ambient Conditions
journal, October 2017


Electrochemical Evaluation of Titanocenes in Ionic Liquids with Non-coordinating and Coordinating Anions and Application for NH 3 Synthesis
journal, September 2017

  • Katayama, Akira; Inomata, Tomohiko; Ozawa, Tomohiro
  • ChemElectroChem, Vol. 4, Issue 12
  • DOI: 10.1002/celc.201700557

Ionic liquid promotes N 2 coordination to titanocene( iii ) monochloride
journal, January 2017

  • Katayama, Akira; Inomata, Tomohiko; Ozawa, Tomohiro
  • Dalton Transactions, Vol. 46, Issue 24
  • DOI: 10.1039/C7DT01063J

Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine
journal, May 1989

  • Furuya, Nagakazu; Yoshiba, Hiroshi
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 263, Issue 1
  • DOI: 10.1016/0022-0728(89)80134-2

Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst
journal, September 1990

  • Furuya, Nagakazu; Yoshiba, Hiroshi
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 291, Issue 1-2
  • DOI: 10.1016/0022-0728(90)87195-P

A re-evaluation of Sn(II) phthalocyanine as a catalyst for the electrosynthesis of ammonia
journal, December 2017


A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
journal, May 2019


Electrochemical Reduction of N 2 to NH 3 at Low Potential by a Molecular Aluminum Complex
journal, October 2018

  • Sherbow, Tobias J.; Thompson, Emily J.; Arnold, Amela
  • Chemistry - A European Journal, Vol. 25, Issue 2
  • DOI: 10.1002/chem.201804454

Nitrogen fixation and reduction at boron
journal, February 2018

  • Légaré, Marc-André; Bélanger-Chabot, Guillaume; Dewhurst, Rian D.
  • Science, Vol. 359, Issue 6378
  • DOI: 10.1126/science.aaq1684

Über die Polarisation bei kathodischer Wasserstoffentwicklung
journal, January 1905


Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions
journal, October 2016


Identifying and Breaking Scaling Relations in Molecular Catalysis of Electrochemical Reactions
journal, August 2017

  • Pegis, Michael L.; Wise, Catherine F.; Koronkiewicz, Brian
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b05642

Towards an intelligent design of molecular electrocatalysts
journal, October 2017

  • Costentin, Cyrille; Savéant, Jean-Michel
  • Nature Reviews Chemistry, Vol. 1, Issue 11
  • DOI: 10.1038/s41570-017-0087

Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H 2 Production
journal, March 2018

  • Klug, Christina M.; Cardenas, Allan Jay P.; Bullock, R. Morris
  • ACS Catalysis, Vol. 8, Issue 4
  • DOI: 10.1021/acscatal.7b04379

Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst
journal, August 2016


Scaling Relationships for Binding Energies of Transition Metal Complexes
journal, December 2015


Evaluating the Thermodynamics of Electrocatalytic N 2 Reduction in Acetonitrile
journal, September 2016


Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications
journal, December 2010

  • Warren, Jeffrey J.; Tronic, Tristan A.; Mayer, James M.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100085k

Effect of the Ligand and Metal on the pKa Values of the Dihydrogen Ligand in the Series of Complexes [M(H2)H(L)2]+, M = Fe, Ru, Os, Containing Isosteric Ditertiaryphosphine Ligands, L
journal, April 1994

  • Cappellani, E. Paul; Drouin, Samantha D.; Jia, Guochen
  • Journal of the American Chemical Society, Vol. 116, Issue 8
  • DOI: 10.1021/ja00087a024

Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 p K a Units:  Unification of Different Basicity Scales
journal, February 2005

  • Kaljurand, Ivari; Kütt, Agnes; Sooväli, Lilli
  • The Journal of Organic Chemistry, Vol. 70, Issue 3
  • DOI: 10.1021/jo048252w

Syntheses and electronic structures of decamethylmetallocenes
journal, April 1982

  • Robbins, J. L.; Edelstein, N.; Spencer, B.
  • Journal of the American Chemical Society, Vol. 104, Issue 7
  • DOI: 10.1021/ja00371a017

An Acidity Scale for Phosphorus-Containing Compounds Including Metal Hydrides and Dihydrogen Complexes in THF:  Toward the Unification of Acidity Scales
journal, September 2000

  • Abdur-Rashid, Kamaluddin; Fong, Tina P.; Greaves, Bronwyn
  • Journal of the American Chemical Society, Vol. 122, Issue 38
  • DOI: 10.1021/ja994428d

Formation of Ammonia from an Iron Nitrido Complex
journal, April 2009

  • Scepaniak, Jeremiah J.; Young, Jessica A.; Bontchev, Ranko P.
  • Angewandte Chemie International Edition, Vol. 48, Issue 17
  • DOI: 10.1002/anie.200900381

Ammonia Synthesis by Hydrogenolysis of Titanium–Nitrogen Bonds Using Proton Coupled Electron Transfer
journal, March 2015

  • Pappas, Iraklis; Chirik, Paul J.
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/jacs.5b01047

Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species
journal, July 2015


Catalytic Silylation of N 2 and Synthesis of NH 3 and N 2 H 4 by Net Hydrogen Atom Transfer Reactions Using a Chromium P 4 Macrocycle
journal, February 2018

  • Kendall, Alexander J.; Johnson, Samantha I.; Bullock, R. Morris
  • Journal of the American Chemical Society, Vol. 140, Issue 7
  • DOI: 10.1021/jacs.7b11132

Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes
journal, April 2016

  • Tanaka, Hiromasa; Nishibayashi, Yoshiaki; Yoshizawa, Kazunari
  • Accounts of Chemical Research, Vol. 49, Issue 5
  • DOI: 10.1021/acs.accounts.6b00033

N2 activation on a molybdenum–titanium–sulfur cluster
journal, August 2018


Earth-abundant hydrogen evolution electrocatalysts
journal, January 2014

  • McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/C3SC51711J

Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/C3CC46135A

Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts
journal, January 2018


How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
journal, January 2019

  • Tang, Cheng; Qiao, Shi-Zhang
  • Chemical Society Reviews, Vol. 48, Issue 12
  • DOI: 10.1039/C9CS00280D